RESUMO
Deubiquitinases have emerged as promising drug targets for cancer therapy. The two DUBs USP25 and USP28 share high similarity but vary in their cellular functions. USP28 is known for its tumor-promoting role, whereas USP25 is a regulator of the innate immune system and, recently, a role in tumorigenesis was proposed. We solved the structures of the catalytic domains of both proteins and established substantial differences in their activities. While USP28 is a constitutively active dimer, USP25 presents an auto-inhibited tetramer. Our data indicate that the activation of USP25 is not achieved through substrate or ubiquitin binding. USP25 cancer-associated mutations lead to activation in vitro and in vivo, thereby providing a functional link between auto-inhibition and the cancer-promoting role of the enzyme. Our work led to the identification of significant differences between USP25 and USP28 and provided the molecular basis for the development of new and highly specific anti-cancer drugs.
Assuntos
Carcinogênese/genética , Neoplasias/genética , Ubiquitina Tiolesterase/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/genética , Humanos , Mutação/genética , Neoplasias/tratamento farmacológico , Ligação Proteica/genética , Conformação Proteica , Multimerização Proteica/genética , Ubiquitina/genética , Ubiquitina Tiolesterase/químicaRESUMO
During viral infection, sensing of viral RNA by retinoic acid-inducible gene-I-like receptors (RLRs) initiates an antiviral innate immune response, which is mediated by the mitochondrial adaptor protein VISA (virus-induced signal adaptor; also known as mitochondrial antiviral signaling protein [MAVS]). VISA is regulated by various posttranslational modifications (PTMs), such as polyubiquitination, phosphorylation, O-linked ß-d-N-acetylglucosaminylation (O-GlcNAcylation), and monomethylation. However, whether other forms of PTMs regulate VISA-mediated innate immune signaling remains elusive. Here, we report that Poly(ADP-ribosyl)ation (PARylation) is a PTM of VISA, which attenuates innate immune response to RNA viruses. Using a biochemical purification approach, we identified tankyrase 1 (TNKS1) as a VISA-associated protein. Viral infection led to the induction of TNKS1 and its homolog TNKS2, which translocated from cytosol to mitochondria and interacted with VISA. TNKS1 and TNKS2 catalyze the PARylation of VISA at Glu137 residue, thereby priming it for K48-linked polyubiquitination by the E3 ligase Ring figure protein 146 (RNF146) and subsequent degradation. Consistently, TNKS1, TNKS2, or RNF146 deficiency increased the RNA virus-triggered induction of downstream effector genes and impaired the replication of the virus. Moreover, TNKS1- or TNKS2-deficient mice produced higher levels of type I interferons (IFNs) and proinflammatory cytokines after virus infection and markedly reduced virus loads in the brains and lungs. Together, our findings uncover an essential role of PARylation of VISA in virus-triggered innate immune signaling, which represents a mechanism to avoid excessive harmful immune response.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Infecções por Vírus de RNA , Vírus de RNA , Tanquirases , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células HEK293 , Humanos , Imunidade Inata/genética , Camundongos , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Tanquirases/genética , Tanquirases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
BACKGROUND: Although recent studies provide mechanistic understanding to the pathogenesis of radiation induced lung injury (RILI), rare therapeutics show definitive promise for treating this disease. Type II alveolar epithelial cells (AECII) injury in various manner results in an inflammation response to initiate RILI. RESULTS: Here, we reported that radiation (IR) up-regulated the TNKS1BP1, causing progressive accumulation of the cellular senescence by up-regulating EEF2 in AECII and lung tissue of RILI mice. Senescent AECII induced Senescence-Associated Secretory Phenotype (SASP), consequently activating fibroblasts and macrophages to promote RILI development. In response to IR, elevated TNKS1BP1 interacted with and decreased CNOT4 to suppress EEF2 degradation. Ectopic expression of EEF2 accelerated AECII senescence. Using a model system of TNKS1BP1 knockout (KO) mice, we demonstrated that TNKS1BP1 KO prevents IR-induced lung tissue senescence and RILI. CONCLUSIONS: Notably, this study suggested that a regulatory mechanism of the TNKS1BP1/CNOT4/EEF2 axis in AECII senescence may be a potential strategy for RILI.
Assuntos
Células Epiteliais Alveolares , Senescência Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos da radiação , Células Epiteliais Alveolares/patologia , Células Cultivadas , Senescência Celular/efeitos da radiação , Senescência Celular/fisiologia , Quinase do Fator 2 de Elongação/metabolismo , Quinase do Fator 2 de Elongação/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismoRESUMO
Coke oven emissions (COEs) contain many carcinogenic polycyclic aromatic hydrocarbons (PAHs). Telomere damage is an early biological marker reflecting long-term COEs-exposure. Whereas, whether the genetic variations of telomere-regulated gene TNKS have an effect on the COEs-induced telomere damage is unknown. So we detected the environmental exposure levels, relative telomere length (RTL), and TNKS genetic polymorphisms among 544 COEs-exposure workers and 238 healthy participants. We found that the RTL of the wild homozygous GG genotype in rs1055328 locus was statistically shorter compared with the CG+CC genotype for the healthy participants using covariance analysis(P = 0.008). In the Generalized linear model (GLM) analysis, TNKS rs1055328 GG could accelerate telomere shortening (P = 0.011); and the interaction between TNKS rs1055328 GG and COEs-exposure had an effect on RTL (P = 0.002). In conclusion, this study was the first to discover the role of TNKS rs1055328 locus in COEs-induced telomere damage, and proved that chromosomal damage was a combined consequence of environmental and genetic factors.
Assuntos
Coque , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Tanquirases , Humanos , Coque/efeitos adversos , Dano ao DNA , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Polimorfismo Genético , Tanquirases/genética , Telômero/genéticaRESUMO
Tankyrases, a versatile protein group within the poly(ADP-ribose) polymerase family, are essential for post-translational poly(ADP-ribosyl)ation, influencing various cellular functions and contributing to diseases, particularly cancer. Consequently, tankyrases have become important targets for anti-cancer drug development. Emerging approaches in drug discovery aim to disrupt interactions between tankyrases and their binding partners, which hinge on tankyrase-binding motifs (TBMs) within partner proteins and ankyrin repeat cluster domains within tankyrases. Our study addresses the challenge of identifying and ranking TBMs. We have conducted a comprehensive review of the existing literature, classifying TBMs into three distinct groups, each with its own scoring system. To facilitate this process, we introduce TBM Hunter-an accessible, web-based tool. This user-friendly platform provides a cost-free and efficient means to screen and assess potential TBMs within any given protein. TBM Hunter can handle individual proteins or lists of proteins simultaneously. Notably, our results demonstrate that TBM Hunter not only identifies known TBMs but also uncovers novel ones. In summary, our study offers an all-encompassing perspective on TBMs and presents an easy-to-use, precise, and free tool for identifying and evaluating potential TBMs in any protein, thereby enhancing research and drug development efforts focused on tankyrases.
Assuntos
Tanquirases , Tanquirases/metabolismo , Repetição de Anquirina , Poli ADP RibosilaçãoRESUMO
Specific E3 ligases target tumor suppressors for degradation. Inhibition of such E3 ligases may be an important approach to cancer treatment. RNF146 is a RING domain and PARylation-dependent E3 ligase that functions as an activator of the ß-catenin/Wnt and YAP/Hippo pathways by targeting the degradation of several tumor suppressors. Tankyrases 1 and 2 (TNKS1/2) are the only known poly-ADP-ribosyltransferases that require RNF146 to degrade their substrates. However, systematic identification of RNF146 substrates have not yet been performed. To uncover substrates of RNF146 that are targeted for degradation, we generated RNF146 knockout cells and TNKS1/2-double knockout cells and performed proteome profiling with label-free quantification as well as transcriptome analysis. We identified 160 potential substrates of RNF146, which included many known substrates of RNF146 and TNKS1/2 and 122 potential TNKS-independent substrates of RNF146. In addition, we validated OTU domain-containing protein 5 and Protein mono-ADP-ribosyltransferase PARP10 as TNKS1/2-independent substrates of RNF146 and SARDH as a novel substrate of TNKS1/2 and RNF146. Our study is the first proteome-wide analysis of potential RNF146 substrates. Together, these findings not only demonstrate that proteome profiling can be a useful general approach for the systemic identification of substrates of E3 ligases but also reveal new substrates of RNF146, which provides a resource for further functional studies.
Assuntos
Proteólise , Proteoma/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Fetais/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Modelos Biológicos , Proteínas Tirosina Quinases/metabolismo , Proteólise/efeitos dos fármacos , Reprodutibilidade dos Testes , Especificidade por Substrato/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
OBJECTIVE: Colorectal cancer is one of the most common malignancy in the world. The oncogenesis of colorectal cancer is still not fully elucidated. It was reported that microRNA-490-3p (miR-490-3p) was closely related to the regulation of cancers. However, if miR-490-3p could also affect colorectal cancer and the specific mechanism remains unclear. METHODS: qRT-PCR was conducted to examine the expression of miR-490-3p. DIANA, miRDB, and TargetScan databases were used to identify target genes. LOVO and SW480 cells were transfected by miR-490-3p mimics and inhibitors. Transwell assay was used to measure cell invasion and migration. Cisplatin and fluorouracil were administered to investigate chemotherapy resistance. Western blot was used to measure TNKS2 protein expression. Binding sites were verified using the double luciferase assay. RESULTS: miR-490-3p expression was low in the colorectal cancer cells. The level of miR-490-3p was negatively correlated with cell migration and invasion of cancer cells. miR-490-3p could bind to TNKS2 mRNA 3'UTR directly. miR-490-3p can suppress cell viability and resistance to chemotherapy in colorectal cancer cells through targeting TNKS2. CONCLUSIONS: miR-490-3p could affect colorectal cancer by targeting TNKS2. This study may provide a potential therapeutic target for colorectal cancer.
Assuntos
Neoplasias Colorretais , MicroRNAs , Tanquirases , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , PrognósticoRESUMO
The biological activity of vascular endothelial growth factor (VEGF), the major cytokine regulating the process of angiogenesis is tightly controlled at multiple levels including processes involving post-translational modification such as ADP-ribosylation and glycosylation. ADP-ribosylation is a reversible NAD+-dependent modification, catalyzed by poly ADP-ribose polymerase (PARP) or ADP-ribosyl transferase (ADPRTs) and has been reported by us and others as a modification that reduces the biological activity of VEGF. The factors responsible for any such modification should occur in the secretory pathway, i.e., in the endoplasmic reticulum and Golgi. Our investigation carried out in this direction revealed that ADP-ribosylation of VEGF requires the interplay between members of poly ADP-ribose polymerase (PARP) family in the secretory pathway, viz., ER associated PARP-16 and Golgi associated Tankyrase-2 (TNKS-2). The data presented in this manuscript suggest that PARP-16 catalysis the priming mono ADP-ribosylation of VEGF which is a prerequisite for poly ADP-ribosylation of VEGF by TNKS-2.
Assuntos
Poli ADP Ribosilação , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Tanquirases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Humanos , Poli(ADP-Ribose) Polimerases/genética , Tanquirases/genéticaRESUMO
Increasing evidence shows that long non-coding RNAs (lncRNAs) are closely associated with the development of cancers, including triple-negative breast cancer (TNBC). LncRNA FAM201A has been identified as a key regulator in some cancers. However, its role has not been explored in TNBC. In this work, we investigated the biological role and regulatory mechanism of FAM201A in TNBC. The expression pattern of FAM201A was determined by RT-qPCR analysis. The biological effect of FAM201A on cellular process of TNBC was tested using colony formation, EdU, caspase-3 activity detection, flow cytometry, wound healing, and Transwell assays. ChIP and luciferase reporter assays were performed to verify the interaction between transcription factor 3 (TCF3) and FAM201A. The interaction among FAM201A, microRNA-186-5p (miR-186-5p), and tankyrase 1 binding protein 1 (TNKS1BP1) was evaluated by luciferase reporter and RIP assays. The results showed that FAM201A expression was significantly upregulated in TNBC tissues and cells. Functionally, FAM201A knockdown inhibited TNBC cell proliferation, migration and invasion, and accelerated cell apoptosis. In mechanism, it was confirmed that FAM201A was transcriptionally activated by TCF3 and served as a sponge for miR-186-5p to upregulate TNKS1BP1 expression in TNBC cells. Collectively, our study revealed that TCF3-activated FAM201A promoted aggressive phenotypes of TNBC cells by upregulating TNKS1BP1 expression.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais CultivadasRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is a serious threat to human lives and is usually diagnosed at the late stages. Recently, there has been a rapid advancement in the treatment options for HCC, but novel therapeutic targets are still needed, especially for precision medicine. AIMS: We aimed to investigate the involvement of non-coding RNA RP11-81H3.2 in HCC. METHODS: The expression of RP11-81H3.2 was examined in the blood samples of HCC patients, and in the human HCC cell lines, including HepG2, Smmc-7721, and Huh7. Cell proliferation was determined using the CCK-8 and EdU assay, and cell invasion and migration were determined using the transwell/wound healing assay. The effects of RP11-81H3.2 knockdown on in vivo tumor growth were evaluated utilizing the nude mice HepG2 tumor xenograft model. RESULTS: Here, we have identified a long non-coding RNA, RP11-81H3.2, which is enriched in HCC and can promote its proliferation, migration, and invasion both in vitro and in vivo. In addition, our results showed that RP11-81H3.2 binds to and regulate miR-490-3p expression in the HCC cells. Moreover, we found that RP11-81H3.2 regulates the expression of TNKS2 via miR-490-3p. Further, we found that RP11-81H3.2 and miR-490-3p form a regulatory loop; the release of RP11-81H3.2 leads to the suppression of miR-490-3p expression, thus, further enhancing the expression of RP11-81H3.2. CONCLUSIONS: Our data have provided a novel target for the diagnosis and treatment of HCC, and sheds light on the lncRNA-miRNA regulatory nexus that can control the HCC related pathogenesis.
Assuntos
Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , MicroRNAs/metabolismo , Oncogenes , RNA Longo não Codificante/metabolismo , Tanquirases/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , Transdução de Sinais , Tanquirases/genética , Carga TumoralRESUMO
Infection by most DNA viruses activates a cellular DNA damage response (DDR), which may be to the detriment or advantage of the virus. In the case of adenoviruses, they neutralize antiviral effects of DDR activation by targeting a number of proteins for rapid proteasome-mediated degradation. We have now identified a novel DDR protein, tankyrase 1 binding protein 1 (TNKS1BP1) (also known as Tab182), which is degraded during infection by adenovirus serotype 5 and adenovirus serotype 12. In both cases, degradation requires the action of the early region 1B55K (E1B55K) and early region 4 open reading frame 6 (E4orf6) viral proteins and is mediated through the proteasome by the action of cullin-based cellular E3 ligases. The degradation of Tab182 appears to be serotype specific, as the protein remains relatively stable following infection with adenovirus serotypes 4, 7, 9, and 11. We have gone on to confirm that Tab182 is an integral component of the CNOT complex, which has transcriptional regulatory, deadenylation, and E3 ligase activities. The levels of at least 2 other members of the complex (CNOT3 and CNOT7) are also reduced during adenovirus infection, whereas the levels of CNOT4 and CNOT1 remain stable. The depletion of Tab182 with small interfering RNA (siRNA) enhances the expression of early region 1A proteins (E1As) to a limited extent during adenovirus infection, but the depletion of CNOT1 is particularly advantageous to the virus and results in a marked increase in the expression of adenovirus early proteins. In addition, the depletion of Tab182 and CNOT1 results in a limited increase in the viral DNA level during infection. We conclude that the cellular CNOT complex is a previously unidentified major target for adenoviruses during infection.IMPORTANCE Adenoviruses target a number of cellular proteins involved in the DNA damage response for rapid degradation. We have now shown that Tab182, which we have confirmed to be an integral component of the mammalian CNOT complex, is degraded following infection by adenovirus serotypes 5 and 12. This requires the viral E1B55K and E4orf6 proteins and is mediated by cullin-based E3 ligases and the proteasome. In addition to Tab182, the levels of other CNOT proteins are also reduced during adenovirus infection. Thus, CNOT3 and CNOT7, for example, are degraded, whereas CNOT4 and CNOT1 are not. The siRNA-mediated depletion of components of the complex enhances the expression of adenovirus early proteins and increases the concentration of viral DNA produced during infection. This study highlights a novel protein complex, CNOT, which is targeted for adenovirus-mediated protein degradation. To our knowledge, this is the first time that the CNOT complex has been identified as an adenoviral target.
Assuntos
Infecções por Adenoviridae/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/química , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Adenoviridae/imunologia , Adenoviridae/patogenicidade , Infecções por Adenoviridae/virologia , Proteínas Culina/metabolismo , Exorribonucleases , Células HEK293 , Células HeLa , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Repressoras , SorogrupoRESUMO
Deubiquitinase BRISC complex plays important role in the maintenance of spindle structure and function; however, the underlying mechanism remains largely undefined. Here we demonstrated that MERIT40, a core component of BRISC complex, directly interacts with the RXXPEG motif in the ARC-V domain of Tankyrase1(TNKS1). Mutation of the RXXPEG motif in the MERIT40 (R28A) disrupted its interaction with TNKS1. Consistent with these data, R28A mutant cells displayed multiple mitotic defects including aberrant spindle assembly and chromosome misalignment. These results support a critical role of RXXPEG motif of MERIT40 in BRISC-mediated regulation of TNKS1 function during spindle assembly.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fuso Acromático/metabolismo , Tanquirases/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Enzimas Desubiquitinantes , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Tanquirases/químicaRESUMO
AIMS/HYPOTHESIS: Tankyrase (TNKS) is a ubiquitously expressed molecular scaffold that is implicated in diverse processes. The catalytic activity of TNKS modifies substrate proteins through poly-ADP-ribosylation (PARsylation) and is responsive to cellular energetic state. Global deficiency of the TNKS protein in mice accelerates glucose utilisation and raises plasma adiponectin levels. The aim of this study was to investigate whether the PARsylation activity of TNKS in adipocytes plays a role in systemic glucose homeostasis. METHODS: To inhibit TNKS-mediated PARsylation, we fed mice with a diet containing the TNKS-specific inhibitor G007-LK. To genetically inactivate TNKS catalysis in adipocytes while preserving its function as a molecular scaffold, we used an adipocyte-selective Cre transgene to delete TNKS exons that encoded the catalytic domain at the C-terminus. Tissue-specific insulin sensitivity in mice was investigated using hyperinsulinaemic-euglycaemic clamps. To model adipose-liver crosstalk ex vivo, we applied adipocyte-conditioned media to hepatocytes and assessed the effect on gluconeogenesis. RESULTS: The TNKS inhibitor G007-LK improved glucose tolerance and insulin sensitivity and promptly increased plasma adiponectin levels. In female mice, but not in male mice, adipocyte-selective genetic inactivation of TNKS catalysis improved hepatic insulin sensitivity and post-transcriptionally increased plasma adiponectin levels. Both pharmacological and genetic TNKS inhibition in female mouse-derived adipocytes induced a change in secreted factors to decrease gluconeogenesis in primary hepatocytes. CONCLUSIONS/INTERPRETATION: Systemic glucose homeostasis is regulated by the PARsylation activity of TNKS in adipocytes. This regulation is mediated in part by adipocyte-secreted factors that modulate hepatic glucose production. Pharmacological TNKS inhibition could potentially be used to improve glucose tolerance.
Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/enzimologia , Glucose/metabolismo , Tanquirases/metabolismo , Animais , Glicemia/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Sulfonas/farmacologia , Tanquirases/antagonistas & inibidores , Triazóis/farmacologiaRESUMO
Tankyrases-1 and -2 (TNKS-1 and TNKS-2) have three cellular roles which make them important targets in cancer. Using NAD(+) as a substrate, they poly(ADP-ribosyl)ate TRF1 (regulating lengths of telomeres), NuMA (facilitating mitosis) and axin (in wnt/ß-catenin signalling). Using molecular modelling and the structure of the weak inhibitor 5-aminoiso quinolin-1-one, 3-aryl-5-substituted-isoquinolin-1-ones were designed as inhibitors to explore the structure-activity relationships (SARs) for binding and to define the shape of a hydrophobic cavity in the active site. 5-Amino-3-arylisoquinolinones were synthesised by Suzuki-Miyaura coupling of arylboronic acids to 3-bromo-1-methoxy-5-nitro-isoquinoline, reduction and O-demethylation. 3-Aryl-5-methylisoquinolin-1-ones, 3-aryl-5-fluoroisoquinolin-1-ones and 3-aryl-5-methoxyisoquinolin-1-ones were accessed by deprotonation of 3-substituted-N,N,2-trimethylbenzamides and quench with an appropriate benzonitrile. SAR around the isoquinolinone core showed that aryl was required at the 3-position, optimally with a para-substituent. Small meta-substituents were tolerated but groups in the ortho-positions reduced or abolished activity. This was not due to lack of coplanarity of the rings, as shown by the potency of 4,5-dimethyl-3-phenylisoquinolin-1-one. Methyl and methoxy were optimal at the 5-position. SAR was rationalised by modelling and by crystal structures of examples with TNKS-2. The 3-aryl unit was located in a large hydrophobic cavity and the para-substituents projected into a tunnel leading to the exterior. Potency against TNKS-1 paralleled potency against TNKS-2. Most inhibitors were highly selective for TNKSs over PARP-1 and PARP-2. A range of highly potent and selective inhibitors is now available for cellular studies.
Assuntos
Tanquirases/química , Sítios de Ligação , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
The tankyrases are members of the PARP superfamily; they poly(ADP-ribosyl)ate their target proteins using NAD(+) as a source of electrophilic ADP-ribosyl units. The three principal protein substrates of the tankyrases (TRF1, NuMA and axin) are involved in replication of cancer cells; thus inhibitors of the tankyrases may have anticancer activity. Using structure-based drug design and by analogy with known 3-arylisoquinolin-1-one and 2-arylquinazolin-4-one inhibitors, series of arylnaphthyridinones, arylpyridinopyrimidinones and their tetrahydro-derivatives were synthesised and evaluated in vitro. 7-Aryl-1,6-naphthyridin-5-ones, 3-aryl-2,6-naphthyridin-1-ones and 3-aryl-2,7-naphthyridin-1-ones were prepared by acid-catalysed cyclisation of the corresponding arylethynylpyridinenitriles or reaction of bromopyridinecarboxylic acids with ß-diketones, followed by treatment with NH3. The 7-aryl-1,6-naphthyridin-5-ones were methylated at 1-N and reduced to 7-aryl-1-methyl-1,2,3,4-tetrahydro-1,6-naphthyridin-5-ones. Cu-catalysed reaction of benzamidines with bromopyridinecarboxylic acids furnished 2-arylpyrido[2,3-d]pyrimidin-4-ones. Condensation of benzamidines with methyl 1-benzyl-4-oxopiperidine-3-carboxylate and deprotection gave 2-aryl-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-ones, aza analogues of the known inhibitor XAV939. Introduction of the ring-N in the arylnaphthyridinones and the arylpyridopyrimidinones caused >1000-fold loss in activity, compared with their carbocyclic isoquinolinone and quinazolinone analogues. However, the 7-aryl-1-methyl-1,2,3,4-tetrahydro-1,6-naphthyridin-5-ones showed excellent inhibition of the tankyrases, with some examples having IC50=2nM. One compound (7-(4-bromophenyl)-1-methyl-1,2,3,4-tetrahydro-1,6-naphthyridin-5-one) showed 70-fold selectivity for inhibition of tankyrase-2 versus tankyrase-1. The mode of binding was explored through crystal structures of inhibitors in complex with tankyrase-2.
Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Naftiridinas/síntese química , Pirimidinonas/síntese química , Tanquirases/antagonistas & inibidores , Amônia/química , Antineoplásicos/química , Compostos Aza/química , Benzamidinas/química , Ácidos Carboxílicos/química , Cristalografia por Raios X , Ciclização , Inibidores Enzimáticos/química , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Cetonas/química , Simulação de Acoplamento Molecular , Naftiridinas/química , Nitrilas/química , Pirimidinonas/química , Relação Estrutura-Atividade , Tanquirases/químicaRESUMO
The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated ß-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, the high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.
Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Tanquirases/antagonistas & inibidores , Tanquirases/química , Benzamidas/química , Benzamidas/metabolismo , Benzimidazóis/química , Benzimidazóis/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ftalazinas/química , Ftalazinas/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Conformação Proteica , Pirimidinonas/química , Pirimidinonas/metabolismo , Quinazolinas/química , Quinazolinas/metabolismo , Tanquirases/genética , Tanquirases/metabolismoRESUMO
Modulating Tankyrases (TNKS), interactions with USP25 to promote TNKS degradation, rather than inhibiting their enzymatic activities, is emerging as an alternative/specific approach to inhibit the Wnt/ß-catenin pathway. Here, we identified UAT-B, a novel neoantimycin analog isolated from Streptomyces conglobatus, as a small-molecule inhibitor of TNKS-USP25 protein-protein interaction (PPI) to overcome multi-drug resistance in colorectal cancer (CRC). The disruption of TNKS-USP25 complex formation by UAT-B led to a significant decrease in TNKS levels, triggering cell apoptosis through modulation of the Wnt/ß-catenin pathway. Importantly, UAT-B successfully inhibited the CRC cells growth that harbored high TNKS levels, as demonstrated in various in vitro and in vivo studies utilizing cell line-based and patient-derived xenografts, as well as APCmin/+ spontaneous CRC models. Collectively, these findings suggest that targeting the TNKS-USP25 PPI using a small-molecule inhibitor represents a compelling therapeutic strategy for CRC treatment, and UAT-B emerges as a promising candidate for further preclinical and clinical investigations.
RESUMO
AXIN1 and AXIN2 are homologous proteins that inhibit the Wnt/ß-catenin signaling pathway, which is frequently hyperactive in colorectal cancer. Stabilization of AXIN1 and AXIN2 by inhibiting their degradation through tankyrase (TNKS) allows the attenuation of Wnt signaling in cancer, attracting interest for potential targeted therapy. Here, we found that knockout or knockdown of AXIN2 in colorectal cancer cells increased the protein stability of AXIN1. The increase in AXIN1 overcompensated for the loss of AXIN2 with respect to protein levels; however, functionally it did not because loss of AXIN2 activated the pathway. Moreover, AXIN2 was highly essential in the context of TNKS inhibition because TNKS-targeting small-molecule inhibitors completely failed to inhibit Wnt signaling and to stabilize AXIN1 in AXIN2 knockout cells. The increased AXIN1 protein stability and the impaired stabilization by TNKS inhibitors indicated disrupted TNKS-AXIN1 regulation in AXIN2 knockout cells. Concordantly, mechanistic studies revealed that co-expression of AXIN2 recruited TNKS to AXIN1 and stimulated TNKS-mediated degradation of transiently expressed AXIN1 wild-type and AXIN1 mutants with impaired TNKS binding. Taken together, our data suggest that AXIN2 promotes degradation of AXIN1 through TNKS in colorectal cancer cells by directly linking the two proteins, and these findings may be relevant for TNKS inhibition-based colorectal cancer therapies.
RESUMO
A new series of flavonoids and quinolone derivatives were designed, synthesized and, evaluated for their biological activity. Among them, compound 14e showed better inhibition potency against TNKS2 in comparison with G007-LK, one of the most potent preclinical stage TNKS inhibitor. Molecular docking results showed that 14e occupied both the adenosine and nicotinamide pockets and formed a hydrogen bond with Met1054 of TNKS2. This study provides a lead for the design and discovery of potent and selective TNKS2 inhibitors.
Assuntos
Tanquirases , Simulação de Acoplamento Molecular , Tanquirases/químicaRESUMO
GCK is a protein that plays a crucial role in the sensing and regulation of glucose homeostasis, which associates it with disorders of carbohydrate metabolism and the development of several pathologies, including gestational diabetes. This makes GCK an important therapeutic target that has aroused the interest of researchers to discover GKA that are simultaneously effective in the long term and free of side effects. TNKS is a protein that interacts directly with GCK; recent studies have shown that it inhibits GCK action, which affects glucose detection and insulin secretion. This justifies our choice of TNKS inhibitors as ligands to test their effects on the GCK-TNKS complex. For this purpose, we investigated the interaction of the GCK-TNKS complex with 13 compounds (TNKS inhibitors and their analogues) using the molecular docking approach as a first step, after which the compounds that generated the best affinity scores were evaluated for drug similarity and pharmacokinetic properties. Subsequently, we selected the six compounds that generated high affinity and that were in accordance with the parameters of the drug rules as well as pharmacokinetic properties to ensure a molecular dynamics study. The results allowed us to favor the two compounds (XAV939 and IWR-1), knowing that even the tested compounds (TNKS 22, (2215914) and (46824343)) produced good results that can also be exploited. These results are therefore interesting and encouraging, and they can be exploited experimentally to discover a treatment for diabetes, including gestational diabetes.Communicated by Ramaswamy H. Sarma.