Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Genes Dev ; 33(1-2): 90-102, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567997

RESUMO

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/genética , RNA Interferente Pequeno/genética , Motivos de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Genoma Helmíntico/genética , Ligação Proteica , Proteômica , RNA Interferente Pequeno/biossíntese
2.
J Neurosci ; 43(46): 7730-7744, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37726169

RESUMO

NR2D subunit-containing NMDA receptors (NMDARs) gradually disappear during brain maturation but can be recruited by pathophysiological stimuli in the adult brain. Here, we report that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication recruited NR2D subunit-containing NMDARs that generated an Mg2+-resistant tonic NMDA current (INMDA) in dopaminergic (DA) neurons in the midbrain of mature male mice. MPTP selectively generated an Mg2+-resistant tonic INMDA in DA neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). Consistently, MPTP increased NR2D but not NR2B expression in the midbrain regions. Pharmacological or genetic NR2D interventions abolished the generation of Mg2+-resistant tonic INMDA in SNpc DA neurons, and thus attenuated subsequent DA neuronal loss and gait deficits in MPTP-treated mice. These results show that extrasynaptic NR2D recruitment generates Mg2+-resistant tonic INMDA and exacerbates DA neuronal loss, thus contributing to MPTP-induced Parkinsonism. The state-dependent NR2D recruitment could be a novel therapeutic target for mitigating cell type-specific neuronal death in neurodegenerative diseases.SIGNIFICANCE STATEMENT NR2D subunit-containing NMDA receptors (NMDARs) are widely expressed in the brain during late embryonic and early postnatal development, and then downregulated during brain maturation and preserved at low levels in a few regions of the adult brain. Certain stimuli can recruit NR2D subunits to generate tonic persistent NMDAR currents in nondepolarized neurons in the mature brain. Our results show that MPTP intoxication recruits NR2D subunits in midbrain dopaminergic (DA) neurons, which leads to tonic NMDAR current-promoting dopaminergic neuronal death and consequent abnormal gait behavior in the MPTP mouse model of Parkinson's disease (PD). This is the first study to indicate that extrasynaptic NR2D recruitment could be a target for preventing neuronal death in neurodegenerative diseases.


Assuntos
Doença de Parkinson , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Substância Negra/metabolismo
3.
J Neurosci ; 42(23): 4755-4765, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35534227

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), but the pathogenic mechanism underlying LRRK2 mutations remains unresolved. In this study, we investigate the consequence of inactivation of LRRK2 and its functional homolog LRRK1 in male and female mice up to 25 months of age using behavioral, neurochemical, neuropathological, and ultrastructural analyses. We report that LRRK1 and LRRK2 double knock-out (LRRK DKO) mice exhibit impaired motor coordination at 12 months of age before the onset of dopaminergic neuron loss in the substantia nigra (SNpc). Moreover, LRRK DKO mice develop age-dependent, progressive loss of dopaminergic terminals in the striatum. Evoked dopamine (DA) release measured by fast-scan cyclic voltammetry in the dorsal striatum is also reduced in the absence of LRRK. Furthermore, LRRK DKO mice at 20-25 months of age show substantial loss of dopaminergic neurons in the SNpc. The surviving SNpc neurons in LRRK DKO mice at 25 months of age accumulate large numbers of autophagic and autolysosomal vacuoles and are accompanied with microgliosis. Surprisingly, the cerebral cortex is unaffected, as shown by normal cortical volume and neuron number as well as unchanged number of apoptotic cells and microglia in LRRK DKO mice at 25 months. These findings show that loss of LRRK function causes impairments in motor coordination, degeneration of dopaminergic terminals, reduction of evoked DA release, and selective loss of dopaminergic neurons in the SNpc, indicating that LRRK DKO mice are unique models for better understanding dopaminergic neurodegeneration in PD.SIGNIFICANCE STATEMENT Our current study employs a genetic approach to uncover the normal function of the LRRK family in the brain during mouse life span. Our multidisciplinary analysis demonstrates a critical normal physiological role of LRRK in maintaining the integrity and function of dopaminergic terminals and neurons in the aging brain, and show that LRRK DKO mice recapitulate several key features of PD and provide unique mouse models for elucidating molecular mechanisms underlying dopaminergic neurodegeneration in PD.


Assuntos
Transtornos Motores , Doença de Parkinson , Animais , Dopamina , Neurônios Dopaminérgicos/fisiologia , Feminino , Leucina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos , Camundongos Knockout , Transtornos Motores/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia
4.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175535

RESUMO

Parkinson's disease with cognitive impairment (PD-CI) results in several clinical outcomes for which specific treatment is lacking. Although the pathogenesis of PD-CI has not yet been fully elucidated, it is related to neuronal plasticity decline in the hippocampus region. The dopaminergic projections from the substantia nigra to the hippocampus are critical in regulating hippocampal plasticity. Recently, aerobic exercise has been recognized as an effective therapeutic strategy for enhancing plasticity through the secretion of various muscle factors. The exact role of FNDC5-an upregulated, newly identified myokine produced after exercise-in mediating hippocampal plasticity and regional dopaminergic projections in PD-CI remains unclear. In this study, the effect of treadmill exercise on hippocampal synaptic plasticity was evaluated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced chronic PD models. The results showed that treadmill exercise substantially alleviated the motor dysfunction, cognition disorder, and dopaminergic neuron degeneration induced by MPTP. Here, we discovered that the quadriceps, serum, and brain FNDC5 levels were lower in PD mice and that intervention with treadmill exercise restored FNDC5 levels. Moreover, treadmill exercise enhanced the synaptic plasticity of hippocampal pyramidal neurons via increased dopamine levels and BDNF in the PD mice. The direct protective effect of FNDC5 is achieved by promoting the secretion of BDNF in the hippocampal neurons via binding the integrin αVß5 receptor, thereby improving synaptic plasticity. Regarding the indirect protection effect, FNDC5 promotes the dopaminergic connection from the substantia nigra to the hippocampus by mediating the interaction between the integrin αVß5 of the hippocampal neurons and the CD90 molecules on the membrane of dopaminergic terminals. Our findings demonstrated that treadmill exercise could effectively alleviate cognitive disorders via the activation of the FNDC5-BDNF pathway and enhance the dopaminergic synaptic connection from SNpc to the hippocampus in the MPTP-induced chronic PD model.


Assuntos
Transtornos Cognitivos , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Integrina alfaV/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Substância Negra/metabolismo , Transtornos Cognitivos/metabolismo , Dopamina/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Fibronectinas/metabolismo
5.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373089

RESUMO

Trolox is a potent antioxidant and a water-soluble analog of vitamin E. It has been used in scientific studies to examine oxidative stress and its impact on biological systems. Trolox has been shown to have a neuroprotective effect against ischemia and IL-1ß-mediated neurodegeneration. In this study, we investigated the potential protective mechanisms of Trolox against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. Western blotting, immunofluorescence staining, and ROS/LPO assays were performed to investigate the role of trolox against neuroinflammation, the oxidative stress mediated by MPTP in the Parkinson's disease (PD) mouse model (wild-type mice (C57BL/6N), eight weeks old, average body weight 25-30 g). Our study showed that MPTP increased the expression of α-synuclein, decreased tyrosine hydroxylase (TH) and dopamine transporter (DAT) levels in the striatum and substantia nigra pars compacta (SNpc), and impaired motor function. However, Trolox treatment significantly reversed these PD-like pathologies. Furthermore, Trolox treatment reduced oxidative stress by increasing the expression of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Lastly, Trolox treatment inhibited the activated astrocytes (GFAP) and microglia (Iba-1), also reducing phosphorylated nuclear factor-κB, (p-NF-κB) and tumor necrosis factor-alpha (TNF-α) in the PD mouse brain. Overall, our study demonstrated that Trolox may exert neuroprotection on dopaminergic neurons against MPTP-induced oxidative stress, neuroinflammation, motor dysfunction, and neurodegeneration.


Assuntos
Transtornos Motores , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Doenças Neuroinflamatórias , Vitamina E/farmacologia , Transtornos Motores/metabolismo , Substância Negra/metabolismo , Camundongos Endogâmicos C57BL , Tirosina 3-Mono-Oxigenase/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo , Modelos Animais de Doenças
6.
Neurochem Res ; 47(8): 2198-2210, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35513760

RESUMO

The antiknock additive methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese(Mn) compound. Mn neurotoxicity caused by occupational Mn exposure (mostly inorganic MnCl2) is associated with motor and cognitive disturbances, referred to as Manganism. However, the impact of environmentally relevant Mn exposure on MMT-induced Manganism is poorly understood. In this investigation, we studied the effects of MMT on motor function and brain structure, and compared its effects with those of inorganic MnCl2. After adaptive feeding for 7 days, male and female Sprague-Dawley (SD) rats in the MMT-treated groups and positive control group were treated for 8 weeks with MMT (1, 2 and 4 mg/kg/i.g.) or MnCl2·4H2O (200 mg/kg/i.g.). Mn content in blood, liver, spleen and distinct brain regions was determined by inductively coupled plasma-mass spectrometer (ICP-MS). We found that MMT and MnCl2 exposure led to slower body-weight-gain in female rats, impaired motor and balance function and spatial learning and memory both in male and female rats. HE staining showed that MMT and MnCl2 led to altered structure of the substantia nigra pars compacta (SNpc), and Nissl staining corroborated MMT's propensity to damage the SNpc both in male and female rat. In addition, Immunostaining of the SNpc showed decreased TH-positive neurons in MMT- and MnCl2-treated rats, concomitant with Iba1 activation in microglia. Moreover, no statistically significant difference was noted between the rats in the H-MMT and MnCl2 groups. In summary, these findings suggest that MMT and MnCl2 exposure cause ultrastructural changes in the SNpc neurons culminating in altered motor behavior and cognition, suggesting that altered SNpc structure and function may underline the motor and cognitive deficits inherent to Manganism, and accounting for MMT and MnCl2's manifestations of atypical parkinsonism.


Assuntos
Intoxicação por Manganês , Manganês , Animais , Cloretos , Feminino , Masculino , Manganês/toxicidade , Compostos de Manganês , Ratos , Ratos Sprague-Dawley , Substância Negra
7.
Ultrastruct Pathol ; 46(1): 37-53, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35001795

RESUMO

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) with subsequent motor manifestations. This study aimed to assess the ameliorative effects of nicotine, in rotenone-induced PD rat model. Thirty adult male Albino Wistar rats were divided into three equal groups. Group I received an injection of normal saline. Group II received subcutaneous injection of rotenone at a dose of 1.5 mg/kg every other day. Group III received rotenone in the same previous dose and nicotine at a dose of 1.5 mg/kg daily. After 11 days of treatment, body weight (BW) and rat motor behavior were estimated. Specimens from the midbrain were processed for light and electron microscopy. The expression of tyrosine hydroxylase (TH), α-synuclein, and GFAP was examined. Serum levels of total antioxidant capacity (TAC) and malondialdehyde (MDA), and striatal levels of dopamine (DA) were analyzed. Group III revealed a significant improvement in BW and motor activity. Nicotine upregulated the expression of TH, downregulated the expression of α-synuclein and GFAP. The levels of MDA and TAC were improved but were still far from those of the control. Striatal DA levels increased. Nicotine activated the neurons and glial cells. The vascular endothelium, however, did not elicit improvement. Although nicotine ameliorated the loss of the dopaminergic neurons and motor deficit, it did not show improvement of vascular endothelium. It is still necessary to examine nicotin's ability to maintain the dopaminergic neurons in a good functioning state.


Assuntos
Doença de Parkinson , Parte Compacta da Substância Negra , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Nicotina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra
8.
Neurochem Res ; 45(8): 1941-1952, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488470

RESUMO

Subacute exposure to manganese (Mn) produced Parkinson's disease-like syndrome called Manganism. Chronic onset and progression are characteristics of Manganism, therefore, this study aimed to examine Mn toxicity following chronic exposures. Male Sprague-Dawley rats were injected Mn2+ 1 and 5 mg/kg, every 10 days for 150 days (15 injections). Animal body weight and behavioral activities were recorded. At the end of experiments, the brain and liver were collected for morphological and molecular analysis. Chronic Mn exposure did not affect animal body weight gain, but the high dose of Mn treatment caused 20% mortality after 140 days of administration. Motor activity deficits were observed in a dose-dependent manner at 148 days of Mn administration. Immunofluorescence double staining of substantia nigra pars compacta (SNpc) revealed the activation of microglia and loss of dopaminergic neurons. The chronic neuroinflammation mediators TNFα, inflammasome Nlrp3, Fc fragment of IgG receptor IIb, and formyl peptide receptor-1 were increased, implicating chronic Mn-induced neuroinflammation. Chronic Mn exposure also produced liver injury, as evidenced by hepatocyte degeneration with pink, condensed nuclei, indicative of apoptotic lesions. The inflammatory cytokines TNFα, IL-1ß, and IL-6 were increased, alone with stress-related genes heme oxygenase-1, NAD(P)H:quinone oxidoreductase-1 and metallothionein. Hepatic transporters, such as multidrug resistant proteins (Abcc1, Abcc2, and Abcc3) and solute carrier family proteins (Slc30a1, Slc39a8 and Slc39a14) were increased in attempt to eliminate Mn from the liver. In summary, chronic Mn exposure produced neuroinflammation and dopaminergic neuron loss in the brain, but also produced inflammation to the liver, with upregulation of hepatic transporters.


Assuntos
Encéfalo/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Manganês/toxicidade , Síndromes Neurotóxicas/etiologia , Animais , Comportamento Animal/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Injeções Intraperitoneais , Masculino , Manganês/administração & dosagem , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Fatores de Tempo
9.
Int J Mol Sci ; 20(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717815

RESUMO

Previously, we found that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) model mice (PD mice) showed facilitation of hippocampal memory extinction via reduced cyclic adenosine monophosphate (cAMP)/cAMP-dependent response element-binding protein (CREB) signaling, which may cause cognitive impairment in PD. Serotonergic neurons in the median raphe nucleus (MnRN) project to the hippocampus, and functional abnormalities have been reported. In the present study, we investigated the effects of the serotonin 5-HT4 receptor (5-HT4R) agonists prucalopride and velusetrag on the facilitation of memory extinction observed in PD mice. Both 5-HT4R agonists restored facilitation of contextual fear extinction in PD mice by stimulating the cAMP/CREB pathway in the dentate gyrus of the hippocampus. A retrograde fluorogold-tracer study showed that γ-aminobutyric acid-ergic (GABAergic) neurons in the reticular part of the substantia nigra (SNr), but not dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc), projected to serotonergic neurons in the MnRN, which are known to project their nerve terminals to the hippocampus. It is possible that the degeneration of the SNpc DAergic neurons in PD mice affects the SNr GABAergic neurons, and thereafter, the serotonergic neurons in the MnRN, resulting in hippocampal dysfunction. These findings suggest that 5HT4R agonists could be potentially useful as therapeutic drugs for treating cognitive deficits in PD.


Assuntos
Hipocampo/metabolismo , Doença de Parkinson/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Medo/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/psicologia , Núcleos da Rafe/efeitos dos fármacos , Receptores 5-HT4 de Serotonina/metabolismo , Neurônios Serotoninérgicos/citologia , Neurônios Serotoninérgicos/metabolismo , Substância Negra/metabolismo
10.
Biochem Biophys Res Commun ; 460(3): 799-805, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25824039

RESUMO

Activation of microglial cells have been treated as the main role in the pathogenesis of neuropathic inflammation and neurodegenerative disease, including Parkinson's disease (PD), prion disease and Alzheimer's disease (AD). Resolvin D2 (RvD2) is derived from omega-3 polyunsaturated fatty acid and performs potent anti-inflammatory and pro-resolution effects. Here we investigated the effects of intrathecal injection of RvD2 for substantia nigra pars compacta (SNpc) in vivo and primary microglia in vitro experiment on pro-inflammatory cytokine expression and NF-κB activation in Lipopolysaccharide (LPS)-induced PD rat model. The total of 30 days experimental period were used for the rats' experiment, the LPS-induced inflammation in SNpc increase the expression of NO, iNOS, TNF-α, IL-1, IL-18, IL-6, IL-1ß, ROS production, the translocation of NF-κB p65, IκBα, and IKKß expression in glial cells. After injection of RvD2, the treatment prevented development of behavioral defects and TLR4/NF-κB pathway activation. Therefore, we demonstrated a novel role of RvD2 in treatment of rat PD model and LPS activated microglia inflammation. Given the significant potency of RvD2 and well-known side effects of microglia inflammatory inhibitors, it may represent novel hotspot for treating neurodegenerative disease.


Assuntos
Ácidos Docosa-Hexaenoicos/fisiologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Neurônios/patologia , Doença de Parkinson/metabolismo , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Masculino , Doença de Parkinson/etiologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
11.
Neurobiol Dis ; 68: 190-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24830390

RESUMO

Twelve- to sixteen-month-old (G2019S) LRRK2 transgenic mice prepared by us displayed progressive neuronal death of substantia nigra pars compacta (SNpc) dopaminergic cells. In the present study, we hypothesized that prior to a late-phase death of SNpc dopaminergic neurons, (G2019S) LRRK2 also causes an early-phase neuronal dysfunction of SNpc dopaminergic cells in the (G2019S) LRRK2 mouse. Eight to nine-month-old (G2019S) LRRK2 transgenic mice exhibited the symptom of hypoactivity in the absence of the degeneration of SNpc dopaminergic neurons or nigrostriatal dopaminergic terminals. Whole-cell current-clamp recordings of SNpc dopaminergic cells in brain slices demonstrated a significant decrease in spontaneous firing frequency of SNpc dopaminergic neurons of 8-month-old (G2019S) LRRK2 mice. Carbon fiber electrode amperometry recording using striatal slices showed that (G2019S) LRRK2 transgenic mice at the age of 8 to 9months display an impaired evoked dopamine release in the dorsolateral striatum. Normal nigrostriatal dopaminergic transmission is required for the induction of long-term synaptic plasticity expressed at corticostriatal glutamatergic synapses of striatal medium spiny neurons. Whole-cell voltage-clamp recordings showed that in contrast to medium spiny neurons of 8 to 9-month-old wild-type mice, high-frequency stimulation of corticostriatal afferents failed to induce long-term depression (LTD) of corticostriatal EPSCs in medium spiny neurons of (G2019S) LRRK2 mice at the same age. Our study provides the evidence that mutant (G2019S) LRRK2 causes early-phase dysfunctions of SNpc dopaminergic neurons, including a decrease in spontaneous firing rate and a reduction in evoked dopamine release, and impairment of corticostriatal LTD in the (G2019S) LRRK2 transgenic mouse.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Potenciação de Longa Duração/genética , Mutação/genética , Doença de Parkinson , Proteínas Serina-Treonina Quinases/genética , Substância Negra/patologia , Animais , Apomorfina/farmacologia , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Agonistas de Dopamina/farmacologia , Antagonistas GABAérgicos/farmacologia , Glicina/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Picrotoxina/farmacologia , Cintilografia , Serina/genética , Substância Negra/diagnóstico por imagem , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Comb Chem High Throughput Screen ; 27(14): 2062-2077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38243959

RESUMO

Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.


Assuntos
Flavonoides , NF-kappa B , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Flavonoides/farmacologia , Flavonoides/química , Animais , Transdução de Sinais/efeitos dos fármacos
13.
Tissue Cell ; 89: 102454, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905876

RESUMO

BACKGROUND: Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK: The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS: Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS: SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1ß and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION: SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.


Assuntos
Janus Quinase 2 , Nanopartículas , Paraquat , Fator de Transcrição STAT3 , Selênio , Transdução de Sinais , Animais , Selênio/farmacologia , Fator de Transcrição STAT3/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Paraquat/toxicidade , Nanopartículas/química , Janus Quinase 2/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo
14.
Biology (Basel) ; 13(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39336117

RESUMO

Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.

15.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38915684

RESUMO

Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct-D1 and indirect-D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These S-D1 and S-D2 striosomal pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei. They modulate movement oppositely to the modulation by the canonical pathways: S-D1 is inhibitory and S-D2 is excitatory. The S-D1 and S-D2 circuits likely influence motivation for learning and action, complementing and reorienting canonical pathway modulation. A major conceptual reformulation of the classic direct-indirect pathway model of basal ganglia function is needed, as well as reconsideration of the effects of D2-targeting therapeutic drugs.

16.
Bioorg Med Chem ; 21(17): 5532-47, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810671

RESUMO

This study was focused on the possible neuroprotective role of (RS)-glucoraphanin, bioactivated with myrosinase enzyme (bioactive RS-GRA), in an experimental mouse model of Parkinson's disease (PD). RS-GRA is one of the most important glucosinolates, a thiosaccharidic compound found in Brassicaceae, notably in Tuscan black kale seeds. RS-GRA was extracted by one-step anion exchange chromatography, further purified by gel-filtration and analyzed by HPLC. Following, pure RS-GRA was characterized by (1)H and (13)C NMR spectrometry and the purity was assayed by HPLC analysis of the desulfo-derivative according to the ISO 9167-1 method. The obtained purity has been of 99%. To evaluate the possible pharmacological efficacy of bioactive RS-GRA (administrated at the dose of 10mg/kg, ip +5µl/mouse myrosinase enzyme), C57BL/6 mice were used in two different sets of experiment (in order to evaluate the neuroprotective effects in different phases of the disease), according to an acute (2 injections·40mg/kg MPTP) and a sub-acute (5 injections·20mg/kg MPTP) model of PD. Behavioural test, body weight changes measures and immunohistochemical localization of the main PD markers were performed and post-hoc analysis has shown as bioactive RS-GRA is able to reduce dopamine transporter degradation, tyrosine hydroxylase expression, IL-1ß release, as well as the triggering of neuronal apoptotic death pathway (data about Bax/Bcl-2 balance and dendrite spines loss) and the generation of radicalic species by oxidative stress (results focused on nitrotyrosine, Nrf2 and GFAP immunolocalization). These effects have been correlated with the release of neurotrophic factors, such as GAP-43, NGF and BDNF, that, probably, play a supporting role in the neuroprotective action of bioactive RS-GRA. Moreover, after PD-induction mice treated with bioactive RS-GRA are appeared more in health than animals that did not received the treatment both for phenotypic behaviour and for general condition (movement coordination, presence of tremors, nutrition). Overall, our results suggest that bioactive RS-GRA can protect neurons against the neurotoxicity involved in PD via an anti-apoptotic/anti-inflammatory action.


Assuntos
Anti-Inflamatórios/química , Glucosinolatos/química , Glicosídeo Hidrolases/uso terapêutico , Imidoésteres/química , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Doença Aguda , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Brassicaceae/química , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Proteína GAP-43/metabolismo , Glucosinolatos/isolamento & purificação , Glucosinolatos/farmacologia , Glicosídeo Hidrolases/isolamento & purificação , Imidoésteres/isolamento & purificação , Imidoésteres/farmacologia , Imuno-Histoquímica , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oximas , Sinapis/enzimologia , Estereoisomerismo , Sulfóxidos
17.
J Biochem ; 174(6): 533-548, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37725528

RESUMO

Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson's disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration.


Assuntos
Doença de Parkinson , Rotenona , Humanos , Animais , Camundongos , Rotenona/farmacologia , Rotenona/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Morte Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
18.
CNS Neurol Disord Drug Targets ; 21(7): 596-609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34620070

RESUMO

Parkinson's disease (PD) is the second most prominent neurodegenerative movement disorder after Alzheimer's disease, involving 2-3% of the population aged above 65 years. This is mainly triggered by the depletion of dopaminergic neurons located in substantia nigra pars compacta (SNpc) in the region of basal ganglia. At present, diagnosis for symptoms of PD is clinical, contextual, unspecified and therapeutically incomprehensive. Analysis of various causes of PD is essential for an accurate examination of the disease. Among the different causes, such as tremors and rigidity, unresponsiveness to the current treatment approach contributes to mortality. In the present review article, we describe various key factors of pathogenesis and physiology associated with tremors and rigidity necessary for the treatment of PI (postural instability) in patients with PD. Additionally, several reports showing early tremor and rigidity causes, particularly age, cortex lesions, basal ganglia lesions, genetic abnormalities, weakened reflexes, nutrition, fear of fall, and altered biomechanics, have been explored. By summarizing the factors that contribute to the disease, histopathological studies can assess rigidity and tremor in PD. With a clear understanding of the contributing factors, various prospective studies can be done to assess the incidence of rigidity and tremors.


Assuntos
Doença de Parkinson , Tremor , Idoso , Gânglios da Base/patologia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/epidemiologia , Parte Compacta da Substância Negra , Estudos Prospectivos , Tremor/epidemiologia
19.
Biomedicines ; 10(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428497

RESUMO

Nicotinamide (NAM) is the amide form of niacin and an important precursor of nicotinamide adenine dinucleotide (NAD), which is needed for energy metabolism and cellular functions. Additionally, it has shown neuroprotective properties in several neurodegenerative diseases. Herein, we sought to investigate the potential protective mechanisms of NAM in an intraperitoneal (i.p) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model (wild-type mice (C57BL/6N), eight weeks old, average body weight 25-30 g). The study had four groups (n = 10 per group): control, MPTP (30 mg/kg i.p. for 5 days), MPTP treated with NAM (500 mg/kg, i.p for 10 days) and control treated with NAM. Our study showed that MPTP increased the expression of α-synuclein 2.5-fold, decreased tyrosine hydroxylase (TH) 0.5-fold and dopamine transporters (DAT) levels up to 0.5-fold in the striatum and substantia nigra pars compacta (SNpc), and impaired motor function. However, NAM treatment significantly reversed these PD-like pathologies. Furthermore, NAM treatment reduced oxidative stress by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) between 0.5- and 1.0-fold. Lastly, NAM treatment regulated neuroinflammation by reducing Toll-like receptor 4 (TLR-4), phosphorylated nuclear factor-κB, tumor (p-NFκB), and cyclooxygenase-2 (COX-2) levels by 0.5- to 2-fold in the PD mouse brain. Overall, these findings suggest that NAM exhibits neuroprotective properties and may be an effective therapeutic agent for PD.

20.
Comput Struct Biotechnol J ; 20: 4271-4287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051887

RESUMO

Parkinson's disease (PD) has been designated as one of the priority neurodegenerative disorders worldwide. Although diagnostic biomarkers have been identified, early onset detection and targeted therapy are still limited. An integrated systems and structural biology approach were adopted to identify therapeutic targets for PD. From a set of 49 PD associated genes, a densely connected interactome was constructed. Based on centrality indices, degree of interaction and functional enrichments, LRRK2, PARK2, PARK7, PINK1 and SNCA were identified as the hub-genes. PARK2 (Parkin) was finalized as a potent theranostic candidate marker due to its strong association (score > 0.99) with α-synuclein (SNCA), which directly regulates PD progression. Besides, modeling and validation of Parkin structure, an extensive virtual-screening revealed small (commercially available) inhibitors against Parkin. Molecule-258 (ZINC5022267) was selected as a potent candidate based on pharmacokinetic profiles, Density Functional Theory (DFT) energy calculations (ΔE = 6.93 eV) and high binding affinity (Binding energy = -6.57 ± 0.1 kcal/mol; Inhibition constant = 15.35 µM) against Parkin. Molecular dynamics simulation of protein-inhibitor complexes further strengthened the therapeutic propositions with stable trajectories (low structural fluctuations), hydrogen bonding patterns and interactive energies (>0kJ/mol). Our study encourages experimental validations of the novel drug candidate to prevent the auto-inhibition of Parkin mediated ubiquitination in PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA