Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 898
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497611

RESUMO

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/química , Evolução Molecular , Feminino , Humanos , Insulina/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo
2.
Immunity ; 56(11): 2555-2569.e5, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967531

RESUMO

Tumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes. Whereas wild-type TAMs exhibited inflammatory and angiogenic gene expression profiles, TSC1-deficient TAMs had a pro-resolving phenotype. TSC1-deficient TAMs relocated to a perivascular niche, depleted protein C receptor (PROCR)-expressing endovascular endothelial progenitor cells, and rectified the hyperpermeable blood vasculature, causing tumor tissue hypoxia and cancer cell death. TSC1-deficient TAMs were metabolically active and effectively eliminated PROCR-expressing endothelial cells in cell competition experiments. Thus, TAMs exhibit a TSC1-dependent mTORC1-low state, and increasing mTORC1 signaling promotes a pro-resolving state that suppresses tumor growth, defining an innate immune tumor suppression pathway that may be exploited for cancer immunotherapy.


Assuntos
Células Progenitoras Endoteliais , Proteínas Supressoras de Tumor , Animais , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Macrófagos Associados a Tumor/metabolismo , Células Progenitoras Endoteliais/metabolismo , Receptor de Proteína C Endotelial , Alvo Mecanístico do Complexo 1 de Rapamicina , Neovascularização Patológica , Mamíferos
3.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974911

RESUMO

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Assuntos
Chaetomium , Proteínas Fúngicas , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferase , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismo
4.
Mol Cell ; 81(2): 370-385.e7, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33271062

RESUMO

The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Proteína de Domínio de Morte Associada a Fas/genética , Intestino Grosso/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Proteína 5 Relacionada à Autofagia/deficiência , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular/genética , Proteína de Domínio de Morte Associada a Fas/deficiência , Regulação da Expressão Gênica , Glucose/antagonistas & inibidores , Glucose/farmacologia , Células HEK293 , Células HT29 , Humanos , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/patologia , Células Jurkat , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/antagonistas & inibidores , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Transdução de Sinais , Sirolimo/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
5.
Mol Cell ; 81(16): 3275-3293.e12, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34245671

RESUMO

Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.


Assuntos
Proteínas da Matriz do Complexo de Golgi/genética , Proteoma/genética , Proteômica , Estresse Fisiológico/genética , Matriz Extracelular/genética , Complexo de Golgi/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana/genética , Transporte Proteico/genética , Transdução de Sinais/genética
6.
Genes Dev ; 34(19-20): 1330-1344, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32912901

RESUMO

Despite being the frontline therapy for type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB, but several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1. Here we investigated the role of direct AMPK-mediated serine phosphorylation of RAPTOR in a new RaptorAA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. Metformin treatment of primary hepatocytes and intact murine liver requires AMPK regulation of both RAPTOR and TSC2 to fully inhibit mTORC1, and this regulation is critical for both the translational and transcriptional response to metformin. Transcriptionally, AMPK and mTORC1 were both important for regulation of anabolic metabolism and inflammatory programs triggered by metformin treatment. The hepatic transcriptional response in mice on high-fat diet treated with metformin was largely ablated by AMPK deficiency under the conditions examined, indicating the essential role of this kinase and its targets in metformin action in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metformina/farmacologia , Proteína Regulatória Associada a mTOR/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Genótipo , Hipoglicemiantes/farmacologia , Inflamação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metabolismo/efeitos dos fármacos , Metformina/uso terapêutico , Camundongos , Fosforilação/efeitos dos fármacos , Proteína Regulatória Associada a mTOR/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
7.
EMBO J ; 42(5): e111614, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715448

RESUMO

Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Morte Celular , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603796

RESUMO

Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.


Assuntos
Diapausa , Nutrientes , Animais , Feminino , Camundongos , Blastocisto/metabolismo , Diapausa/fisiologia , Desenvolvimento Embrionário/fisiologia
9.
Am J Hum Genet ; 110(6): 979-988, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141891

RESUMO

Tuberous sclerosis complex (TSC) is a neurogenetic disorder due to loss-of-function TSC1 or TSC2 variants, characterized by tumors affecting multiple organs, including skin, brain, heart, lung, and kidney. Mosaicism for TSC1 or TSC2 variants occurs in 10%-15% of individuals diagnosed with TSC. Here, we report comprehensive characterization of TSC mosaicism by using massively parallel sequencing (MPS) of 330 TSC samples from a variety of tissues and fluids from a cohort of 95 individuals with mosaic TSC. TSC1 variants in individuals with mosaic TSC are much less common (9%) than in germline TSC overall (26%) (p < 0.0001). The mosaic variant allele frequency (VAF) is significantly higher in TSC1 than in TSC2, in both blood and saliva (median VAF: TSC1, 4.91%; TSC2, 1.93%; p = 0.036) and facial angiofibromas (median VAF: TSC1, 7.7%; TSC2 3.7%; p = 0.004), while the number of TSC clinical features in individuals with TSC1 and TSC2 mosaicism was similar. The distribution of mosaic variants across TSC1 and TSC2 is similar to that for pathogenic germline variants in general TSC. The systemic mosaic variant was not present in blood in 14 of 76 (18%) individuals with TSC, highlighting the value of analysis of multiple samples from each individual. A detailed comparison revealed that nearly all TSC clinical features are less common in individuals with mosaic versus germline TSC. A large number of previously unreported TSC1 and TSC2 variants, including intronic and large rearrangements (n = 11), were also identified.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Mutação , Proteína 1 do Complexo Esclerose Tuberosa/genética , Fenótipo
10.
Artigo em Inglês | MEDLINE | ID: mdl-39012319

RESUMO

The Mammalian Target of Rapamycin Complex 1 (mTORC1) is a serine threonine kinase that couples nutrient and growth factor signaling to the cellular control of metabolism and plays a fundamental role in aberrant proliferation in cancer. mTORC1 has previously been considered an "on/off" switch, capable of phosphorylating the entire pool of its substrates when activated. However recent studies have indicated that mTORC1 may be active towards its canonical substrates, 4EBP1 and S6K, involved in mRNA translation and protein synthesis, and inactive towards TFEB and TFE3, transcription factors involved in the regulation of lysosome biogenesis, in several pathological contexts. Among these conditions are Birt Hogg Dube (BHD) and recently, Tuberous Sclerosis Complex (TSC). Furthermore, TFEB and TFE3 hyperactivation in these syndromes, and in translocation Renal Cell Carcinomas (tRCC), drives mTORC1 activity towards the canonical substrates, through the transcriptional activation of the Rag GTPases, thereby positioning TFEB and TFE3 upstream of mTORC1 activity towards 4EBP1 and S6K. The expanding importance of TFEB and TFE3 in the pathogenesis of these renal diseases warrants a novel clinical grouping that we term "TFEopathies". Currently, there no therapeutic options directly targeting TFEB and TFE3, which represents a challenging and critically required avenue for cancer research.

11.
Annu Rev Genomics Hum Genet ; 23: 331-361, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044908

RESUMO

A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes-NF1, NF2, TSC1, TSC2, PTEN, VHL, RB1, and TP53-and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype-phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.


Assuntos
Genes Supressores de Tumor , Mosaicismo , Humanos , Mutação , Fenótipo , Prevalência
12.
Proc Natl Acad Sci U S A ; 119(36): e2204069119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037374

RESUMO

Healthy progression of human pregnancy relies on cytotrophoblast (CTB) progenitor self-renewal and its differentiation toward multinucleated syncytiotrophoblasts (STBs) and invasive extravillous trophoblasts (EVTs). However, the underlying molecular mechanisms that fine-tune CTB self-renewal or direct its differentiation toward STBs or EVTs during human placentation are poorly defined. Here, we show that Hippo signaling cofactor WW domain containing transcription regulator 1 (WWTR1) is a master regulator of trophoblast fate choice during human placentation. Using human trophoblast stem cells (human TSCs), primary CTBs, and human placental explants, we demonstrate that WWTR1 promotes self-renewal in human CTBs and is essential for their differentiation to EVTs. In contrast, WWTR1 prevents induction of the STB fate in undifferentiated CTBs. Our single-cell RNA sequencing analyses in first-trimester human placenta, along with mechanistic analyses in human TSCs revealed that WWTR1 fine-tunes trophoblast fate by directly regulating WNT signaling components. Importantly, our analyses of placentae from pathological pregnancies show that extreme preterm births (gestational time ≤28 wk) are often associated with loss of WWTR1 expression in CTBs. In summary, our findings establish the critical importance of WWTR1 at the crossroads of human trophoblast progenitor self-renewal versus differentiation. It plays positive instructive roles in promoting CTB self-renewal and EVT differentiation and safeguards undifferentiated CTBs from attaining the STB fate.


Assuntos
Placenta , Placentação , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Trofoblastos , Diferenciação Celular , Feminino , Via de Sinalização Hippo , Humanos , Recém-Nascido , Placenta/metabolismo , Placentação/fisiologia , Gravidez , Nascimento Prematuro/fisiopatologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo
13.
Am J Physiol Cell Physiol ; 326(6): C1769-C1775, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682238

RESUMO

We recently demonstrated that acute oral ketone monoester intake induces a stimulation of postprandial myofibrillar protein synthesis rates comparable to that elicited following the ingestion of 10 g whey protein or their coingestion. The present investigation aimed to determine the acute effects of ingesting a ketone monoester, whey protein, or their coingestion on mechanistic target of rapamycin (mTOR)-related protein-protein colocalization and intracellular trafficking in human skeletal muscle. In a randomized, double-blind, parallel group design, 36 healthy recreationally active young males (age: 24.2 ± 4.1 yr) ingested either: 1) 0.36 g·kg-1 bodyweight of the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET + PRO). Muscle biopsies were obtained in the overnight postabsorptive state (basal conditions), and at 120 and 300 min in the postprandial period for immunofluorescence assessment of protein translocation and colocalization of mTOR-related signaling molecules. All treatments resulted in a significant (Interaction: P < 0.0001) decrease in tuberous sclerosis complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) colocalization at 120 min versus basal; however, the decrease was sustained at 300 min versus basal (P < 0.0001) only in KET + PRO. PRO and KET + PRO increased (Interaction: P < 0.0001) mTOR-Rheb colocalization at 120 min versus basal; however, KET + PRO resulted in a sustained increase in mTOR-Rheb colocalization at 300 min that was greater than KET and PRO. Treatment intake increased mTOR-wheat germ agglutinin (WGA) colocalization at 120 and 300 min (Time: P = 0.0031), suggesting translocation toward the fiber periphery. These findings demonstrate that ketone monoester intake can influence the spatial mechanisms involved in the regulation of mTORC1 in human skeletal muscle.NEW & NOTEWORTHY We explored the effects of a ketone monoester (KET), whey protein (PRO), or their coingestion (KET + PRO) on mTOR-related protein-protein colocalization and intracellular trafficking in human muscle. All treatments decreased TSC2-Rheb colocalization at 120 minutes; however, KET + PRO sustained the decrease at 300 min. Only PRO and KET + PRO increased mTOR-Rheb colocalization; however, the increase at 300 min was greater in KET + PRO. Treatment intake increased mTOR-WGA colocalization, suggesting translocation to the fiber periphery. Ketone bodies influence the spatial regulation of mTOR.


Assuntos
Músculo Esquelético , Transporte Proteico , Serina-Treonina Quinases TOR , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/administração & dosagem , Masculino , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem , Adulto , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Método Duplo-Cego , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Período Pós-Prandial , Cetonas/metabolismo , Proteínas Musculares/metabolismo
14.
Am J Med Genet C Semin Med Genet ; 196(1): e32078, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041246

RESUMO

We report the case of an 18-year-old woman with Down syndrome (DS) who developed Takotsubo cardiomyopathy (TSC) immediately after the administration of electroconvulsive therapy (ECT), a treatment prescribed for Down syndrome regression disorder resistant to oral psychotropic drugs. TSC is a nonischemic cardiomyopathy related to psychological or physical stress, which has been described as a rare complication of ECT (Kinoshita et al., 2023, Journal of Electroconvulsive Therapy, 39, 185-192). The clinical description of the case is accompanied by a discussion of the peculiarities of the autonomic nervous system in DS.


Assuntos
Síndrome de Down , Eletroconvulsoterapia , Cardiomiopatia de Takotsubo , Feminino , Adulto Jovem , Humanos , Adolescente , Eletroconvulsoterapia/efeitos adversos , Síndrome de Down/complicações , Cardiomiopatia de Takotsubo/etiologia , Cardiomiopatia de Takotsubo/terapia
15.
Small ; 20(31): e2311033, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38459643

RESUMO

The re-tear rate of rotator cuff tears (RCT) after surgical repair is high, especially in aged patients with chronic tears. Senescent tendon stem cells (s-TSCs) generally exist in aged and chronically torn rotator cuff tendons and are closely associated with impaired tendon-to-bone healing results. The present study found a positive feedback cross-talk between s-TSCs and macrophages. The conditioned medium (CM) from s-STCs can promote macrophage polarization mainly toward the M1 phenotype, whose CM reciprocally accelerated further s-TSC senescence. Additional healthy tendon stem-cells derived exosomes (h-TSC-Exos) can break this positive feedback cross-talk by skewing macrophage polarization from the M1 phenotype to the M2 phenotype, attenuating s-TSCs senescence. S-TSC senescence acceleration or attenuation effects induced by M1 or M2 macrophages are associated with the inhibition or activation of the bone morphogenetic protein 4 signaling pathway following RNA sequencing analysis. Using an aged-chronic rotator cuff tear rat model, it is found that h-TSC-Exos can shift the microenvironment in the tendon-to-bone interface from a pro-inflammatory to an anti-inflammatory type at the acute postoperative stage and improve the tendon-to-bone healing results, which are associated with the rejuvenated s-TSCs. Therefore, this study proposed a potential strategy to improve the healing of aged chronic RCT.


Assuntos
Exossomos , Macrófagos , Lesões do Manguito Rotador , Células-Tronco , Tendões , Cicatrização , Exossomos/metabolismo , Animais , Macrófagos/metabolismo , Lesões do Manguito Rotador/patologia , Lesões do Manguito Rotador/metabolismo , Tendões/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Ratos , Manguito Rotador/patologia , Masculino , Senescência Celular , Osso e Ossos , Ratos Sprague-Dawley , Humanos
16.
Mod Pathol ; 37(3): 100426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219952

RESUMO

Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors that express smooth muscle and melanocytic makers. Diagnosis of PEComas can be challenging due to focal or lost expression of traditional immunohistochemical markers, limited availability of molecular testing, and morphological overlap with much more common smooth muscle tumors. This study evaluates the use of glycoprotein nonmetastatic melanoma protein B (GPNMB) immunohistochemical staining as a surrogate marker for TSC1/2/MTOR alteration or TFE3 rearrangement to differentiate PEComas from other mesenchymal tumors. Cathepsin K was also assessed for comparison. A total of 399 tumors, including PEComas, alveolar soft part sarcomas, and other histologic PEComa mimics, were analyzed using GPNMB and cathepsin K immunohistochemistry. GPNMB expression was seen in all PEComas and alveolar soft part sarcomas with the majority showing diffuse and moderate-to-strong labeling, whereas other sarcomas were negative or showed focal labeling. When a cutoff of diffuse and at least moderate staining was used, GPNMB demonstrated 95% sensitivity and 97% specificity in distinguishing PEComas from leiomyosarcoma, well-differentiated/dedifferentiated liposarcomas, and undifferentiated pleomorphic sarcomas. Cathepsin K with a cutoff of any labeling had lower sensitivity (78%) and similar specificity (94%) to GPNMB. This study highlights GPNMB as a highly sensitive marker for PEComas and suggests its potential use as an ancillary tool within a panel of markers for accurate classification of these tumors.


Assuntos
Melanoma , Neoplasias de Células Epitelioides Perivasculares , Receptores Fc , Sarcoma , Humanos , Imuno-Histoquímica , Catepsina K/metabolismo , Melanoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias de Células Epitelioides Perivasculares/diagnóstico , Neoplasias de Células Epitelioides Perivasculares/patologia , Glicoproteínas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glicoproteínas de Membrana
17.
Mod Pathol ; 37(5): 100467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460672

RESUMO

Renal low-grade oncocytic tumor (LOT) is a recently recognized renal cell neoplasm designated within the "other oncocytic tumors" category in the 2022 World Health Organization classification system. Although the clinicopathologic, immunohistochemical, and molecular features reported for LOT have been largely consistent, the data are relatively limited. The morphologic overlap between LOT and other low-grade oncocytic neoplasms, particularly eosinophilic chromophobe renal cell carcinoma (E-chRCC), remains a controversial area in renal tumor classification. To address this uncertainty, we characterized and compared large cohorts of LOT (n = 67) and E-chRCC (n = 69) and revealed notable differences between the 2 entities. Clinically, LOT predominantly affected women, whereas E-chRCC showed a male predilection. Histologically, although almost all LOTs were dominated by a small-nested pattern, E-chRCC mainly showed solid and tubular architectures. Molecular analysis revealed that 87% of LOT cases harbored mutations in the tuberous sclerosis complex (TSC)-mTOR complex 1 (mTORC1) pathway, most frequently in MTOR and RHEB genes; a subset of LOT cases had chromosomal 7 and 19q gains. In contrast, E-chRCC lacked mTORC1 mutations, and 60% of cases displayed chromosomal losses characteristic of chRCC. We also explored the cell of origin for LOT and identified L1 cell adhesion molecule (L1CAM), a collecting duct and connecting tubule principal cell marker, as a highly sensitive and specific ancillary test for differentiating LOT from E-chRCC. This distinctive L1CAM immunohistochemical labeling suggests the principal cells as the cell of origin for LOT, unlike the intercalated cell origin of E-chRCC and oncocytoma. The ultrastructural analysis of LOT showed normal-appearing mitochondria and intracytoplasmic lumina with microvilli, different from what has been described for chRCC. Our study further supports LOT as a unique entity with a benign clinical course. Based on the likely cell of origin and its clinicopathologic characteristics, we propose that changing the nomenclature of LOT to "Oncocytic Principal Cell Adenoma of the Kidney" may be a better way to define and describe this entity.


Assuntos
Adenoma Oxífilo , Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Molécula L1 de Adesão de Célula Nervosa , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/química , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/química , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/análise , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Idoso , Adulto , Adenoma Oxífilo/patologia , Adenoma Oxífilo/genética , Diagnóstico Diferencial , Idoso de 80 Anos ou mais , Imuno-Histoquímica , Gradação de Tumores , Mutação
18.
Neuropathol Appl Neurobiol ; 50(2): e12974, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562027

RESUMO

INTRODUCTION: Tuberous sclerosis complex (TSC) is caused by variants in TSC1/TSC2, leading to constitutive activation of the mammalian target of rapamycin (mTOR) complex 1. Therapy with everolimus has been approved for TSC, but variations in success are frequent. Recently, caudal late interneuron progenitor (CLIP) cells were identified as a common origin of the TSC brain pathologies such as subependymal giant cell astrocytomas (SEGA) and cortical tubers (CT). Further, targeting the epidermal growth factor receptor (EGFR) with afatinib, which is expressed in CLIP cells, reduces cell growth in cerebral TSC organoids. However, investigation of clinical patient-derived data is lacking. AIMS: Observation of EGFR expression in SEGA, CT and focal cortical dysplasia (FCD) 2B human brain specimen and investigation of whether its inhibition could be a potential therapeutic intervention for these patients. METHODS: Brain specimens of 23 SEGAs, 6 CTs, 20 FCD2Bs and 17 controls were analysed via immunohistochemistry to characterise EGFR expression, cell proliferation (via Mib1) and mTOR signalling. In a cell-based assay using primary patient-derived cells (CT n = 1, FCD2B n = 1 and SEGA n = 4), the effects of afatinib and everolimus on cell proliferation and cell viability were observed. RESULTS: EGFR overexpression was observed in histological sections of SEGA, CT and FCD2B patients. Both everolimus and afatinib decreased the proliferation and viability in primary SEGA, tuber and FCD2B cells. CONCLUSION: Our study demonstrates that EGFR suppression might be an effective alternative treatment option for SEGAs and tubers, as well as other mTOR-associated malformations of cortical development, including FCD2B.


Assuntos
Astrocitoma , Esclerose Tuberosa , Humanos , Everolimo/farmacologia , Everolimo/uso terapêutico , Esclerose Tuberosa/metabolismo , Afatinib/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Astrocitoma/tratamento farmacológico , Astrocitoma/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores ErbB/uso terapêutico
19.
Histopathology ; 84(3): 539-549, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988260

RESUMO

AIMS: Haemangioblastomas arise in the central nervous system. Rarely, haemangioblastomas may develop in extra-neural sites, such as the kidneys. A few reported cases of renal cell carcinomas (RCCs) with haemangioblastoma-like features have exhibited both clear cell renal cell carcinoma (CCRCC)- and haemangioblastoma-like components. The clinicopathological and molecular characteristics of RCCs with haemangioblastoma-like features were analysed, focusing on VHL alterations, in comparison with CCRCCs partially resembling haemangioblastoma. METHODS AND RESULTS: Four RCCs with haemangioblastoma-like features and five CCRCCs partially resembling haemangioblastoma were included. The RCCs with haemangioblastoma-like features were indolent and lacked adverse prognostic factors. All RCCs with haemangioblastoma-like features had a well-circumscribed appearance and a thick fibromuscular capsule, with fibromuscular bundles extending into the tumour to varying degrees in the three tumours. Each RCC with haemangioblastoma-like features exhibited CCRCC-like areas with indistinct tubular structures and foci of haemangioblastoma-like areas, in which vessels and short spindle cells overwhelmed tumour cells. Whereas haemangioblastoma-like areas in the CCRCCs partially resembling haemangioblastoma exhibited sparse vessels and spindle cells and distinct clear cells. The RCCs with haemangioblastoma-like features exhibited a unique immunohistochemical profile, with positive staining for inhibin-α, S100, carbonic-anhydrase-9, keratin7, and high molecular weight keratin and negative staining for (alpha-methylacyl-CoA racemase) AMACR. RCC with haemangioblastoma-like features did not display any VHL alterations, including VHL mutation, 3p LOH, and methylation of the VHL promoter region, and the two tumours harboured a likely oncogenic missense variant of MTOR (c.7280T>G). CONCLUSION: The histopathological, immunohistochemical, and molecular findings suggest that RCC with haemangioblastoma-like features is a distinct entity from CCRCC.


Assuntos
Carcinoma de Células Renais , Hemangioblastoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Rim/patologia , Mutação
20.
Hum Genomics ; 17(1): 4, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732866

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that is associated with neurological symptoms, including autism spectrum disorder. Tuberous sclerosis complex is caused by pathogenic germline mutations of either the TSC1 or TSC2 gene, but somatic mutations were identified in both genes, and the combined effects of TSC1 and TSC2 mutations have been unknown. METHODS: The present study investigated social behaviors by the social interaction test and three-chambered sociability tests, effects of rapamycin treatment, and gene expression profiles with a gene expression microarray in Tsc1 and Tsc2 double heterozygous mutant (TscD+/-) mice. RESULTS: TscD+/- mice exhibited impairments in social behaviors, and the severity of impairments was similar to Tsc2+/- mice rather than Tsc1+/- mice. Impairments in social behaviors were rescued by rapamycin treatment in all mutant mice. Gene expression profiles in the brain were greatly altered in TscD+/- mice more than in Tsc1+/- and Tsc2+/- mice. The gene expression changes compared with wild type (WT) mice were similar between TscD+/- and Tsc2+/- mice, and the overlapping genes whose expression was altered in mutant mice compared with WT mice were enriched in the neoplasm- and inflammation-related canonical pathways. The "signal transducer and activator of transcription 3, interferon regulatory factor 1, interferon regulatory factor 4, interleukin-2R α chain, and interferon-γ" signaling pathway, which is initiated from signal transducer and activator of transcription 4 and PDZ and LIM domain protein 2, was associated with impairments in social behaviors in all mutant mice. LIMITATIONS: It is unclear whether the signaling pathway also plays a critical role in autism spectrum disorders not caused by Tsc1 and Tsc2 mutations. CONCLUSIONS: These findings suggest that TSC1 and TSC2 double mutations cause autistic behaviors similarly to TSC2 mutations, although significant changes in gene expression were attributable to the double mutations. These findings contribute to the knowledge of genotype-phenotype correlations in TSC and suggest that mutations in both the TSC1 and TSC2 genes act in concert to cause neurological symptoms, including autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Esclerose Tuberosa , Camundongos , Animais , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Mutação , Sirolimo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA