Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell ; 70(1): 106-119.e10, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625032

RESUMO

A current challenge in cell motility studies is to understand the molecular and physical mechanisms that govern chemokine receptor nanoscale organization at the cell membrane, and their influence on cell response. Using single-particle tracking and super-resolution microscopy, we found that the chemokine receptor CXCR4 forms basal nanoclusters in resting T cells, whose extent, dynamics, and signaling strength are modulated by the orchestrated action of the actin cytoskeleton, the co-receptor CD4, and its ligand CXCL12. We identified three CXCR4 structural residues that are crucial for nanoclustering and generated an oligomerization-defective mutant that dimerized but did not form nanoclusters in response to CXCL12, which severely impaired signaling. Overall, our data provide new insights to the field of chemokine biology by showing that receptor dimerization in the absence of nanoclustering is unable to fully support CXCL12-mediated responses, including signaling and cell function in vivo.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Nanopartículas , Receptores CXCR4/metabolismo , Linfócitos T/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/imunologia , Motivos de Aminoácidos , Animais , Antígenos CD4/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Quimiocina CXCL12/farmacologia , Células HEK293 , Humanos , Células Jurkat , Ligantes , Camundongos Endogâmicos C57BL , Mutação , Multimerização Proteica , Transporte Proteico , Receptores CXCR4/efeitos dos fármacos , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Transdução de Sinais , Imagem Individual de Molécula , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
2.
Eur Biophys J ; 53(5-6): 327-338, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39066956

RESUMO

Receptor for advanced glycation endproducts (RAGE) and toll-like receptor 4 (TLR4) are pattern-recognition receptors that bind to molecular patterns associated with pathogens, stress, and cellular damage. Diffusion plays an important role in receptor functionality in the cell membrane. However, there has been no prior investigation of the reciprocal effect of RAGE and TLR4 diffusion properties in the presence and absence of each receptor. This study reports how RAGE and TLR4 affect the mobility of each other in the human embryonic kidney (HEK) 293 cell membrane. Diffusion properties were measured using single-particle tracking (SPT) with quantum dots (QDs) that are selectively attached to RAGE or TLR4. The Brownian diffusion coefficients of RAGE and TLR4 are affected by the presence of the other receptor, leading to similar diffusion coefficients when both receptors coexist in the cell. When TLR4 is present, the average Brownian diffusion coefficient of RAGE increases by 40%, while the presence of RAGE decreases the average Brownian diffusion coefficient of TLR4 by 32%. Diffusion in confined membrane domains is not altered by the presence of the other receptor. The mobility of the cell membrane lipid remains constant whether one or both receptors are present. Overall, this work shows that the presence of each receptor can affect a subset of diffusion properties of the other receptor without affecting the mobility of the membrane.


Assuntos
Membrana Celular , Receptor para Produtos Finais de Glicação Avançada , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Células HEK293 , Membrana Celular/metabolismo , Difusão
3.
Nano Lett ; 22(20): 8363-8371, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36219818

RESUMO

Membrane receptor clustering is fundamental to cell-cell communication; however, the physiological function of receptor clustering in cell signaling remains enigmatic. Here, we developed a dynamic platform to induce cluster formation of neuropeptide Y2 hormone receptors (Y2R) in situ by a chelator nanotool. The multivalent interaction enabled a dynamic exchange of histidine-tagged Y2R within the clusters. Fast Y2R enrichment in clustered areas triggered ligand-independent signaling as determined by an increase in cytosolic calcium and cell migration. Notably, the calcium and motility response to ligand-induced activation was amplified in preclustered cells, suggesting a key role of receptor clustering in sensitizing the dose response to lower ligand concentrations. Ligand-independent versus ligand-induced signaling differed in the binding of arrestin-3 as a downstream effector, which was recruited to the clusters only in the presence of the ligand. This approach allows in situ receptor clustering, raising the possibility to explore different receptor activation modalities.


Assuntos
Histidina , Neuropeptídeo Y , Neuropeptídeo Y/metabolismo , Cálcio/metabolismo , beta-Arrestina 2/metabolismo , Ligantes , Transdução de Sinais , Receptores de Neuropeptídeos/metabolismo , Quelantes , Hormônios
4.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1207-1212, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36017890

RESUMO

In the human proteome, 826 G-protein-coupled receptors (GPCRs) interact with extracellular stimuli to initiate cascades of intracellular signaling. Determining conformational dynamics and intermolecular interactions are key to understand GPCR function as a basis for drug design. X-ray crystallography and cryo-electron microscopy (cryo-EM) contribute molecular architectures of GPCRs and GPCR-signaling complexes. NMR spectroscopy is complementary by providing information on the dynamics of GPCR structures at physiological temperature. In this review, several NMR approaches in use to probe GPCR dynamics and intermolecular interactions are discussed. The topics include uniform stable-isotope labeling, amino acid residue-selective stable-isotope labeling, site-specific labeling by genetic engineering, the introduction of 19F-NMR probes, and the use of paramagnetic nitroxide spin labels. The unique information provided by NMR spectroscopy contributes to our understanding of GPCR biology and thus adds to the foundations for rational drug design.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Microscopia Crioeletrônica/métodos , Receptores Acoplados a Proteínas G/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Cristalografia por Raios X
5.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887157

RESUMO

Signaling bias is a promising characteristic of G protein-coupled receptors (GPCRs) as it provides the opportunity to develop more efficacious and safer drugs. This is because biased ligands can avoid the activation of pathways linked to side effects whilst still producing the desired therapeutic effect. In this respect, a deeper understanding of receptor dynamics and implicated allosteric communication networks in signaling bias can accelerate the research on novel biased drug candidates. In this review, we aim to provide an overview of computational methods and techniques for studying allosteric communication and signaling bias in GPCRs. This includes (i) the detection of allosteric communication networks and (ii) the application of network theory for extracting relevant information pipelines and highly communicated sites in GPCRs. We focus on the most recent research and highlight structural insights obtained based on the framework of allosteric communication networks and network theory for GPCR signaling bias.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
6.
J Biol Chem ; 295(15): 5036-5050, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32034091

RESUMO

Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) mediates the docking and entry of dendritic cells to lymphatic vessels through selective adhesion to its ligand hyaluronan in the leukocyte surface glycocalyx. To bind hyaluronan efficiently, LYVE-1 must undergo surface clustering, a process that is induced efficiently by the large cross-linked assemblages of glycosaminoglycan present within leukocyte pericellular matrices but is induced poorly by the shorter polymer alone. These properties suggested that LYVE-1 may have limited mobility in the endothelial plasma membrane, but no biophysical investigation of these parameters has been carried out to date. Here, using super-resolution fluorescence microscopy and spectroscopy combined with biochemical analyses of the receptor in primary lymphatic endothelial cells, we provide the first evidence that LYVE-1 dynamics are indeed restricted by the submembranous actin network. We show that actin disruption not only increases LYVE-1 lateral diffusion but also enhances hyaluronan-binding activity. However, unlike the related leukocyte HA receptor CD44, which uses ERM and ankyrin motifs within its cytoplasmic tail to bind actin, LYVE-1 displays little if any direct interaction with actin, as determined by co-immunoprecipitation. Instead, as shown by super-resolution stimulated emission depletion microscopy in combination with fluorescence correlation spectroscopy, LYVE-1 diffusion is restricted by transient entrapment within submembranous actin corrals. These results point to an actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYVE-1 molecules and thereby facilitate leukocyte adhesion and transmigration.


Assuntos
Citoesqueleto de Actina/fisiologia , Endotélio Linfático/metabolismo , Endotélio Vascular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células Cultivadas , Endotélio Linfático/citologia , Endotélio Vascular/citologia , Humanos , Receptores de Hialuronatos/genética , Proteínas de Transporte Vesicular/genética
7.
Biochem Biophys Res Commun ; 534: 714-719, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33218687

RESUMO

Aggregation of IgE bound to the high-affinity IgE receptor (FcεRI) by a multivalent antigen induces mast cell activation, while disaggregation of aggregated FcεRI by monomer hapten immediately terminates degranulation mediated by dephosphorylation of Syk and mediates a decrease in intracellular Ca2+ concentration ([Ca2+]i). The actin polymerization state is intimately involved in mast cell activation mediated by FcεRI aggregation. However, the relation between aggregation-disaggregation of FcεRI and actin rearrangement in mast cells is not well understood. The addition of a multivalent antigen rapidly depolymerized actin filaments, while the subsequent addition of monomer hapten rapidly recovered actin polymerization. Whereas cofilin, an actin-severing protein, was temporally dephosphorylated several minutes after a multivalent antigen stimulation and the addition of monomer hapten rapidly increased cofilin phosphorylation level within 30 s. The removal of extracellular Ca2+ instead of monomer hapten addition did not restore cofilin phosphorylation, suggesting that the significant decrease in [Ca2+]i by monovalent hapten was not a critical reason for the actin rearrangement. Additionally, monovalent hapten did not completely reduce [Ca2+]i in mast cells pretreated with jasplakinolide, an inhibitor of actin depolymerization. These results suggest that the multivalent antigen-induced actin depolymerization mediated by cofilin dephosphorylation, and the subsequent addition of monovalent hapten in the F-actin severing state efficiently elicited actin re-polymerization by cofilin phosphorylation.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Mastócitos/metabolismo , Receptores de IgE/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Citocalasina D/farmacologia , Mastócitos/efeitos dos fármacos , Ovalbumina/farmacologia , Faloidina/química , Faloidina/metabolismo , Fosforilação , Polimerização , Ratos , Rodaminas/química , Rodaminas/metabolismo
8.
J Theor Biol ; 522: 110697, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794288

RESUMO

Tumors have developed multitude of ways to evade immune response and suppress cytotoxic T cells. Programed cell death protein 1 (PD-1) and programed cell death ligand 1 (PD-L1) are immune checkpoints that when activated, rapidly inactivate the cytolytic activity of T cells. Expression heterogeneity of PD-L1 and the surface receptor dynamics of both PD-1 and PD-L1 may be important parameters in modulating the immune response. PD-L1 is expressed on both tumor and non-tumor immune cells and this differential expression reflects different aspects of anti-tumor immunity. Here, we developed a mechanistic computational model to investigate the role of PD-1 and PD-L1 dynamics in modulating the efficacy of PD-1 and PD-L1 blocking antibodies. Our model incorporates immunological synapse restricted interaction of PD-1 and PD-L1, basal parameters for receptor dynamics, and T cell interaction with tumor and non-tumor immune cells. Simulations predict the existence of a threshold in PD-1 expression above which there is no efficacy for both anti-PD-1 and anti-PD-L1. Model also predicts that anti-tumor response is more sensitive to PD-L1 expression on non-tumor immune cells than tumor cells. New combination strategies are suggested that may enhance efficacy in resistant cases such as combining anti-PD-1 with a low dose of anti-PD-L1 or with inhibitors of PD-L1 recycling and synthesis. Another combination strategy suggested by the model is the combination of anti-PD-1 and anti-PD-L1 with enhancers of PD-L1 degradation rate. Virtual patients are then generated to test specific biomarkers of response. Intriguing predictions that emerge from the virtual patient simulations are that PD-1 blocking antibody results in higher response rate than PD-L1 blockade and that PD-L1 expression density on non-tumor immune cells rather than tumor cells is a predictor of response.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Anticorpos Bloqueadores , Antígeno B7-H1 , Humanos , Neoplasias/tratamento farmacológico
9.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948057

RESUMO

Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer's disease (AD). Changes in the dynamics of receptors on the plasma membrane are essential to receptor function. However, whether receptor dynamics are affected in different pathophysiological conditions is unexplored. Using live-cell single-molecule imaging, we examined the surface trafficking of TrkA and p75NTR molecules on live neurons that were derived from human-induced pluripotent stem cells (hiPSCs) of presenilin 1 (PSEN1) mutant familial AD (fAD) patients and non-demented control subjects. Our results show that the surface movement of TrkA and p75NTR and the activation of TrkA- and p75NTR-related phosphoinositide-3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signaling pathways are altered in neurons that are derived from patients suffering from fAD compared to controls. These results provide evidence for altered surface movement of receptors in AD and highlight the importance of investigating receptor dynamics in disease conditions. Uncovering these mechanisms might enable novel therapies for AD.


Assuntos
Doença de Alzheimer/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Presenilina-1/genética , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Adulto , Doença de Alzheimer/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Neurônios/metabolismo , Células PC12 , Ratos , Transdução de Sinais , Imagem Individual de Molécula
10.
J Neurochem ; 152(6): 663-674, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31777963

RESUMO

Synaptic strength depends on the number of cell-surface neurotransmitter receptors in dynamic equilibrium with intracellular pools. Dysregulation of this homeostatic balance occurs, for example in myasthenia gravis, an autoimmune disease characterized by a decrease in the number of postsynaptic nicotinic acetylcholine receptors (nAChRs). Monoclonal antibody mAb35 mimics this effect. Here we use STORM nanoscopy to characterize the individual and ensemble dynamics of monoclonal antibody-crosslinked receptors in the clonal cell line CHO-K1/A5, which robustly expresses adult muscle-type nAChRs. Antibody labeling of live cells results in 80% receptor immobilization. The remaining mobile fraction exhibits a heterogeneous combination of Brownian and anomalous diffusion. Single-molecule trajectories exhibit a two-state switching behavior between free Brownian walks and anticorrelated walks within confinement areas. The latter act as permeable fences (~34 nm radius, ~400 ms lifetime). Dynamic clustering, trapping, and immobilization also occur in larger nanocluster zones (120-180 nm radius) with longer lifetimes (11 ± 1 s), in a strongly cholesterol-sensitive manner. Cholesterol depletion increases the size of the clustering phenomenon; cholesterol enrichment has the opposite effect. The disclosed high proportion of monoclonal antibody-crosslinked immobile receptors, together with their anomalous, cholesterol-sensitive diffusion and clustering, provides new insights into the antibody-enhanced antigenic modulation that leads to physiopathological internalization and degradation of receptors in myasthenia.


Assuntos
Anticorpos Monoclonais/farmacologia , Colesterol/fisiologia , Receptores Nicotínicos/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetulus , Reagentes de Ligações Cruzadas , Ciclodextrinas/farmacologia , Difusão , Camundongos , Miastenia Gravis/metabolismo , Receptores Nicotínicos/química
11.
Arch Toxicol ; 93(3): 635-647, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569404

RESUMO

The aryl hydrocarbon receptor (AhR) is a nuclear receptor that facilitates a wide transcriptional response and causes a variety of adaptive and maladaptive physiological functions. Such functions are entirely dependent on the type of ligand activating it, and therefore, the nuances in the activation of this receptor at the single-cell level have become a research interest for different pharmacological and toxicological applications. Here, we investigate the activation of the AhR by diverse classes of compounds in a Hepa1c1c7-based murine hepatoma cell line. The exogenous compounds analyzed produced different levels of ultrasensitivity in AhR activation as measured by XRE-coupled EGFP production and analyzed by both flow cytometric and computational simulation techniques. Interestingly, simulation experiments reported herein were able to reproduce and quantitate the natural single-cell stochasticity inherent to mammalian cell lines as well as the ligand-specific differences in ultrasensitivity. Classical AhR modulators 2,3,7,8-tetrachlorodibenzodioxin (10- 1-105 pM), PCB-126 (10- 1-107 pM), and benzo[a]pyrene (10- 1-107 pM) produced the greatest levels of single-cell ultrasensitivity and most maximal responses, while consumption-based ligands indole-3-carbinol (103-109 pM), 3,3'-diindolylmethane (103-108 pM), and cannabidiol (103-108 pM) caused low-level AhR activation in more purely graded single-cell fashions. All compounds were tested and analyzed over a 24 h period for consistency. The comparative quantitative results for each compound are presented within. This study aids in defining the disparity between different types of AhR modulators that produce distinctly different physiological outcomes. In addition, the simulation tool developed for this study can be used in future studies to predict the quantitative effects of diverse types of AhR ligands in the context of pharmacological therapies or toxicological concerns.


Assuntos
Substâncias Perigosas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Benzo(a)pireno/toxicidade , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Indóis/toxicidade , Neoplasias Hepáticas , Camundongos , Bifenilos Policlorados/toxicidade , Dibenzodioxinas Policloradas/toxicidade
12.
Cell Mol Life Sci ; 74(22): 4189-4207, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28803370

RESUMO

The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animais , Cálcio/metabolismo , Citoesqueleto/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais
13.
Cell Biochem Biophys ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316263

RESUMO

Differential expression patterns of growth factor (EGFR, HER-2) and hormonal (ER, PR) receptors in breast cancer (BC) remain crucial for evaluating and tailoring therapeutic interventions. This study investigates differential expression profiles of hormonal and growth factor receptors in BC patients and across age groups, major subclasses, disease stages and tumor histology and survival rates, the efficacy of emerging clinical trial drugs (Dabrafenib and Palbociclib) and elucidating their molecular interaction mechanisms for efficient therapeutic strategies. Gene and protein expression analysis in the normal vs BC and across age groups and major subclasses reveals divergent patterns as EGFR and HER-2 levels are reduced in tumors versus normal tissue, while ER and PR levels are higher, particularly in luminal subtypes. However, there was no significant difference in survival rates among high and low/medium expression levels of EGFR and PR receptors. Conversely, patients with high HER-2 and ER expression exhibited poorer survival rates compared to low or medium expression levels. The in vitro findings indicate that Dabrafenib exhibits greater effectiveness than Palbociclib in suppressing various BC cells such as MCF-7 (Luminal), MDA-MB-231 (Triple-Negative), SKBR-3 (HER-2 + ) proliferation, promoting cell death, (IC50 of Dab < Pal) at 24 and 48 h, ROS production, and reduced ER and PR, elevated HER-2 with no change in EGFR expression. Molecular simulation studies revealed Dabrafenib's thermodynamically stable interactions (ΔG), tighter binding, and less structural deviation in the order EGFR > HER-2 > ER > PR as compared to Palbociclib (HER-2 > ER > PR = EGFR). These results indicate that Dabrafenib, compared to Palbociclib, more effectively regulates breast cancer cell proliferation through specific interactions with hormonal and growth factor receptors towards a repurposing approach.

14.
Neuropharmacology ; 240: 109703, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689262

RESUMO

The NMDA receptor (NMDAR) is a ubiquitously expressed glutamate-gated ion channel that plays key roles in brain development and function. Not surprisingly, a variety of disease-associated variants have been identified in genes encoding NMDAR subunits. A critical first step to assess whether these variants contribute to their associated disorder is to characterize their effect on receptor function. However, the complexity of NMDAR function makes this challenging, with many variants typically altering multiple functional properties. At synapses, NMDARs encode pre- and postsynaptic activity to carry a charge transfer that alters membrane excitability and a Ca2+ influx that has both short- and long-term signaling actions. Here, we characterized epilepsy-associated variants in GluN1 and GluN2A subunits with various phenotypic severity in HEK293 cells. To capture the complexity of NMDAR gating, we applied 10 glutamate pulses at 10 Hz to derive a charge integral. This assay is advantageous since it incorporates multiple gating parameters - activation, deactivation, and desensitization - into a single value. We then integrated this gating parameter with Mg2+ block and Ca2+ influx using fractional Ca2+ currents to generate indices of charge transfer and Ca2+ transfer over wide voltage ranges. This approach yields consolidated parameters that can be used as a reference to normalize channel block and allosteric modulation to better define potential patient treatment. This is especially true for variants in the transmembrane domain that affect not only receptor gating but also often Mg2+ block and Ca2+ permeation.

15.
J Mol Biol ; 434(5): 167458, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074483

RESUMO

Insulin regulates glucose homeostasis via binding and activation of the insulin receptor dimer at two distinct pairs of binding sites 1 and 2. Here, we present cryo-EM studies of full-length human insulin receptor (hIR) in an active state obtained at non-saturating, physiologically relevant insulin conditions. Insulin binds asymmetrically to the receptor under these conditions, occupying up to three of the four possible binding sites. Deletion analysis of the receptor together with site specific peptides and insulin analogs used in binding studies show that both sites 1 and 2 are required for high insulin affinity. We identify a homotypic interaction of the fibronectin type III domain (FnIII-3) of IR resulting in tight interaction of membrane proximal domains of the active, asymmetric receptor dimer. Our results show how insulin binding at two distinct types of sites disrupts the autoinhibited apo-IR dimer and stabilizes the active dimer. We propose an insulin binding and activation mechanism, which is sequential, exhibits negative cooperativity, and is based on asymmetry at physiological insulin concentrations with one to three insulin molecules activating IR.


Assuntos
Antígenos CD , Insulina , Receptor de Insulina , Antígenos CD/química , Antígenos CD/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Insulina/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Transdução de Sinais
16.
Pharmacol Res Perspect ; 10(2): e00933, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239244

RESUMO

Long-term opioid use develops tolerance and attenuates analgesic effects. Upon activation, µ-opioid receptors (MOPs) are internalized and directed to either recycling or degradation pathway. Ligand stimulation also promotes de novo MOP synthesis. These processes collaboratively regulate MOP expression and play critical roles in tolerance development. However, there is limited understanding of how the endogenous MOP expression changes after prolonged opioid administration because previous analyses have focused on individual processes using overexpression systems, which ignored physiological regulation. Another fundamental problem is the unavailability of commercial antibodies to detect the low expression of endogenous MOP in neuronal systems. Here, we established a neuronal cell line to detect endogenous MOP with sufficient sensitivity using CRISPR/Cas9 technology. We incorporated the hemagglutinin sequence into the MOP gene of the SH-SY5Y cell. The genome-editing did not significantly impair MOP functions such as MOP internalization or the downstream signaling. The clone was differentiated into a state similar to the primary culture undergoing treatment with all-trans retinoic acid, followed by brain-derived neurotrophic factor. Upon continuous stimulation with MOP ligands, endogenous MOP constantly decreased up to 48 h. The expression level was maintained at a certain level following this period, depending on the ligand properties. DAMGO reduced MOP from the cell surface by about 70%, while morphine did so by 40%. Our results indicate that even a few days of opioid administration could significantly reduce the MOP expression level. Our cell line could be a potential tool to investigate the molecular mechanisms underlying the problems caused by long-term opioid use.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Analgésicos Opioides/farmacologia , Sistemas CRISPR-Cas , Ligantes , Receptores Opioides , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo
17.
Comb Chem High Throughput Screen ; 24(10): 1696-1701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33172370

RESUMO

The appropriate selection of initial receptor structure has been the "cornerstone" or foundation of successful structure-based virtual screening (SBVS), and plagued the structure-based design with a significant practical problem to determine the major physiological states or important transition states of receptors (e.g. proteins with multiple low-energy conformations and liganddependent conformational dynamics). It is well known that current SBVS methods lack the capacity to capture and characterize the intrinsic receptor flexibility with ideal cost-effectiveness. In recent years, cryoelectron microscopy (cryo-EM) has been routinely applied in the determination of biomolecular assemblies within the physiological state. In this work, we review the roles of cryo-EM and ensemble docking methods to present the intrinsically dynamic behavior of biomacromolecules, as well as the ever-improving estimation of ligand binding affinities and receptor-ligand thermodynamics. Finally, we also provide a viewpoint for further research works on modeling receptor dynamics.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Termodinâmica , Microscopia Crioeletrônica , Ligantes
18.
Front Immunol ; 9: 2333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356797

RESUMO

Activation of the T cell receptor (TCR) on the T cell through ligation with antigen-MHC complex of an antigen-presenting cell (APC) is an essential process in the activation of T cells and induction of the subsequent adaptive immune response. Upon activation, the TCR, together with its associated co-receptor CD3 complex, assembles in signaling microclusters that are transported to the center of the organizational structure at the T cell-APC interface termed the immunological synapse (IS). During IS formation, local cell surface receptors and associated intracellular molecules are reorganized, ultimately creating the typical bull's eye-shaped pattern of the IS. CD6 is a surface glycoprotein receptor, which has been previously shown to associate with CD3 and co-localize to the center of the IS in static conditions or stable T cell-APC contacts. In this study, we report the use of different experimental set-ups analyzed with microscopy techniques to study the dynamics and stability of CD6-TCR/CD3 interaction dynamics and stability during IS formation in more detail. We exploited antibody spots, created with microcontact printing, and antibody-coated beads, and could demonstrate that CD6 and the TCR/CD3 complex co-localize and are recruited into a stimulatory cluster on the cell surface of T cells. Furthermore, we demonstrate, for the first time, that CD6 forms microclusters co-localizing with TCR/CD3 microclusters during IS formation on supported lipid bilayers. These co-localizing CD6 and TCR/CD3 microclusters are both radially transported toward the center of the IS formed in T cells, in an actin polymerization-dependent manner. Overall, our findings further substantiate the role of CD6 during IS formation and provide novel insight into the dynamic properties of this CD6-TCR/CD3 complex interplay. From a methodological point of view, the biophysical approaches used to characterize these receptors are complementary and amenable for investigation of the dynamic interactions of other membrane receptors.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Fenômenos Biofísicos , Complexo CD3/metabolismo , Linfócitos T/fisiologia , Actinas/química , Actinas/metabolismo , Antígenos CD/química , Antígenos de Diferenciação de Linfócitos T/química , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Sinapses Imunológicas/fisiologia , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo
19.
Front Mol Biosci ; 5: 95, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483515

RESUMO

CD4+ and CD8+ αß T cell antigen recognition is determined by the interaction between the TCR Complementarity Determining Region (CDR) loops and the peptide-presenting MHC complex. These T cells are known for their ability to recognize multiple pMHC complexes, and for a necessary promiscuity that is required for their selection and function in the periphery. Crystallographic studies have previously elucidated the role of structural interactions in TCR engagement, but our understanding of the dynamic process that occurs during TCR binding is limited. To better understand the dynamic states that exist for TCR CDR loops in solution, and how this relates to their states when in complex with pMHC, we simulated the 2C T cell receptor in solution using all-atom molecular dynamics in explicit water and constructed a Markov State Model for each of the CDR3α and CDR3ß loops. These models reveal multiple metastable states for the CDR3 loops in solution. Simulation data and metastable states reproduce known CDR3ß crystal conformations, and reveal several novel conformations suggesting that CDR3ß bound states are the result of search processes from nearby pre-existing equilibrium conformational states. Similar simulations of the invariant, Type I Natural Killer T cell receptor NKT15, which engages the monomorphic, MHC-like CD1d ligand, demonstrate that iNKT TCRs also have distinct states, but comparatively restricted degrees of motion.

20.
Methods Cell Biol ; 132: 109-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26928541

RESUMO

We describe methods based on live cell fluorescent microscopy and mass spectrometry to characterize the mechanism of endosomal cAMP production and its regulation using the parathyroid hormone (PTH) type 1 receptor as a prime example. These methods permit to measure rapid changes of cAMP levels in response to PTH, kinetics of endosomal ligand-receptor interaction, pH changes associated with receptor trafficking, and to identify the endosomal receptor interactome.


Assuntos
AMP Cíclico/biossíntese , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Sistemas do Segundo Mensageiro , Sequência de Aminoácidos , Endocitose , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Transporte Proteico , Receptor Tipo 1 de Hormônio Paratireóideo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA