Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 26(5): 712-729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760306

RESUMO

BACKGROUND: Rifaximin is a non-systemic antibiotic used in the treatment of inflammatory bowel disease (IBD). Antibiotics are demonstrating a significant role in the treatment of IBD by altering the dysbiotic colonic microbiota and decreases the immunogenic and inflammatory response in the patient population. Mucoadhesive colon targeted nanoparticles provide the site-specific delivery and extended stay in the colon. Since the bacteria occupy the lumen, spread over the surface of epithelial cells, and adhere to the mucosa, delivering the rifaximin as a nanoparticles with the mucoadhesive polymer enhances the therapeutic efficacy in IBD. The objective was to fabricate and characterize the rifaximin loaded tamarind gum nanoparticles and study the therapeutic efficacy in the TNBS-induced IBD model rats. MATERIALS AND METHODS: The experimentation includes fabrication and characterization of drug excipient compatibility by FTIR. The fabricated nanoparticles were characterized for the hydrodynamic size and zeta potential by photon correlation spectroscopy and also analyzed by TEM. Selected best formulation was subjected to the therapeutic efficacy study in TNBS-induced IBD rats, and the macroscopic, microscopic and biochemical parameters were reported. RESULTS: The study demonstrated that the formulation TGN1 is best formulation in terms of nanoparticle characterization and hydrodynamic size which showed the hydrodynamic size of 171.4 nm and the zeta potential of -26.44 mV and other parameters such as TEM and drug release studies were also reported. CONCLUSIONS: The therapeutic efficacy study revealed that TGN1 is efficiently reduced the IBD inflammatory conditions as compared to the TNBS control group and reference drug mesalamine group.

2.
Int J Biol Macromol ; 280(Pt 2): 135759, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299413

RESUMO

Probiotic oral therapy has been recognised as an effective treatment for inflammatory bowel disease (IBD). However, the efficacy of probiotics is often diminished due to their limited resistance to harsh gastrointestinal conditions. Therefore, the importance of designing innovative strategies for oral probiotic delivery for the effective treatment of IBD is increasingly recognised. In this study, we present a novel encapsulation strategy of Lactobacillus plantarum (L.P) using the dual-layer system consisting of a tannic acid­calcium network and polysaccharide coating (gellan gum-tamarind gum) named L.P-C/T-G/T. This double-layer encapsulation system not only does not affect the normal proliferation of probiotics and provide protection, but also endows probiotics with more functions. More specifically, the acid resistance ability of the encapsulated probiotics is increased by 10 times, the free radical scavenging rate is enhanced by 5 times, and the intestinal retention time can be prolonged by 6-12 h. In the DSS-induced murine colitis model, it significantly alleviated colon shortening, inhibited ROS overexpression, and promoted the repair and regeneration of the mucus layer. This dual-layer encapsulation approach for a single probiotic demonstrates a significant advancement in probiotic delivery technology, offering hope for a comprehensive approach to the treatment of colitis and potentially other gastrointestinal disorders.

3.
Int J Biol Macromol ; 259(Pt 1): 129136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181924

RESUMO

Exploring the significant role of natural polymers in developing drug delivery systems has been a promising area of research interest. The current investigation uses a D-optimal quadratic mixture design to design and evaluate neem and tamarind gum-based vildagliptin extended-release matrix tablets. Studying the combination effect of gums is one of the major objectives. Initial screening studies were performed to select the factors and their levels. The variables selected at different levels in mg/tablet are neem gum, tamarind gum, polyvinylpyrrolidone, and lactose monohydrate. Based on the screening experiments with both gums, the polymer content of 165 mg was chosen as the highest level in the DOE. Nineteen runs were generated to screen the desired parameters as responses. The total weight of the formulation was kept constant at 275 mg. Time (hours) required for 50 %, 90 % and 100 % of drug release and tablet hardness were selected as the responses for each run. The wet granulation method was adopted, and the critical variables were optimised using the design of experiments following Design Expert software. Statistical analysis was conducted, and the optimised formulations were prepared and evaluated to compare with the predicted responses. Stability studies were performed for the optimised batches. Results indicated that the prepared batches met the compendial limits and confirmed the application of neem and tamarind gum in the development of extended-release tablets of vildagliptin for 24 h. An optimised formulation comprising of 16.52 mg of neem gum and 148.48 mg of tamarind gum with a hardness of 7.5-8.5 kp produced 50 %, 90 % and 100 % drug release in 12, 22 and 25 h.


Assuntos
Tamarindus , Preparações de Ação Retardada , Vildagliptina , Gomas Vegetais , Comprimidos
4.
Int J Biol Macromol ; 236: 123969, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898456

RESUMO

The aim of present work was to synthesize and characterize carboxymethyl tamarind gum-polyvinyl alcohol (CMTG-PVA) hydrogel films using citric acid (CA) as a crosslinker. Hydrogel films were prepared by solvent casting technique. The films were evaluated for total carboxyl content (TCC), tensile strength, protein adsorption, permeability properties, hemocompatibility, swellability, moxifloxacin (MFX) loading and release, in-vivo wound healing activity and characterized using instrumental techniques. An optimal increase in amount of PVA and CA increased the TCC and tensile strength of the hydrogel films. Hydrogel films exhibited low protein adsorption and microbial permeation, good permeability to water vapour and oxygen, and sufficient hemocompatibility. The films prepared using high concentration of PVA and low concentration of CA showed good swellability in phosphate buffer and simulated wound fluids. MFX loading in the hydrogel films was found in the range of 384-440 mg/g. The hydrogel films sustained the release of MFX up to 24 h. The release followed Non-Fickian mechanism. ATR-FTIR, solid state 13C NMR and TGA analysis indicated formation of ester crosslinks. In-vivo study revealed good wound healing activity for hydrogel films. From the overall study, it can be concluded that the citric acid crosslinked CMTG-PVA hydrogel films can be effectively used for wound treatment.


Assuntos
Álcool de Polivinil , Tamarindus , Álcool de Polivinil/química , Ácido Cítrico/química , Hidrogéis/química
5.
Carbohydr Polym ; 307: 120629, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36781280

RESUMO

Polysaccharides of tamarind seed, a byproduct of the tamarind pulp industry, displayed a potential solubility improvement of lipophilic bioactive molecules but their textural characteristics hinder the dietary formulation. In contrast, the commonly available xyloglucan oligosaccharides (XOSs) with degrees of polymerization (DPs) of 7, 8, and 9 were too short to maintain their ability. The binding capacity of the between sizes is unknown due to a lack of appropriate preparation. We prepared xyloglucan megalosaccharides (XMSs) by partial depolymerization, where term megalosaccharide (MS) defines the middle chain-length saccharide between DPs 10 and 100. Digestion with fungal cellulase enabled reproducible active XMSs. Further identification of pure XMS segments indicated that XMS-B has an average DP of 17.2 (Gal3Glc8Xyl6) with a branched dimer of XOS 8 and 9 and was free of side-chain arabinose, the residue influencing high viscosity. Curcumin, a bioactive pigment, has poor bioavailability because of its water insolubility. XMSs with average DPs of 15.4-24.3 have similarly sufficient capacities to solubilize curcumin. The solubility of curcumin was improved 180-fold by the addition of 50 %, w/v, XMSs, which yielded a clear yellow liquid. Our findings indicated that XMSs were a promising added-value agent in foods and pharmaceuticals for the oral intake of curcumin.


Assuntos
Curcumina , Tamarindus , Solubilidade , Sequência de Carboidratos , Xilanos/química , Polissacarídeos/química , Sementes/química
6.
Assay Drug Dev Technol ; 21(7): 297-308, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37831908

RESUMO

ABSTRACT The purpose of this study was to apply the quality by design (QbD) approach in the development of a microbial and pH-triggered colon-targeted budesonide tablet. A retrospective research strategy was used to select various polysaccharide-based natural gums such as tamarind gum, gellan gum, karaya gum, gum ghutti, and khaya gum, which were then evaluated for their effectiveness in microbial degradation and targeting the colon. Viscosity profiles were generated in the presence of a prebiotic culture medium prepared by using the Velgut capsule that mimicked the impact of 4% rat cecal content and helpful in screening of natural polymer. Based on the cumulative drug release data of preliminary batches, carboxymethyl (CM) tamarind gum was identified as a superior and an excellent polymer over the tamarind gum for formulation development. The presence of water as a bridging agent in wet granulation also played an important role in the retardation of drug release. Tablets were supercoated with the enteric polymer, Eudragit S100. The Box-Behnken design was utilized, where the selected independent variables were the proportion of CM tamarind gum, % water proportion, and % weight gain of Eudragit S 100 to optimize the formulation. The optimized design space was generated with the criteria that a drug release should be of less than 5% within the first 2 h, less than 10% within the first 5 h, and more than 70% within the first 8 h, to achieve colon targeting. The optimized batch F3 was found stable as per International Council for Harmonisation guidelines. The roentgenography study for optimized formulation demonstrated that it remained intact for 5 h and, at 7 h, was disseminated completely. CM tamarind gum is efficient for colon targeting, and its proportion in 100 mg along with an enteric coating of 6% led to the optimized formulation.


Assuntos
Tamarindus , Ratos , Animais , Estudos Retrospectivos , Comprimidos/metabolismo , Ácidos Polimetacrílicos/metabolismo , Colo/metabolismo , Concentração de Íons de Hidrogênio , Água/metabolismo
7.
Int J Biol Macromol ; 238: 124053, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36934825

RESUMO

Pickering emulsions are promising systems to act as carriers of active hydrophobic components, and to improve compatibility and the water vapor barrier properties of bio-based films. This study aimed to investigated the effects of cinnamon essential oil Pickering emulsions (CEOEs) using zein/carboxymethyl tamarind gum as stabilizers on the mechanical, barrier, antibacterial and antioxidant properties of Hydroxypropyl methyl cellulose (HPMC) films, and assessed the influence of carboxymethylation degree. In addition, the effect of the packaging was studied on the shelf life of cherry tomatoes. Results showed that the droplet size reduced approximately from 93.03 to 10.59 µm with the increasing degree of substitution (DS), greatly facilitating the droplet uniform distribution in film matrix. Moreover, with the addition of CEOEs, significant increase was observed with the tensile strength from 8.46 to 25.41 MPa, and the water vapor permeability decreased from 6.18 × 10-10 to 4.24 × 10-10 g·m-1·s-1·Pa-1. The films exhibited good UV barrier properties without sacrificing the transparency after adding CEO. Furthermore, the antibacterial and antioxidant activities of the prepared films have also been greatly improved. Consequently, the CEOEs was an ideal alternative for incorporation with HPMC based films for increasing the shelf life of cherry tomatoes.


Assuntos
Óleos Voláteis , Tamarindus , Zeína , Derivados da Hipromelose/química , Zeína/química , Emulsões/química , Antioxidantes/farmacologia , Vapor , Óleos Voláteis/química , Antibacterianos/farmacologia , Antibacterianos/química
8.
Foods ; 12(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509853

RESUMO

This study clarified the effect of adding thermoresponsive xyloglucan on the bread-making properties and preservation of gluten-free rice-flour bread. The thickening polysaccharides used for preparing gluten-free rice-flour bread were modified tamarind gum (MTG; thermoresponsive xyloglucan), tamarind gum (TG), and xanthan gum (XT). The mechanical properties of the added polysaccharide thickener solutions and bread dough, the mechanical properties and sensory characteristics of rice-flour bread, and the aging properties of rice-flour bread were measured. The results showed that the MTG solution exhibited solification at 40 °C and gelation below 40 °C, which affected the dynamic viscoelasticity of the dough. The addition of MTG to gluten-free rice-flour bread reduced the specific volume, increased the moisture content, and reduced the stress at 70% compression. Therefore, the bread with MTG added was soft, moist, and preferred over other those with other additives. In terms of preservation, the addition of 0.5-0.75% of polysaccharides inhibited the hardening and aging of beard with MTG added. This indicates that the addition of MTG at low concentrations is effective in preserving gluten-free rice-flour breads. We found that the thickening polysaccharides had to be added in appropriate concentrations to improve the bread-making properties and achieve the preferred effect.

9.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36558978

RESUMO

Acyclovir has a short half-life and offers poor bioavailability. Its daily dose is 200 mg five times a day. A tamarind gum and ß-cyclodextrin-based pH-responsive hydrogel network for sustained delivery of acyclovir was developed using the free-radical polymerization technique. Developed networks were characterized by FTIR, DSC, TGA, PXRD, EDX, and SEM. The effect of varying feed ratios of polymers, monomers, and crosslinker on the gel fraction, swelling, and release was also investigated. FTIR findings confirmed the compatibility of the ingredients in a new complex polymer. The thermal stability of acyclovir was increased within the newly synthesized polymer. SEM photomicrographs confirmed the porous texture of hydrogels. The gel fraction was improved (from 90.12% to 98.12%) with increased reactant concentrations. The pH of the dissolution medium and the reactant contents affected swelling dynamics and acyclovir release from the developed carrier system. Based on the R2 value, the best-fit model was zero-order kinetics with non-Fickian diffusion as a release mechanism. The biocompatibility of the developed network was confirmed through hematology, LFT, RFT, lipid profile, and histopathological examinations. No sign of pathology, necrosis, or abrasion was observed. Thus, a pH-responsive and biocompatible polymeric system was developed for sustained delivery of acyclovir to reduce the dosing frequency and improve patient compliance.

10.
Polymers (Basel) ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890569

RESUMO

The current study aims to evaluate the effect of tamarind gum (TG) on the optical, mechanical, and drug release potential of poly(vinyl alcohol) (PVA)-based films. This involves preparing PVA-TG composite films with different concentrations of TG through a simple solvent casting method. The addition of TG has enhanced the phase separation and aggregation of PVA within the films, and it becomes greater with the increase in TG concentration. Brightfield and polarized light micrographs have revealed that aggregation is favored by forming crystalline domains at the PVA-TG interface. The interconnected network of PVA-TG aggregates influenced the swelling and drying properties of the films. Using Peleg's analysis, the mechanical behavior of films was determined by their stress relaxation profiles. The addition of TG has made no significant changes to the firmness and viscoelastic properties of films. However, long-durational relaxation times indicated that the interconnected network might break down in films with higher TG concentration, suggesting their brittleness. The controlled release of ciprofloxacin in HCl solution (0.5% (w/v)) appears to decrease with the increase in TG concentration. In fact, TG has inversely affected the impedance and altered the ionic conductivity within the films. This seems to have directly influenced the drug release from the films as the mechanism was found to be non-Fickian diffusion (based on Korsmeyer-Peepas and Peppas-Sahlin kinetic models). The antimicrobial study using Escherichia coli was carried out to evaluate the activity of the drug-loaded films. The study proves that TG can modulate the properties of PVA films and has the potential to fine-tune the controlled release of drugs from composite films.

11.
Polymers (Basel) ; 13(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34577925

RESUMO

Polymers from natural sources are widely used as excipients in the formulation of pharmaceutical dosage forms. The objective of this study was to extract and further characterize the tamarind gum polysaccharide (TGP) obtained from Tamarindus indica as an excipient for biomedical applications. Double distilled water was used as a solvent for the extraction of gum while Ethyl alcohol was used as an antisolvent for the precipitation. The results of the Hausner ratio, Carr's index and angle of repose were found to be 0.94, 6.25, and 0.14, respectively, which revealed that the powder is free-flowing with good flowability. The gum was investigated for purity by carrying out chemical tests for different phytochemical constituents and only carbohydrates were found to be present. The swelling index was found to be 87 ± 1%, which shows that TGP has good water intake capacity. The pH of the 1% gum solution was found to be neutral, approximately 6.70 ± 0.01. The ash values such as total ash, sulphated ash, acid insoluble ash, and water-soluble ash were found to be 14.00 ± 1.00%, 13.00 ± 0.05%, 14.04 ± 0.57% and 7.29 ± 0.06%, respectively. The IR spectra confirmed the presence of alcohol, amines, ketones, anhydrides groups. The contact angle was <90°, indicating favorable wetting and good spreading of liquid over the surface The scanning electron micrograph (SEM) revealed that the particle is spherical in shape and irregular. DSC analysis shows a sharp exothermic peak at 350 °C that shows its crystalline nature. The results of the evaluated properties showed that TGP has acceptable properties and can be used as a excipient to formulate dosage forms for biomedical applications.

12.
Gels ; 7(4)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34940297

RESUMO

In this paper, novel pH-responsive, semi-interpenetrating polymer hydrogels based on tamarind gum-co-poly(acrylamidoglycolic acid) (TMGA) polymers were synthesized using simple free radical polymerization in the presence of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker and potassium persulfate as a initiator. In addition, these hydrogels were used as templates for the green synthesis of silver nanoparticles (13.4 ± 3.6 nm in diameter, TMGA-Ag) by using leaf extract of Teminalia bellirica as a reducing agent. Swelling kinetics and the equilibrium swelling behavior of the TMGA hydrogels were investigated in various pH environments, and the maximum % of equilibrium swelling behavior observed was 2882 ± 1.2. The synthesized hydrogels and silver nanocomposites were characterized via UV, FTIR, XRD, SEM and TEM. TMGA and TMGA-Ag hydrogels were investigated to study the characteristics of drug delivery and antimicrobial study. Doxorubicin hydrochloride, a chemotherapeutic agent successfully encapsulated with maximum encapsulation efficiency, i.e., 69.20 ± 1.2, was used in in vitro release studies in pH physiological and gastric environments at 37 °C. The drug release behavior was examined with kinetic models such as zero-order, first-order, Higuchi, Hixson Crowell and Korsmeyer-Peppas. These release data were best fitted with the Korsemeyer-Peppas transport mechanism, with n = 0.91. The effects of treatment on HCT116 human colon cancer cells were assessed via cell viability and cell cycle analysis. The antimicrobial activity of TMGA-Ag hydrogels was studied against Staphylococcus aureus and Klebsiella pneumonia. Finally, the results demonstrate that TMGA and TMGA-Ag are promising candidates for anti-cancer drug delivery and the inactivation of pathogenic bacteria, respectively.

13.
Int J Biol Macromol ; 164: 1608-1620, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763397

RESUMO

In this study, we developed tamarind gum (TG) and rice bran oil (RBO)-based emulgels. The control formulation (TR0), did not contain RBO. The emulgels were named as TR1, TR2, TR3, and TR4, which contained 5% (w/w), 10% (w/w), 15% (w/w), and 20% (w/w/) of RBO, respectively. The microscopic studies showed that the emulgels were biphasic in nature. FTIR spectroscopy revealed the reduction in the hydrogen bonding with an increase in the RBO content. Impedance profiles suggested that the resistive component of the emulgels was increased as the RBO content was increased. The thermal analysis suggested that the addition of RBO reduced the water holding capacity of the emulgels. Stress relaxation studies revealed that the fluidic component was considerably higher in TG/RBO-based emulgels as compared to TR0. In vitro release study of the model drug (ciprofloxacin HCl; a hydrochloride salt of ciprofloxacin) suggested a significantly lower release from the emulgel matrices (TR1-TR4) in comparison to TR0. However, ex vivo corneal permeation of the drug increased with an increase in the RBO content. Since the emulgels were able to improve the corneal permeation of the model drug, the emulgels can be explored to deliver drugs to the internal structures of the eye.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/química , Óleos de Plantas/química , Óleo de Farelo de Arroz/química , Tamarindus/química , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Olho/efeitos dos fármacos , Ligação de Hidrogênio
14.
Foods ; 9(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024061

RESUMO

The formula and processing parameters for gluten-free rice bread were optimized using a factorial design, including a center point. Gum concentration (GC), water amount (WA), mixing time (MT), and fermentation time (FT) were selected as factors, and two levels were used for each factor: 1 and 2% for GC; 80 and 100 g for WA; 5 and 10 min for MT; and 30 and 60 min for FT. The WA and FT were identified as the most significant factors in determining the quality of gluten-free rice bread with tamarind gum. Thus, the optimized formula and processing conditions for maximizing bread volume and minimizing bread firmness were 1% gum, 100 g water, 5 min MT, and 60 min FT. The addition of an anti-staling enzyme reduced the increase in bread firmness and the enthalpy of starch retrogradation, suggesting its potential for successful application in commercially manufactured rice bread with tamarind gum.

15.
Foods ; 9(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105597

RESUMO

New trends in the cereal industry deal with a permanent need to develop new food products that are adjusted to consumer demands and, in the near future, the scarcity of food resources. Sustainable food products as health and wellness promoters can be developed redesigning traditional staple foods, using environmentally friendly ingredients (such as microalgae biomass or pulses) or by-products (e.g., tomato seeds) in accordance with the bioeconomy principles. These are topics that act as driving forces for innovation and will be discussed in the present special issue. Rheology always was the reference discipline to determine dough and bread properties. A routine analysis of cereal grains includes empirical rheology techniques that imply the use of well-known equipment in cereal industries (e.g., alveograph, mixograph, extensograph). Their parameters determine the blending of the grains and are crucial on the technical sheets that determine the use of flours. In addition, the structure of gluten-free cereal-based foods has proven to be a determinant for the appeal and strongly impacts consumers' acceptance. Fundamental rheology has a relevant contribution to help overcome the technological challenges of working with gluten-free flours. These aspects will also be pointed out in order to provide a prospective view of the relevant developments to take place in the area of cereal technology.

16.
Int J Pharm X ; 1: 100012, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31517277

RESUMO

The aim of this study was to design and evaluate muco-adhesive orally disintegrating tablets manufactured by microwave irradiation and containing polysaccharide. We prepared orally disintegrating tea tablets (ODTTs) containing a 1 w/w% mass fraction of one of five polysaccharides (gum arabic, carrageenan, guar gum, tamarind gum, or pectin) and evaluated the swelling degree, tablet hardness, friability, disintegration time, and adhesive properties. All tablets had a swelling degree of about 1 mm, a hardness of over 13 N, and a friability degree of <1%. Tablets containing gum arabic and tamarind gum had disintegration times of 30 s or less and satisfied requirements as orally disintegrating tablets. This could be attributed to their high void contents, which allowed for water penetration. The adhesive properties and particle retention ratios were highest in ODTTs containing tamarind gum, which was thought to be caused by the rapid disintegration and high viscosity of the tamarind gum itself. When we investigated changing the mass fraction of tamarind gum, we found 1 w/w% was most suitable for rapid disintegration and high adhesiveness. The ODTTs containing 1 w/w% tamarind gum showed significant growth inhibition towards Streptococcus mutans. Therefore, microwave irradiation technology and addition of tamarind gum could be used to manufacture muco-adhesive orally disintegrating tablets for oral care.

17.
Food Sci Biotechnol ; 27(6): 1639-1648, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30483427

RESUMO

The present study explored the applicability of tamarind gum in making gluten-free rice bread. Hydration properties of gums and pasting properties of rice flour with the gums were analyzed with Rapid ViscoAnalyzer. Batter properties and bread quality characteristics of rice bread containing gums were analyzed. Except for guar and xanthan gum, the final viscosity after hydration of other gums and the pasting properties of rice flour with the gums were similar. The batter properties and the quality of rice bread containing tamarind gum were equivalent or superior to those containing other gums. Cross-sections of rice bread showed that addition of tamarind gum and pectin resulted in a fine appearance, but pectin may not be preferred due to its lower pH causing unpleasant sour taste and smell of the rice bread containing the gum. Therefore, tamarind gum can be a useful gum for applying to make gluten-free rice bread.

18.
J Mech Behav Biomed Mater ; 81: 61-71, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29494830

RESUMO

The current study deals with the preparation and the characterization of the PVA-CMT-GO films. The PVA-CMT film was translucent in nature and smooth to touch. The addition of GO resulted in the formation of agglomerated structures. XRD studies suggested that the incorporation of GO increased the average crystallite size. The mechanical properties of the films as determined by stress relaxation studies suggested that all the films were viscoelastic in nature. The drug release study showed a decrease in the amount of the drug release with the increase in the GO content. The PVA-CMT-GO films (without drug) showed certain degree of antimicrobial activity owing to the inherent antimicrobial property of GO. The drug loaded films also showed good antimicrobial property. It was found that the prepared films altered the cell proliferation of the human skin keratinocytes in a composition-dependent manner.


Assuntos
Portadores de Fármacos/química , Grafite/química , Fenômenos Mecânicos , Óxidos/química , Gomas Vegetais/química , Álcool de Polivinil/química , Tamarindus/química , Antibacterianos/química , Antibacterianos/farmacologia , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Engenharia Tecidual
19.
J Mech Behav Biomed Mater ; 75: 538-548, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28850924

RESUMO

The study reports the synthesis and characterization of gelatin-tamarind gum (TG) based filled hydrogels for drug delivery applications. In this study, three different types of carbon nanotubes (CNTs) were incorporated within the dispersed TG phase of the filled hydrogels. The prepared hydrogels were thoroughly characterised using bright field microscope, FESEM, FTIR spectroscopy, differential scanning calorimeter, and mechanical tester. The swelling and the drug (salicylic acid) release properties of the filled hydrogels were also evaluated. The micrographs revealed the formation of biphasic systems. The internal phase appeared as agglomerates, and the CNTs were confined within the dispersed TG phase. FTIR and XRD studies revealed that CNTs promoted associative interactions among the components of the hydrogel, which promoted the formation of large crystallite size. The mechanical study indicated better resistance to the breakdown of the architecture of the CNT-containing filled hydrogels. Drug release studies, both passive and iontophoretic, suggested that the non-Fickian diffusion of the drug was prevalent during its release from hydrogel matrices. The prepared hydrogels were cytocompatible with human keratinocytes. The results suggested the probable use of such hydrogels in wound healing, tissue engineering and drug delivery applications.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Gelatina/química , Hidrogéis/química , Queratinócitos/efeitos dos fármacos , Tamarindus/química , Humanos , Nanotubos de Carbono/química
20.
Carbohydr Polym ; 165: 159-168, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363536

RESUMO

The present study delineates the synthesis of novel composite films using polyvinyl alcohol and carboxymethyl tamarind gum. The microscopic study results confirmed the formation of composite matrices. FTIR spectroscopy suggested the occurrence of hydrogen-bonding amongst the components of the films. The extent of hydrogen bonding was composition-dependent which reached a critical higher limit at a particular composition. At the critical composition, the instantaneous and the intermediate polymer relaxation time were longer. All the films were found to be viscoelastic in nature. The melting endotherm was also highest for the composition described above. Ciprofloxacin loaded films showed excellent antimicrobial property against E. coli, suggesting that the drug was released in its active form. Cell proliferation study using human keratinocytes suggested better cell proliferation in the CMT containing films as compared to the control (PVA only) film. In gist, the developed films can be explored for skin tissue engineering and drug delivery applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA