Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 49(6): 1577-1587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38276990

RESUMO

Parkinson's disease (PD) is characterized by oxidative stress and neuroinflammation as key pathological features. Emerging evidence suggests that nuclear factor erythroid 2 related factor 2-antioxidant response element (Nrf2-ARE), phosphatidylinositol 3­kinase-protein kinase B (PI3K-Akt), c-Jun N-terminal kinase-extracellular signal-regulated kinase 1/2 (JNK-ERK1/2), and toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-kB) pathways play pivotal roles in PD pathogenesis. Orientin, a phenolic phytoconstituent, has demonstrated modulatory potential on these pathways in various experimental conditions other than PD. In this study, we aimed to evaluate the neuroprotective effects of Orientin against rotenone-induced neurodegeneration in SH-SY5Y cell lines and the Swiss albino mice model of PD. Orientin was administered at doses 10 and 20 µM in cell lines and 10 and 20 mg/kg in mice, and its effects on rotenone-induced neurodegeneration were investigated. Oxidative stress markers including mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as inflammatory markers including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), were measured. The expression levels of genes related to Nrf2-ARE (Nrf2), PI3K/Akt (Akt), JNK-ERK1/2 (TNF-α), and TLR4/NF-kB (TNF-α) pathways were measured to understand the modulatory effect of Orientin on these pathways. Additionally, behavioral studies assessing locomotor activity, muscle coordination, and muscle rigidity were conducted with mice. Our results indicate that Orientin dose-dependently attenuated rotenone-induced changes in oxidative stress markers, inflammatory markers, gene expression levels, and behavioral parameters. Therefore, our study concludes that Orientin exhibits significant neuroprotective benefits against rotenone-induced PD by modulating Nrf2-ARE, PI3K-Akt, JNK-ERK1/2, and TLR4/NF-kB pathways.


Assuntos
Flavonoides , Glucosídeos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Fármacos Neuroprotetores , Doença de Parkinson , Receptor 4 Toll-Like , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotenona/toxicidade , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
2.
Phytother Res ; 38(7): 3489-3508, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695373

RESUMO

Neuroinflammation may play an important role in the development of Alzheimer's disease (AD). Previous studies have reported that lipopolysaccharide (LPS)-induced neuroinflammation causes memory impairments and behavioral disorders. We investigated the potential preventive effects of punicalin (PUN), a polyphenolic component of pomegranate, on LPS-induced memory deficiency and anxiety- and depression-like behaviors, along with the underlying mechanisms. LPS-treated cultured microglial BV2 cells and BV2 cell/Neuro-2a (N2a) cell coculture system were investigated for anti-neuroinflammatory effects of PUN in vitro. The in vivo experiments involved mice administered a 4-week course of oral gavage with 1500 mg/kg/d PUN before intraperitoneal LPS (250 mg/kg daily 7 times) injections. The in vitro results demonstrated that PUN inhibited the LPS-induced inflammatory cytokine (IL-18, IL-1ß, TNF-ɑ, and IL-6) production in BV2 cells and protected N2a cells from synaptic damage mediated by BV2 microglia-induced neuroinflammation. In in vivo studies, it was observed that PUN improved memory impairment and anxiety- and depression-like behaviors caused by LPS and reduced the expression of inflammatory proteins such as iNOS, COX-2, IL-1ß, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the LPS-induced production of MDA; increased the activities of CAT, SOD, and GSH-Px, and inhibited LPS-induced Aß1-42 generation through down-regulation of APP and BACE1 expression. Moreover, PUN also suppressed the expression of TLR4, IRAK4, TRAF6, IKK-ß, NF-κB, p65, and HMGB1 in LPS-treated mouse brain and cultured microglial BV-2 cells. These results suggest that PUN inhibits LPS-induced memory impairment via anti-inflammatory and anti-amylogenic mechanisms through inhibition of TLR4-NF-kB activation.


Assuntos
Lipopolissacarídeos , Transtornos da Memória , Microglia , NF-kappa B , Doenças Neuroinflamatórias , Estresse Oxidativo , Punica granatum , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Camundongos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Masculino , Punica granatum/química , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/induzido quimicamente , Microglia/efeitos dos fármacos , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Polifenóis/farmacologia , Peptídeos beta-Amiloides , Linhagem Celular , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/induzido quimicamente , Camundongos Endogâmicos C57BL , Comportamento Animal/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases
3.
Mol Biol Rep ; 50(11): 9379-9394, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819496

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a common diabetic neurodegenerative disease that affects vision in severe cases. Current therapeutic drugs are ineffective for some patients with severe side effects, and ginsenoside-Rg1 (GRg1) has been shown to protect against DR and may serve as a new potential drug for DR. This study aimed to confirm the protective effect of GRg1 against DR and its molecular mechanism. METHODS: Human retinal microvascular endothelial cells (hRMECs) and rats were used to construct DR models in vitro and in vivo. Cell proliferation was detected by BrdU assays, the cell cycle was detected by flow cytometry, and TNF-α, IL-6 and IL-1ß levels were detected by ELISA. qRT‒PCR, Western blotting and immunohistochemistry were used to detect the expression of related genes and proteins, and angiogenesis assays were used to assess angiogenesis. RIP and RNA pull down assays were used to determine the relationship between miR-216a-5p and TLR4; retinal structure and changes were observed by HE staining and retinal digestive spread assays. RESULTS: GRg1 effectively inhibited HG-induced hRMEC proliferation, cell cycle progression and angiogenesis and reduced the levels of intracellular inflammatory cytokines and growth factors. HG downregulated the expression of miR-216a-5p and upregulated the expression of TLR4/NF-kB signaling pathway-related proteins. Importantly, GRg1 inhibited TLR4/NF-kB signaling pathway activation by upregulating miR-216a-5p, thereby inhibiting HG-induced cell proliferation, cell cycle progression, angiogenesis, and the production of inflammatory cytokines and growth factors. In addition, animal experiments confirmed the results of the cell experiments. CONCLUSIONS: GRg1 inhibits TLR4/NF-kB signaling by upregulating miR-216a-5p to reduce growth factors and inflammatory cytokines in DR, providing a potential therapeutic strategy for DR.


Assuntos
Retinopatia Diabética , Ginsenosídeos , MicroRNAs , Doenças Neurodegenerativas , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Células Endoteliais/metabolismo , Citocinas/genética , Citocinas/metabolismo , Ginsenosídeos/metabolismo , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais/fisiologia
4.
Phytother Res ; 36(6): 2572-2582, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35499270

RESUMO

Therapeutic drugs of chronic neuralgia have a high risk of addiction, making it crucial to identify novel drugs for chronic neuralgia. This study aimed to explore the therapeutic effect of paeoniflorin on chronic sciatica via inhibiting Schwann cell apoptosis. 28 SD rats were randomly divided into four groups, including the sham operation group, chronic constriction injury (CCI) group, mecobalamin group, and paeoniflorin group. The therapeutic effect and mechanism of paeoniflorin were evaluated via rat and cell experiments. Mechanical, hot, or cold hyperalgesia was induced in the rats after CCI operation, while paeoniflorin relieved chronic neuralgia. Besides, paeoniflorin decreased the levels of IL1, IL6, TNF-α, CRP, and LPS and increased the level of IL10 in serum. As for the sciatic nerve, the number of inflammatory cells was decreased, and Schwann cells were present after paeoniflorin treatment, and paeoniflorin promoted the recovery of nerve structure. In cell experiments, LPS induced Schwann cell apoptosis via the TLR4/NF-kB pathway. And paeoniflorin attenuated LPS-induced Schwann cell apoptosis by decreasing the levels of TLR4, p-NF-kB, caspase3, cleaved-caspase3, and cleaved-caspase7. Overall, these results suggest that paeoniflorin alleviates chronic sciatica by decreasing inflammatory factor levels and promotes the repair of damaged nerves by reducing Schwann cell apoptosis.


Assuntos
Neuralgia , Ciática , Animais , Apoptose , Constrição , Glucosídeos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Lipopolissacarídeos/farmacologia , Monoterpenos , NF-kappa B/metabolismo , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Células de Schwann , Nervo Isquiático , Ciática/tratamento farmacológico , Ciática/metabolismo , Receptor 4 Toll-Like/metabolismo
5.
J Sci Food Agric ; 102(6): 2604-2612, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34689333

RESUMO

BACKGROUND: During clinical practice, cyclophosphamide (CTX) can lead to liver and kidney injury in vivo. In this study, we established a liver and kidney injury model by injecting CTX (80 mg kg-1 d-1 ) into male ICR mice, and then mice were treated with saline and fucoidan (20 or 40 mg kg-1 ), respectively. Subsequently, the liver and kidney toxicity indices, the expression levels of malonic dialdehyde (MDA), inflammatory factors, and the main protein levels of the Nrf2/HO-1 and TLR4/NF-κB pathways were determined. RESULTS: Our results indicated that fucoidan could significantly decrease serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and urea (BUN) in the test group compared to the model group. Fucoidan administration caused reductions in MDA, interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor alpha (TNF-α) levels and improved superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in the liver and kidney of CTX-induced mice. Fucoidan up-regulated the Nrf2/HO-1 pathway and enhanced the protein levels of Nrf2, HO-1, GCLM, and NQO1. Moreover, fucoidan down-regulated the TLR4/NF-κB pathway, as indicated by decreased levels of TLR4, NF-κB p65, NF-κB p50, and increased IκBα level in liver and kidney tissues. CONCLUSION: Our studies suggest that fucoidan can ameliorate CTX-induced liver and kidney injury, potentially via up-regulating the Nrf2/HO-1 pathway and inhibiting the TLR4/NF-κB pathway. © 2021 Society of Chemical Industry.


Assuntos
Laminaria , Fator 2 Relacionado a NF-E2 , Animais , Ciclofosfamida/toxicidade , Rim/metabolismo , Laminaria/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Polissacarídeos , Transdução de Sinais , Receptor 4 Toll-Like/genética
6.
Exp Cell Res ; 369(1): 112-119, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29763588

RESUMO

Chronic inflammatory pain is a severe clinical problem that greatly affects patients' quality of life and causes huge economic burden. Microglia-mediated neuroinflammation exerts critical roles in the pathogenic progression of inflammatory pain. Recent evidence corroborates the anti-inflammatory and neuroprotective efficacy of glycyrrhizin; however, its function in inflammatory pain remains poorly elucidated. In the present study, glycyrrhizin suppressed LPS-induced activation of microglial cell BV2 by inhibiting NO production and expression of microglial marker IBA-1. Intriguingly, LPS-induced high expression and generation of inflammatory cytokines (i.e., IL-6, TNF-α and IL-1ß) was notably reversed by glycyrrhizin pre-treatment. Mechanistic analysis confirmed that high expression of high-mobility group box 1 (HMGB1) in LPS-activated microglia was inhibited following glycyrrhizin. More importantly, restoring HMGB1 expression by recombinant adenovirus vector of Ad-HMGB1 counteracted glycyrrhizin-restrained inflammatory response in microglia upon LPS stimulation. Furthermore, glycyrrhizin dampened the activation of subsequent TLR4-NF-κB pathway in LPS-stimulated microglia, which was abrogated by HMGB1 elevation. Furthermore, blocking this pathway by si-TLR4 transfection reversed the effects of HMGB1 overexpression on the inhibitor roles of glycyrrhizin in microglia-triggered inflammation. Additionally, glycyrrhizin administration also alleviated CFA-evoked mechanical allodynia and thermal hyperalgesia in inflammatory pain model of mice, concomitant with suppression in inflammatory response and microglial activation. Simultaneously, elevation of HMGB1, TLR4 and p65-NF-κB protein expression induced by CFA injection was also abrogated after glycyrrhizin. Accordingly, this study reveal that glycyrrhizin may act as a promising therapeutic avenue for the treatment of inflammatory pain.


Assuntos
Ácido Glicirrízico/farmacologia , Inflamação/prevenção & controle , Microglia/efeitos dos fármacos , Dor/prevenção & controle , Animais , Células Cultivadas , Células HEK293 , Proteína HMGB1/metabolismo , Temperatura Alta , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Hiperalgesia/prevenção & controle , Inflamação/complicações , Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NF-kappa B/metabolismo , Dor/etiologia , Dor/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
7.
Foods ; 12(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37761139

RESUMO

Glycation by transglutaminase (TGase)-type could effectively improve the structure and functional properties of proteins. However, the influence on intestinal inflammation or the underlying mechanisms has not been investigated. The goal of this research was to compare the bioactivities between glycated casein generated from the TGase-catalyzed reaction and oligochitosan as well as casein using a mouse model of dextran sulfate sodium (DSS)-induced intestinal inflammation to examine the protective effects and the underlying mechanism of glycated casein on intestinal inflammation. Eight groups of C57BL/6 mice were randomly assigned in this study: Control group: standard diet for 35 days; Model group: standard diet for 28 days and then colitis induction; Pretreated groups: different levels (200, 400, 800 mg/kg BW) of casein or glycated casein for 28 days before colitis induction. The mice were drinking water containing a 3% DSS solution for seven days of mice to cause colitis. The results indicated that glycated casein and casein at 200-800 mg/kg BW all relieved DSS-induced weight loss, reduced disease activity index (DAI) score, alleviated colon length shortening, weakened the destruction of colonic mucosal structure, decreased serum LPS, and MPO, IL-1ß, IL-6 and TNF-α levels in serum and colon, as well as regulated the expression of proteins involved in the TLR4/NF-κB signaling pathway in a concentration-dependent manner. Glycated caseinate showed a better protective effect against DSS-induced colitis than casein, highlighting that the TGase-type glycation of proteins as a potential functional food ingredient might be a helpful method for gut health.

8.
AMB Express ; 13(1): 57, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291355

RESUMO

Non-alcoholic steatohepatitis (NASH) is a more dangerous form of chronic non-alcoholic fatty liver disease (NAFLD). In the current investigation, the influence of citicoline on high-fat diet (HFD)-induced NASH was examined, both alone and in combination with Lactobacillus (probiotic). NASH was induced by feeding HFD (10% sugar, 10% lard stearin, 2% cholesterol, and 0.5% cholic acid) to rats for 13 weeks and received single i.p. injection of streptozotocin (STZ, 30 mg/kg) after 4 weeks. Citicoline was given at two dose levels (250 mg and 500 mg, i.p.) at the beginning of the sixth week, and in combination with an oral suspension of Lactobacillus every day for eight weeks until the study's conclusion. HFD/STZ induced steatohepatitis as shown by histopathological changes, elevated serum liver enzymes, serum hyperlipidemia and hepatic fat accumulation. Moreover, HFD convinced oxidative stress by increased lipid peroxidation marker (MDA) and decreased antioxidant enzymes (GSH and TAC). Upregulation of TLR4/NF-kB and the downstream inflammatory cascade (TNF-α, and IL-6) as well as Pentaraxin, fetuin-B and apoptotic markers (caspase-3 and Bax) were observed. NASH rats also had massive increase in Bacteroides spp., Fusobacterium spp., E. coli, Clostridium spp., Providencia spp., Prevotella interrmedia, and P. gingivalis while remarkable drop in Bifidobacteria spp. and Lactobacillus spp. Co-treatment with citicoline alone and with Lactobacillus improve histopathological NASH outcomes and reversed all of these molecular pathological alterations linked to NASH via upregulating the expression of Nrf2/HO-1 and downregulating TLR4/NF-kB signaling pathways. These results suggest that citicoline and lactobacillus may represent new hepatoprotective strategies against NASH progression.

9.
J Med Life ; 16(7): 1105-1110, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900069

RESUMO

Sepsis, a life-threatening condition arising from infection, often results in multi-organ failure, including cardiac dysfunction. This study investigated Xanthohumol, a natural compound, and its potential mechanism of action to enhance heart function following sepsis. A total of twenty-four adult male Swiss albino mice were allocated randomly to one of four equal groups (n=6): sham, CLP, vehicle Xanthohumol the same amount of DMSO injected IP 10 minutes before the CLP, and Xanthohumol group (0.4 mg/kg of Xanthohumol administered IP before the CLP process). Toll-like receptor 4, pro-inflammatory mediators, anti-inflammatory markers, oxidative stress indicators, apoptosis markers, and serum cardiac damage biomarkers were measured in the cardiac tissue using ELISA. Data with normal distribution were analyzed using t-test and ANOVA tests (p<0.05). In comparison to the sham group, the sepsis group had significantly higher levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB, while the pre-treated group with Xanthohumol had significantly lower levels (p<0.05) of these markers than the sepsis group. Bcl-2 showed no significant difference in Xanthohumol pre-treated group relative to the sepsis group, while IL-10 was significantly elevated. Xanthohumol dramatically reduced cardiac tissue injury (p<0.05) relative to the CLP group. By blocking the downstream signal transduction pathways of TLR-4 and NF-kB, Xanthohumol was shown to lessen cardiac damage in male mice during CLP-induced polymicrobial sepsis.


Assuntos
Sepse , Receptor 4 Toll-Like , Camundongos , Masculino , Animais , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico
10.
J Med Life ; 16(7): 1120-1126, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900081

RESUMO

As sepsis is associated with a 50% increase in mortality, sepsis-induced cardiomyopathy has become a critical topic. A multidisciplinary approach is required for the diagnosis and treatment of septic cardiomyopathy. This study looked at Sulforaphane, a natural product that aims to evaluate cardiac function after sepsis, and its likely mechanism of action. Twenty-four adult male Swiss albino mice were randomly divided into 4 equal groups (n=6): sham, CLP, vehicle Sulforaphane (the same amount of DMSO injected IP one hour before the CLP), and Sulforaphane group (one hour before the CLP, a 5mg/kg dose of Sulforaphane was injected). Cardiac tissue levels of toll-like receptor 4 (TLR-4), pro-inflammatory mediators, anti-inflammatory markers, oxidative stress markers, apoptosis markers, and serum cardiac damage biomarkers were assessed using ELISA. Statistical analyses, including t-tests and ANOVA tests, were performed with a significance level of 0.05 for normally distributed data. Compared to the sham group, the sepsis group had significantly elevated levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB (p<0.05). In contrast, the Sulforaphane pre-treated group demonstrated significantly lower levels of these markers (p<0.05). Additionally, Bcl-2 levels were significantly reduced (p<0.05) in the Sulforaphane group. Sulforaphane administration also significantly attenuated cardiac tissue injury (p<0.05). The findings suggest that Sulforaphane can decrease heart damage in male mice during CLP-induced polymicrobial sepsis by suppressing TLR-4/NF-kB downstream signal transduction pathways.


Assuntos
Cardiomiopatias , Traumatismos Cardíacos , Sepse , Camundongos , Masculino , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Cardiomiopatias/etiologia , Cardiomiopatias/complicações , Traumatismos Cardíacos/complicações , Sepse/complicações , Sepse/tratamento farmacológico
11.
Int Immunopharmacol ; 113(Pt A): 109369, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279667

RESUMO

Ventricular remodelling and arrhythmias are the main factors that affect the quality of life of patients with myocardial infarction (MI). Maresin 1 (Mar1) is associated with antioxidative and anti-inflammatory effects. However, the mechanisms underlying the effects of Mar1 in MI remain unclear. In this study, we aimed to explore the role and potential mechanisms of Mar1 in a mouse model of MI. The mice were divided into four groups: Sham, Sham + Mar1, MI, and MI + Mar1. In the MI groups, the left anterior descending coronary artery of the mice was ligated for 28 days, while this ligation was not conducted in the Sham groups. Mar1 was injected into mice in the Sham + Mar1 and MI + Mar1 groups. H9c2 cells were cultured in vitro under hypoxic conditions for MI models, and then Mar1 was added to the medium for 24 h. Our data demonstrated that Mar1 activated NRF2/HO-1 signalling and inhibited TLR4/NF-kB signalling in MI. These activities lead to inhibition of the release of inflammatory cytokines, reduction of myocardial apoptosis and interstitial fibrosis, decreased susceptibility to ventricular arrhythmias, and improved cardiac function. Similarly, our in vitro analyses showed that Mar1 inhibited inflammatory signalling by enhancing the antioxidative function of NRF2/HO-1 signalling. Furthermore, Mar1 inhibited hypoxia-activated apoptosis in cardiomyocytes. Taken together, our data demonstrate that Mar1 ameliorates ventricular remodelling and arrhythmias in mice post-MI via the activation of NRF2/HO-1 signalling and inhibition of the TLR4/NF-kB signalling pathways.


Assuntos
Arritmias Cardíacas , Ácidos Docosa-Hexaenoicos , Infarto do Miocárdio , Remodelação Ventricular , Animais , Camundongos , Arritmias Cardíacas/tratamento farmacológico , Modelos Animais de Doenças , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Qualidade de Vida , Receptor 4 Toll-Like/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia
12.
Fundam Clin Pharmacol ; 35(5): 843-851, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33336463

RESUMO

Inflammatory bowel disease (IBD) consists of ulcerative colitis and Crohn's disease, which affects gastrointestinal tract. The immune-mediated inflammation is mostly considered as the pathogenesis of IBD. It has been demonstrated that amitriptyline exerts anti-inflammatory influence; therefore, the aim of the current experiment is to evaluate the anti-inflammatory impact of amitriptyline on intestinal disorders following acetic acid-induced colitis in rats. Thirty male Wistar rats were randomly divided into five groups, including sham, control, dexamethasone (2 mg/kg), and amitriptyline (10 and 20 mg/kg). Intrarectal administration of acetic acid was applied to colitis induction in all study groups except for sham group. Animals were treated by oral administration of dexamethasone or amitriptyline. While macroscopic and microscopic lesions appeared after colitis induction treatment with dexamethasone and amitriptyline 10 and 20 mg/kg significantly improved lesions. Moreover, Toll-like receptor 4 (TLR4) and nuclear factor binding kappa light-chain (NF-ĸB expression), tumor necrosis factor-alpha (TNF-α) level, and myeloperoxidase (MPO) activity were increased after colitis induction, whereas treatment with dexamethasone (2 mg/kg) or amitriptyline (10 and 20 mg/kg) caused a noticeable decrease in the TLR4 and pNF-ĸB expression, TNF-α level, and MPO activity. In conclusion, amitriptyline plays an anti-inflammatory role through the suppression of TLR4/pNF-ĸB signaling pathway in the rat model of acute colitis.


Assuntos
Amitriptilina/farmacologia , Anti-Inflamatórios/farmacologia , Colite/metabolismo , Ácido Acético , Administração Oral , Amitriptilina/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Colite/induzido quimicamente , Modelos Animais de Doenças , Masculino , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
13.
Inflammation ; 43(5): 1999-2009, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594336

RESUMO

Inflammatory bowel disease composed of ulcerative colitis and Crohn's disease is a disorder that may involve entire gastrointestinal tract. Its pathogenesis is mainly an immune-mediated inflammation. Recently, it has been indicated that bupropion possesses anti-inflammatory properties; hence, the objective of this experiment is the investigation of the anti-inflammatory influence of bupropion on colonic lesions that emerged following the intrarectal administration of acetic acid. Thirty-six male Wistar rats were allocated randomly into six groups, including control, acetic acid, dexamethasone (2 mg/kg), and bupropion (40, 80, and 160 mg/kg). Colitis was induced by intrarectal administration of acetic acid in all study groups except control group, and animals were treated by oral administration of dexamethasone and bupropion. While macroscopic and microscopic lesions were observed after colitis induction, administration of dexamethasone and bupropion 160 mg/kg led to the remarkable improvement in lesions. In addition, the expression of TLR4 and NF-ĸB was decreased after colitis induction; however, treatment with dexamethasone (2 mg/kg) and bupropion (160 mg/kg) resulted in a significant decrease in their expression. Regarding biochemical factors, following colitis induction, TNF-α level and MPO activity were increased; nevertheless, dexamethasone (2 mg/kg) and bupropion (160 mg/kg) decreased the TNF-α and MPO activity. In conclusion, bupropion exerts anti-inflammatory influence through suppressing the TLR4 and NF-ĸB expression in the rat model of acute colitis.


Assuntos
Ácido Acético/toxicidade , Bupropiona/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Antibacterianos/toxicidade , Bupropiona/farmacologia , Colite/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/uso terapêutico , Relação Dose-Resposta a Droga , Masculino , NF-kappa B/biossíntese , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/biossíntese
14.
Brain Res Bull ; 132: 139-149, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28528202

RESUMO

The study aimed to explore the effects of microRNA-129-5p (miR-129-5p) on the development of autoimmune encephalomyelitis (AE)-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway in a rat model. AE-related epilepsy models were established. Sprague-Dawley (SD) rats were randomly divided into control, model, miR-129-5p mimics, miR-129-5p inhibitor, HMGB1 shRNA, TLR4/NF-kB (TLR4/NF-kB signaling pathway was inhibited) and miR-129-5p mimics+HMGB1 shRNA groups respectively. Latency to a first epilepsy seizure attack was recorded. Neuronal injuries in the hippocampus regions were detected using HE, Nissl and FJB staining methods 24h following model establishment. Microglial cells were detected by OX-42 immunohistochemistry. Expressions of miR-129-5p, HMGB1 and TLR4/NF-kB signaling pathway-related proteins were detected by qRT-PCR. Protein expressions of HMGB1 and TLR4/NF-kB signaling pathway-related proteins were detected by Western blotting. Dual luciferase reporter gene assay showed that miR-129-5p was negatively targeting HMGB1. Neurons of hippocampal tissues in rats were heavily injured by an injection of lithium chloride. Compared with the model and control groups, neuronal injury of the hippocampus and AE-related epilepsy decreased and microglial cells increased in the miR-129-5p mimics, HMGB1 shRNA and TLR4/NF-kB groups; however, in the miR-129-5p inhibitor group, miR-129-5p expression decreased, HMGB1 expression increased, TLR4/NF-kB signaling pathway was activated, latency to a first epilepsy seizure attack was shortened, and neuronal injury increased. This study provides evidence that miR-129-5p inhibits the development of AE-related epilepsy by suppressing HMGB1 expression and inhibiting TLR4/NF-kB signaling pathway.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Epilepsia/metabolismo , Proteína HMGB1/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Encefalomielite Autoimune Experimental/patologia , Epilepsia/patologia , Escherichia coli , Vetores Genéticos , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/genética , Hipocampo/metabolismo , Hipocampo/patologia , Lentivirus/genética , Cloreto de Lítio , Masculino , MicroRNAs/administração & dosagem , MicroRNAs/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Neurônios/metabolismo , Neurônios/patologia , Pilocarpina , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , Distribuição Aleatória , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA