Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Immunol Rev ; 306(1): 293-303, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837251

RESUMO

Innate immunity is the first line of defense against infectious intruders and also plays a major role in the development of sterile inflammation. Direct microscopic imaging of the involved immune cells, especially neutrophil granulocytes, monocytes, and macrophages, has been performed since more than 150 years, and we still obtain novel insights on a frequent basis. Initially, intravital microscopy was limited to small-sized animal species, which were often invertebrates. In this review, we will discuss recent results on the biology of neutrophils and macrophages that have been obtained using confocal and two-photon microscopy of individual cells or subcellular structures as well as light-sheet microscopy of entire organs. This includes the role of these cells in infection defense and sterile inflammation in mammalian disease models relevant for human patients. We discuss their protective but also disease-enhancing activities during tumor growth and ischemia-reperfusion damage of the heart and brain. Finally, we provide two visions, one experimental and one applied, how our knowledge on the function of innate immune cells might be further enhanced and also be used in novel ways for disease diagnostics in the future.


Assuntos
Imunidade Inata , Neutrófilos , Animais , Humanos , Microscopia Intravital/métodos , Macrófagos , Mamíferos , Monócitos
2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732037

RESUMO

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Assuntos
Imageamento Tridimensional , Microscopia Confocal , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Microscopia Confocal/métodos , Imageamento Tridimensional/métodos , Corantes Fluorescentes/química , Potencial da Membrana Mitocondrial , Carbocianinas/química , Rodaminas/química
3.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125800

RESUMO

The measurement of dynamic changes in protein level and localization throughout the cell cycle is of major relevance to studies of cellular processes tightly coordinated with the cycle, such as replication, transcription, DNA repair, and checkpoint control. Currently available methods include biochemical assays of cells in bulk following synchronization, which determine protein levels with poor temporal and no spatial resolution. Taking advantage of genetic engineering and live-cell microscopy, we performed time-lapse imaging of cells expressing fluorescently tagged proteins under the control of their endogenous regulatory elements in order to follow their levels throughout the cell cycle. We effectively discern between cell cycle phases and S subphases based on fluorescence intensity and distribution of co-expressed proliferating cell nuclear antigen (PCNA)-mCherry. This allowed us to precisely determine and compare the levels and distribution of multiple replication-associated factors, including Rap1-interacting factor 1 (RIF1), minichromosome maintenance complex component 6 (MCM6), origin recognition complex subunit 1 (ORC1, and Claspin, with high spatiotemporal resolution in HeLa Kyoto cells. Combining these data with available mass spectrometry-based measurements of protein concentrations reveals the changes in the concentration of these proteins throughout the cell cycle. Our approach provides a practical basis for a detailed interrogation of protein dynamics in the context of the cell cycle.


Assuntos
Ciclo Celular , Replicação do DNA , Humanos , Células HeLa , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Imagem com Lapso de Tempo
4.
J Biol Chem ; 296: 100801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019878

RESUMO

Phagocytosis plays diverse roles in biology, but our understanding of the purpose, interplay, and cell signaling mechanisms associated with different modes of phagocytosis is limited, without being able to capture and visualize each step in this rapid process from the beginning to end. A new study by Walbaum et al. uses stunning time-lapse 3D imaging of the engulfment of erythrocytes by macrophages via sinking, ruffling, and cup formation, unequivocally confirming a visionary 44-year-old theory derived from still electron microscopy photos that phagocytosis mediated by complement receptor CR3 occurs via a sinking mechanism and antibody-mediated phagocytosis occurs via phagocytic cup formation. The article also challenges the dogma, showing that phagocytic cup formation is not unique to antibody receptor phagocytosis, rather CR3 plays a complex role in different modes of phagocytosis. For example, inhibition of antibody-mediated phagocytosis leads to a compensatory upregulation of CR3-mediated sinking phagocytosis. These findings animate, in vivid colors, processes previously only captured as stills, exposing interactions between different phagocytic mechanisms and altering our basic understanding of this important process.


Assuntos
Fagócitos/metabolismo , Receptores de Complemento/metabolismo , Receptores de IgG/metabolismo , Animais , Proteínas do Sistema Complemento/fisiologia , Fagocitose/fisiologia
5.
Biochem Biophys Res Commun ; 529(2): 238-242, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703417

RESUMO

High-speed imaging of living specimen was performed using two-photon microscopy equipped with a spinning-disk scanning unit. Typically, a high-peak-power laser light source is needed to simultaneously induce two-photon excitation processes at several hundred focal points, generating the limitations of excitable fluorophores. Therefore, a high-peak-power neodymium-based 918-nm laser light source was used for intravital imaging of the most popular fluorophores, green fluorescent proteins. As a result, the proposed system obtained approximately 30 times brighter fluorescent signal than that obtained using a conventional mode-locked titanium:sapphire laser light source. Furthermore, the system visualized four-dimensional (xyz-t) calcium responses of pancreatic acinar cells agonist stimulations in the living G-CaMP7-expressing mouse with 60 million µm3 volume.


Assuntos
Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde/análise , Microscopia de Fluorescência/instrumentação , Células Acinares/ultraestrutura , Animais , Desenho de Equipamento , Lasers , Camundongos , Pâncreas/ultraestrutura , Pele/ultraestrutura
6.
Adv Exp Med Biol ; 1185: 389-393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884643

RESUMO

The retinal pigment epithelium (RPE) performs several functions that are crucial for normal retinal function and vision, including the daily phagocytosis of photoreceptor outer segment (POS) membranes. Defects in the motility and degradation of POS phagosomes may be associated with some inherited and age-related retinal degenerations. Given the apical to basal translocation of phagosomes during maturation and degradation, studies of the underlying mechanisms require analyses of the dynamics in 3-D. In this chapter, we report a method for investigating the 3-D motility of POS phagosomes and lysosomes, utilizing high-speed, spinning disk confocal microscopy of live RPE flatmounts.


Assuntos
Lisossomos/fisiologia , Fagossomos/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Humanos , Microscopia Confocal , Fagocitose , Epitélio Pigmentado da Retina/citologia
7.
J Integr Neurosci ; 17(3-4): 671-678, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30103345

RESUMO

In vivo calcium imaging is a powerful tool used to record neuronal activity from living animals. For this purpose, two-photon excitation laser-scanning microscopy is commonly used because of the optical accessibility of deep tissues. In this study, we report that one-photon confocal scanning laser microscopy, when optimally tuned, is also applicable for in vivo calcium imaging from the superficial layer of the neocortex. By combining a Nipkow-disk confocal unit with a fluorescence stereo zoom microscope and a high numerical aperture objective, we succeeded in recording the fluorescence signal of individual cells at a depth of up to 160 µm in brain tissues, which corresponds to layer II of the mouse neocortex. In fact, we conducted in vivo functional multineuron calcium imaging and simultaneously recorded spontaneous activity from more than 100 neocortical layer II neurons. This one-photon confocal system provides a simple, low-cost experimental platform for time-lapse imaging from living animals.


Assuntos
Cálcio/metabolismo , Microscopia Confocal/métodos , Neocórtex/metabolismo , Neurônios/metabolismo , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Microscopia Confocal/instrumentação , Neocórtex/citologia , Neurônios/citologia , Imagens com Corantes Sensíveis à Voltagem/instrumentação
8.
J Microsc ; 256(3): 197-207, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25186063

RESUMO

Understanding the dynamic properties of cellular proteins in live cells and in real time is essential to delineate their function. In this context, we introduce the Fluorescence Recovery After Photobleaching-Photoactivation unit (Andor) combined with the Nikon Eclipse Ti E Spinning Disk (Andor) confocal microscope as an advantageous and robust platform to exploit the properties of the Dendra2 photoconvertible fluorescent protein (Evrogen) and analyse protein subcellular trafficking in living cells. A major advantage of the spinning disk confocal is the rapid acquisition speed, enabling high temporal resolution of cellular processes. Furthermore, photoconversion and imaging are less invasive on the spinning disk confocal as the cell exposition to illumination power is reduced, thereby minimizing photobleaching and increasing cell viability. We have tested this commercially available platform using experimental settings adapted to track the migration of fast trafficking proteins such as UBC9, Fibrillarin and have successfully characterized their differential motion between subnuclear structures. We describe here step-by-step procedures, with emphasis on cellular imaging parameters, to successfully perform the dynamic imaging and photoconversion of Dendra2-fused proteins at high spatial and temporal resolutions necessary to characterize the trafficking pathways of proteins.


Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Transporte Proteico/fisiologia , Proteínas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Células HeLa , Humanos , Iluminação/métodos , Fotodegradação
9.
J Clin Med ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902594

RESUMO

Chronic rhinosinusitis (CRS) is a condition affecting as much as 16% of the adult population in developed countries with many factors attributed to its development, including the more recently proposed role of bacterial biofilm infections. Plenty of research has been conducted on biofilms in CRS and the causes behind the development of such an infection in the nasal cavity and sinuses. One such probable cause is the production of mucin glycoproteins by the mucosa of the nasal cavity. To investigate the possible link between biofilm formation and mucin expression levels and their relationship with CRS etiology, we examined samples from 85 patients by means of spinning disk confocal microscopy (SDCM) to establish their biofilm status and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to determine MUC5AC and MUC5B expression levels. We observed a significantly higher prevalence of bacterial biofilms in the CRS patient group compared to the control group. In addition, we detected higher expression levels of MUC5B but not MUC5AC in the CRS group, which suggested a possible role for MUC5B in CRS development. Finally, we found no direct relationship between biofilm presence and mucin expression levels, thereby showing a multifaceted connection between these two major factors implicated in CRS etiology.

10.
Methods Mol Biol ; 2304: 265-283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028722

RESUMO

Cytoskeletal integrity is essential for neuronal complexity and functionality. Certain inherited neurological diseases are associated with mutated genes that directly or indirectly compromise cytoskeletal stability. While the large size and complexity of the neurons grown in culture poses certain challenges for imaging, live-cell imaging is an excellent approach to determine the morphological consequences of such mutants. This protocol details the use of spinning disk confocal microscopy and image analysis tools to evaluate branching and neurite length of healthy iPSC-derived glutamatergic neurons that express specific fluorescent proteins. The protocols can be adapted to neuronal cell lines of choice by the investigator.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Microscopia Confocal/métodos , Mutação , Neurônios/citologia , Proteínas/metabolismo , Diferenciação Celular , Linhagem Celular , Criopreservação , Citoesqueleto/metabolismo , Fluorescência , Humanos , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Proteínas/genética
11.
Cell Rep Methods ; 1(6): 100089, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35474896

RESUMO

Understanding brain functions requires detailed knowledge of long-range connectivity through which different areas communicate. A key step toward illuminating the long-range structures is to image the whole brain at synaptic resolution to trace axonal arbors of individual neurons to their termini. However, high-resolution brain-wide imaging requires continuous imaging for many days to sample over 10 trillion voxels, even in the mouse brain. Here, we have developed a sparse imaging and reconstruction tomography (SMART) system that allows brain-wide imaging of cortical projection neurons at synaptic resolution in about 20 h, an order of magnitude faster than previous methods. Analyses of morphological features reveal that single cortical neurons show remarkable diversity in local and long-range projections, with prefrontal, premotor, and visual neurons having distinct distribution of dendritic and axonal features. The fast imaging system and diverse projection patterns of individual neurons highlight the importance of high-resolution brain-wide imaging in revealing full neuronal morphology.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Encéfalo/diagnóstico por imagem , Axônios/fisiologia , Tomografia , Neuroimagem
12.
Methods Mol Biol ; 2304: 173-191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028717

RESUMO

All eukaryotic cells are delimited by the plasma membrane, separating the cell from its environment. Two critical cellular pathways, the endocytic and the exocytic vesicle networks, shuttle material in and out the cell, respectively. The substantial development of cell biological imaging techniques, along with improved fluorescent probes and image analysis tools, has been instrumental in increasing our understanding of various functions and regulatory mechanisms of various intracellular vesicle subpopulations and their dynamics. Here, using B lymphocytes (B cells) as a model system, we provide a protocol for 3D analysis of the intracellular vesicle traffic in either fixed or living cells using spinning disk confocal microscopy. We also describe the usage of image deconvolution to improve the resolution, particularly important for vesicular networks in lymphocytes due to the small size of these cells. Lastly, we describe two types of quantitative analysis: vesicle distribution/clustering toward the microtubule organizing center (MTOC), and colocalization analysis with endolysosomal markers.


Assuntos
Antígenos/metabolismo , Linfócitos B/citologia , Organelas/imunologia , Animais , Antígenos/química , Linfócitos B/metabolismo , Linhagem Celular , Corantes Fluorescentes/química , Camundongos , Microscopia Confocal , Centro Organizador dos Microtúbulos/metabolismo , Transporte Proteico , Software , Fluxo de Trabalho
13.
Methods Mol Biol ; 2179: 199-224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32939723

RESUMO

Coordinated cell movements drive embryonic development and tissue repair, and can also spread disease. Time-lapse microscopy is an integral part in the study of the cell biology of collective cell movements. Advances in imaging techniques enable monitoring dynamic cellular and molecular events in real time within living animals. Here, we demonstrate the use of spinning disk confocal microscopy to investigate coordinated cell movements and epithelial-to-mesenchymal-like transitions during embryonic wound closure in Drosophila. We describe image-based metrics to quantify the efficiency of collective cell migration. Finally, we show the application of super-resolution radial fluctuation microscopy to obtain multidimensional, super-resolution images of protrusive activity in collectively moving cells in vivo. Together, the methods presented here constitute a toolkit for the modern analysis of collective cell migration in living animals.


Assuntos
Movimento Celular , Rastreamento de Células/métodos , Embrião não Mamífero/citologia , Animais , Rastreamento de Células/instrumentação , Drosophila melanogaster , Transição Epitelial-Mesenquimal , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Limite de Detecção , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos
14.
Dev Cell ; 56(12): 1786-1803.e9, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34129835

RESUMO

Nuclear envelope assembly during late mitosis includes rapid formation of several thousand complete nuclear pore complexes (NPCs). This efficient use of NPC components (nucleoporins or "NUPs") is essential for ensuring immediate nucleocytoplasmic communication in each daughter cell. We show that octameric subassemblies of outer and inner nuclear pore rings remain intact in the mitotic endoplasmic reticulum (ER) after NPC disassembly during prophase. These "inherited" subassemblies then incorporate into NPCs during post-mitotic pore formation. We further show that the stable subassemblies persist through multiple rounds of cell division and the accompanying rounds of NPC mitotic disassembly and post-mitotic assembly. De novo formation of NPCs from newly synthesized NUPs during interphase will then have a distinct initiation mechanism. We postulate that a yet-to-be-identified modification marks and "immortalizes" one or more components of the specific octameric outer and inner ring subcomplexes that then template post-mitotic NPC assembly during subsequent cell cycles.


Assuntos
Núcleo Celular/genética , Mitose/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/genética , Ciclo Celular/genética , Retículo Endoplasmático/genética , Humanos , Interfase/genética , Membrana Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/biossíntese
15.
Viruses ; 12(12)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371254

RESUMO

Viral glycoprotein-mediated membrane fusion is an essential step for productive infection of host cells by enveloped viruses; however, due to its rarity and challenges in detection, little is known about the details of fusion events at the single particle level. Here, we have developed dual-color foamy viruses (FVs) composed of eGFP-tagged prototype FV (PFV) Gag and mCherry-tagged Env of either PFV or macaque simian FV (SFVmac) origin that have been optimized for detection of the fusion process. Using our recently developed tracking imaging correlation (TrIC) analysis, we were able to detect the fusion process for both PFV and SFVmac Env containing virions. PFV Env-mediated fusion was observed both at the plasma membrane as well as from endosomes, whereas SFVmac Env-mediated fusion was only observed from endosomes. PFV Env-mediated fusion was observed to happen more often and more rapidly than as for SFVmac Env. Strikingly, using the TrIC method, we detected a novel intermediate state where the envelope and capsids are still tethered but separated by up to 400 nm before final separation of Env and Gag occurred.


Assuntos
Fusão de Membrana , Infecções por Retroviridae/virologia , Spumavirus/fisiologia , Internalização do Vírus , Replicação Viral , Humanos , Estágios do Ciclo de Vida , Modelos Biológicos , Vírion/fisiologia
16.
Front Microbiol ; 11: 1193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582113

RESUMO

Phagocytosis is series of steps where the pathogens and the immune cells interact during an invasion. This starts with the adhesion process between the host and pathogen cells, and is followed by the engulfment of the pathogens. Many analytical methods that are applied to characterize phagocytosis based on imaging the host-pathogen confrontation assays rely on the fluorescence labeling of cells. However, the potential effect of the membrane labeling on the quantitative results of the confrontation assays has not been studied in detail. In this study, we determine whether the fluorescence labeling processes themselves influence the results of the phagocytosis measurements. Here, alveolar macrophages, which form one of the most important compartments of the innate immune system, were used as an example of host cells, whereas Aspergillus fumigatus and Lichtheimia corymbifera that cause aspergillosis and mucormycosis, respectively, were studied as examples for pathogens. At first, our study investigated the importance of the sequence of steps of the fixation process when preparing the confrontation assay sample for microscopy studies. Here we showed that applying the fixation agent before the counter-staining causes miscalculations during the determination of the phagocytic measures. Furthermore, we also found that staining the macrophages with various concentrations of DID, as a typical membrane label, in most cases altered the capability of macrophages to phagocytose FITC-stained A. fumigatus and L. corymbifera spores in comparison with unlabeled macrophages. This effect of the DID staining showed a differential character dependent upon the labeling status and the specific type of pathogen. Moreover, labeling the spores of A. fumigatus and L. corymbifera with FITC increased the phagocytic measures during confrontation with unlabeled macrophages when compared to label-free spores. Overall, our study confirms that the staining process itself may significantly manipulate the quantitative outcome of the confrontation assay. As a result of our study, we also developed a user-friendly image analysis tool that analyses confrontation assays both with and without fluorescence labeling of the host cells and of the pathogens. Our image analysis algorithm saves experimental work effort and time, provides more precise results when calculating the phagocytic measures, and delivers a convenient analysis tool for the biologists to monitor host-pathogen interactions as they happen without the artifacts that fluorescence labeling imposes on biological interactions.

17.
J Biomed Opt ; 25(1): 1-5, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31691550

RESUMO

Two-photon excitation microscopy is one of the key techniques used to observe three-dimensional (3-D) structures in biological samples. We utilized a visible-wavelength laser beam for two-photon excitation in a multifocus confocal scanning system to improve the spatial resolution and image contrast in 3-D live-cell imaging. Experimental and numerical analyses revealed that the axial resolution has improved for a wide range of pinhole sizes used for confocal detection. We observed the 3-D movements of the Golgi bodies in living HeLa cells with an imaging speed of 2 s per volume. We also confirmed that the time-lapse observation up to 8 min did not cause significant cell damage in two-photon excitation experiments using wavelengths in the visible light range. These results demonstrate that multifocus, two-photon excitation microscopy with the use of a visible wavelength can constitute a simple technique for 3-D visualization of living cells with high spatial resolution and image contrast.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Corantes Fluorescentes , Complexo de Golgi/fisiologia , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Movimento/fisiologia , Fenômenos Ópticos , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/instrumentação , Imagem com Lapso de Tempo/métodos
18.
Curr Protoc Cytom ; 85(1): e39, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29927100

RESUMO

Since its commercialization in the late 1980's, confocal laser scanning microscopy (CLSM) has since become one of the most prevalent fluorescence microscopy techniques for three-dimensional structural studies of biological cells and tissues. The flexibility of the approach has enabled its application in a diverse array of studies, from the fast imaging of dynamic processes in living cells, to meticulous morphological analyses of tissues, and co-localization of protein expression patterns. In this chapter, we introduce the principles of confocal microscopy and discuss how the approach has become a mainstay in the biological sciences. We describe the components of a CLSM system and assess how modern implementations of the approach have further expanded the use of the technique. Finally, we briefly outline some practical considerations to take into account when acquiring data using a CLSM system. © 2018 by John Wiley & Sons, Inc.


Assuntos
Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , História do Século XX , História do Século XXI , Microscopia Confocal/história , Microscopia Confocal/tendências
19.
Methods Mol Biol ; 1538: 249-259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27943195

RESUMO

Synaptic activity is modulated by the activation of neuromodulator receptors present in dendrites of neurons. The majority of neuromodulator receptors are G protein coupled receptors (GPCRs), in which membrane trafficking regulates their activities. Membrane trafficking of neuromodulator receptors and their signaling occurs on a rapid time scale and emerging studies indicate that neuromodulator receptors function not just from the plasma membrane but also from the endocytic compartments. Here, we describe a live cell imaging approach using spinning disk confocal microscopy to investigate the effect of neuromodulator receptor activation on synaptic activity by measuring calcium dynamics in primary rat striatal neurons. The advantages of spinning disk confocal microscopy and recent improvements in the genetically encoded calcium sensor, GCaMP6, provide an imaging approach to image both the receptor membrane trafficking to endocytic compartments, and calcium dynamics at a high spatial and temporal resolution. We believe this approach of imaging both the neuromodulator receptor membrane trafficking and synaptic activity using GCaMP6 is a powerful tool to address many questions regarding possible roles of membrane trafficking of neuromodulator receptors in synaptic activity.


Assuntos
Sinalização do Cálcio , Microscopia Confocal/métodos , Imagem Molecular/métodos , Receptores de Neurotransmissores/metabolismo , Animais , Processamento de Imagem Assistida por Computador , Neurônios/metabolismo , Transporte Proteico , Ratos , Software
20.
Methods Mol Biol ; 1358: 335-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26463395

RESUMO

Microscopy protocols that allow live-cell imaging of molecules and subcellular components tagged with fluorescent conjugates are indispensable in modern biological research. A breakthrough was recently introduced by the development of genetically encoded fluorescent tags that combined with fluorescence-based microscopic approaches of increasingly higher spatial and temporal resolution made it possible to detect single protein and nucleic acid molecules inside living cells. Here, we describe an approach to visualize single nascent pre-mRNA molecules and to measure in real time the dynamics of intron synthesis and excision.


Assuntos
Rastreamento de Células/métodos , Microscopia de Fluorescência/métodos , Precursores de RNA/genética , Splicing de RNA/genética , Proteínas de Fluorescência Verde , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA