Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Environ Res ; 251(Pt 2): 118770, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518913

RESUMO

Multifunctional nanoparticles (NPs) production from phytochemicals is a sustainable process and an eco-friendly method, and this technique has a variety of uses. To accomplish this, we developed zinc oxide nanoparticles (ZnONPs) using the medicinal plant Tinospora cordifolia (TC). Instruments such as UV-Vis, XRD, FTIR, FE-SEM with EDX, and high-resolution TEM were applied to characterize the biosynthesized TC-ZnONPs. According to the UV-vis spectra, the synthesized TC-ZnONPs absorb at a wavelength centered at 374 nm, which corresponds to a 3.2 eV band gap. HRTEM was used to observe the morphology of the particle surface and the actual size of the nanostructures. TC-ZnONPs mostly exhibit the shapes of rectangles and triangles with a median size of 21 nm. The XRD data of the synthesized ZnONPs exhibited a number of peaks in the 2θ range, implying their crystalline nature. TC-ZnONPs proved remarkable free radical scavenging capacity on DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), and NO (Nitric Oxide). TC-ZnONPs exhibited dynamic anti-bacterial activity through the formation of inhibition zones against Pseudomonas aeruginosa (18 ± 1.5 mm), Escherichia coli (18 ± 1.0 mm), Bacillus cereus (19 ± 0.5 mm), and Staphylococcus aureus (13 ± 1.1 mm). Additionally, when exposed to sunlight, TC-ZnONPs show excellent photocatalytic ability towards the degradation of methylene blue (MB) dye. These findings suggest that TC-ZnONPs are potential antioxidant, antibacterial, and photocatalytic agents.


Assuntos
Antibacterianos , Antioxidantes , Química Verde , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Óxido de Zinco/química , Antioxidantes/química , Antioxidantes/farmacologia , Química Verde/métodos , Catálise , Nanopartículas Metálicas/química , Nanopartículas/química
2.
J Toxicol Environ Health A ; 87(16): 647-661, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-38804873

RESUMO

The present study aimed to determine the genoprotective activity and safety of Moringa oleifera leave and Tinospora cordifolia stem extracts against cyclophosphamide (CP)-induced genotoxicity utilizing Swiss albino mice. Animals were divided into 14 groups for subacute treatment with either M. oleifera or T. cordifolia extracts daily for 28 days. The extract doses selected were 100, 200 or 400 mg/kg b.w administered orally alone or combined with CP (50 mg/kg b.w. intraperitoneally daily for 5 days). Analyses performed included the comet assay, micronucleus test (MN) in bone marrow cells and sperm head abnormality assay (SHA). M. oleifera and T. cordifolia extracts induced no significant genotoxic effects on somatic and germ cells. In contrast, for all cells examined M. oleifera and T. cordifolia extracts inhibited DNA damage initiated by CP. Taken together data demonstrated that both plant extracts did not exhibit marked genotoxic effects but displayed potential chemoprotective properties against CP-induced genotoxicity in Swiss mice.


Assuntos
Ciclofosfamida , Dano ao DNA , Testes para Micronúcleos , Moringa oleifera , Extratos Vegetais , Folhas de Planta , Tinospora , Animais , Tinospora/química , Camundongos , Ciclofosfamida/toxicidade , Moringa oleifera/química , Extratos Vegetais/farmacologia , Masculino , Folhas de Planta/química , Dano ao DNA/efeitos dos fármacos , Ensaio Cometa , Caules de Planta/química , Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Mutagênicos/toxicidade , Antimutagênicos/farmacologia
3.
Chem Pharm Bull (Tokyo) ; 72(6): 540-546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38866475

RESUMO

Three neo-clerodane diterpenoids, including two new tinocordifoliols A (1) and B (2) and one known tinopanoid R (3), were isolated from the ethyl acetate-soluble fraction of the 70% ethanol extract of Tinospora cordifolia stems. The structures were elucidated by various spectroscopic methods, including one dimensional (1D) and 2D-NMR, high resolution-electrospray ionization (HR-ESI)-MS, and electronic circular dichroism (ECD) data. The T. cordifolia extract and all isolated compounds 1-3 possessed arginase I inhibitory activities. Among them, 3 exhibited moderate competitive inhibition of human arginase I (IC50 = 61.9 µM). Furthermore, docking studies revealed that the presence of a ß-substituted furan in 3 may play a key role in the arginase I inhibitory activities.


Assuntos
Arginase , Diterpenos Clerodânicos , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Caules de Planta , Tinospora , Tinospora/química , Arginase/antagonistas & inibidores , Arginase/metabolismo , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/isolamento & purificação , Humanos , Caules de Planta/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Relação Estrutura-Atividade , Estrutura Molecular , Conformação Molecular , Relação Dose-Resposta a Droga
4.
Chem Biodivers ; : e202401679, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136410

RESUMO

Phytochemical study on the methanol extract of the stems of Tinospora crispa (L.) Hook.f. & Thomson led to the isolation of thirteen compounds including three undescribed cis-clerodane-type furanoditerpenoids (1-3) and ten known ones (4-13). Their chemical structures were determined by IR, HR-ESI-MS, 1D-, and 2D-NMR spectra. Compounds 2-6 and 8 inhibited moderately NO production in LPS activated RAW 264.7 cell with the IC50 values of 83.5, 57.6, 75.3, 78.1, and 74.7 µM, respectively.

5.
Chem Biodivers ; 21(6): e202302037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546704

RESUMO

Tinospora sinensis (T. sinensis), whose Tibetan name is "Lezhe", as a traditional medicine, is widely distributed in China, India and Sri Lanka. It is used for the treatment of rheumatic arthralgia, sciatica, lumbar muscle strain and bruises. Research over the previous decades indicated that T. sinensis mainly contains terpenes, lignans, alkaloids, phenol glycosides and other chemical components. A wide range of pharmacologic activities such as anti-inflammatory, analgesic, immunosuppressive, anti-aging, anti-radiation, anti-leishmania and liver protection have been reported. However, the scholar's research on the pharmacodynamic material basis of T. sinensis is relatively weak. Data regarding many aspects such as links between the traditional uses and bioactivities, pharmacokinetics, and quality control standard of active compositions is still limited and need more attention. This review reports a total of 241 compounds, the ethnopharmacology and clinical application of T. sinensis, covering the literature which were searched by multiple databases including Web of Science, PubMed, Google Scholar, Science Direct, CNKI and other literature sources from 1996 to date, with a view to provide a systematic and insightful reference and lays a foundation and inspiration for the application and further in-depth research of T. sinensis resources.


Assuntos
Compostos Fitoquímicos , Tinospora , Tinospora/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Medicina Tradicional , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação
6.
Chem Biodivers ; : e202401033, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38945823

RESUMO

Four new clerodane diterpenoids, namely tinocapills A-D (1-4), and one known analogue (5) were isolated from the roots of Tinospora capillipes in the present study. The structures of these new compounds, including their absolute configurations, were determined through a combination of detailed spectroscopic analysis and theoretical statistical approaches, including electronic circular dichroism (ECD) analyses and quantum mechanical (QM)-NMR methods. Additionally, the stereostructure of 5 was confirmed via X-ray diffraction analysis. Furthermore, all these isolates were evaluated for their antibacterial and anti-inflammatory activities. Compounds 1, 2 and 5 demonstrated antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) with MICs ranging from 4-64 µg/mL, and compounds 3 and 4 exhibited potential anti-inflammatory effects by suppressing LPS-induced TNF-α and NO releases in RAW264.7 cells.

7.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675617

RESUMO

Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.


Assuntos
Emulsões , Tamanho da Partícula , Extratos Vegetais , Tinospora , Água , Emulsões/química , Extratos Vegetais/química , Tinospora/química , Água/química , Sonicação , Nanopartículas/química , Óleos/química , Tensoativos/química
8.
Funct Integr Genomics ; 23(4): 330, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37935874

RESUMO

Indian natural climbing shrub Tinospora cordifolia, often known as "Guduchi" and "Amrita," is a highly esteemed medicinal plant in the Indian system of medicine (ISM). It is a member of the Menispermaceae family which consists of a rich source of protein, micronutrients, and rich source of bioactive components which are used in treating various systemic diseases. The current study was designed to know the biological characterization of the plant genome and biosynthesis of plant metabolites essential for its medicinal applications. Tinospora cordifolia's complete genome was sequenced using Illumina HiSeq2500 sequencing technology. The draft genome was assembled through a de novo method. An integrative genome annotation approach was used to perform functional gene prediction. The pathway analysis was carried out using the KEGG database. The total genome size obtained after genome assembly was 894 Mb with an N50 of 9148 bp. The integrative annotation approach resulted in 35,111 protein-coding genes. In addition, genes responsible for the synthesis of syringin, a secondary metabolite found in plants, were identified. In comparison to the standard drug (dopamine, rasagiline, and selegiline), syringin's molecular docking exhibited a greater binding affinity from the range of - 4.3 to - 6.6 kcal/mol for all the targets of Parkinson's disease and for Alzheimer's targets; it has shown the maximum potency from the range of - 6.5 to - 7.4 kcal/mol with respect to the standard drug (donepezil, galantamine, and rivastigmine). This study provides the genomic information of Tinospora cordifolia which is helpful in understanding genomic insights and metabolic pathways connected to the corresponding plant genome and predicts the possible useful effect for the molecular characterization of therapeutic drugs.


Assuntos
Plantas Medicinais , Tinospora , Plantas Medicinais/genética , Tinospora/genética , Simulação de Acoplamento Molecular , Glucosídeos
9.
Phytochem Rev ; 22(1): 211-273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36345416

RESUMO

Tinospora crispa (L.) Hook. f. & Thomson (Menispermaceae) is a plant indigenous to Africa and South-East Asia. It is widely used in ethnomedicine to alleviate various diseases including hypertension, diabetes, rheumatism, jaundice, inflammation, fever, fractures, scabies, and urinary disorders. A total of 167 phytoconstituents, belonging to 12 different chemical categories, including alkaloids, flavonoids, terpenoids, and phenolic compounds have thus far been isolated from various parts of T. crispa. Numerous in vitro and in vivo investigations have already established the antidiabetic, anticancer, antiparasitic, antimicrobial, immunomodulatory, hepatoprotective, analgesic, antipyretic, antihyperuricemic, and pesticidal activity of this plant, as well as its effects on the cardiac and the central nervous system. Most pharmacological investigations to date have been carried out on plant extracts and fractions. The exact identity of the phytoconstituents responsible for the observed biological effects and their mode of action at the molecular level are yet to be ascertained. Toxicological studies have demonstrated that T. crispa is relatively safe, although dose-dependent hepatotoxicity is a concern at high doses. This review presents a comprehensive update and analysis on studies related to the ethnomedicinal uses, phytochemistry, pharmacological activity and toxicological profile of T. crispa. It provides some critical insights into the current scientific knowledge on this plant and its future potential in pharmaceutical research.

10.
Bioorg Chem ; 140: 106812, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37651894

RESUMO

A total of 17 structurally diverse clerodane diterpenoids, including ten undescribed clerodane diterpenoids (tinopanoids K-T, 1-10) and seven known compounds (11-17), were isolated from the vines and leaves of Tinospora crispa. Compound 3 has not only bear the dominant substituents of γ-hydroxy-α, ß-unsaturated-γ-lactone with anti-inflammatory activity, but also a ternary epoxy structure at C-3/C-4. The planar structures and relative configurations of the clerodane diterpenoids were elucidated by spectroscopic data interpretation. The absolute configurations of compounds 1, 4, 8 and 13 were determined by single-crystal X-ray crystallographic, while that of compound 3 was determined using computed ECD data and single crystal X-ray diffraction of related p-bromobenzoate ester (3a). Subsequently, all compounds were evaluated for their inhibitory effect on nitric oxide (NO) production of LPS-activated BV-2 cells, and compounds 3 and 8 exhibited better NO inhibitory potency, with IC50 values of 5.6 and 13.8 µM than the positive control minocycline (Mino, IC50 = 22.9 µM). The corresponding results of western blot analysis and qRT-PCR revealed that compound 3 can significantly inhibit the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions, mRNA levels of pro-inflammatory cytokins of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and interleukin 1ß (IL-1ß). The underlying mechanism by which compound 3 exerted anti-neuroinflammatory effects was investigated by western blot and immunofluorescence assay, which suggested compound 3 inhibited LPS induced neuroinflammation via the suppression of toll-like receptor 4 (TLR4) dependent Signal Transducer and Activator of Transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) signaling pathways, and the activation of Heme Oxygenase-1 (HO-1) mediated signals.


Assuntos
Diterpenos Clerodânicos , Tinospora , Diterpenos Clerodânicos/farmacologia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Western Blotting
11.
Mol Divers ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439907

RESUMO

Scientific research has demonstrated that Tinospora cordifolia acts as an anti-aging agent in several experimental models, generating global interest in its underlying molecular mechanisms of this activity. The aim of the study was to identify the possible phytochemical compounds of T. cordifolia that might combat age-related illness through integrating network pharmacology, molecular docking techniques, and molecular dynamics (MD) study to explore their potential mechanisms of action. To carry out this study, several databases were used, including PubChem, KNApSAcK family database, PubMed, SwissADME, Molsoft, SwissTargetPrediction, GeneCards, and OMIM database. For network development and GO enrichment analysis KEGG, ShinyGo 0.77, and the STRING database were used. For better analysis, the networks were also constructed using Cytoscape 3.9.1. The Cytoscape network analyzer tool was used for data analysis, and molecular docking was done via Vina-GPU-2.0. The best compounds and AKT1 were finally subjected to MD simulation for 100 ns. The CytoHubba plugin of Cytoscape identified ten key targets, commonly called hub genes, including AKT1, GAPDH, and TP53, and so on. GO and KEGG pathway enrichment analysis revealed the relevant biological processes, cellular components, and molecular functions involved in treating aging-related disorders. KEGG pathway analysis involved neuroactive ligand-receptor interactions, lipid and atherosclerosis, and cAMP signaling. The docking of 100 T. cordifolia compounds with AKT1 demonstrated good binding affinity, particularly for Amritoside, Sitagliptin, Berberine, and Piperine. Finally, the relative stability of four-hit phytochemicals was validated by MD simulation, which may be the most crucial compound for anti-aging activity. In conclusion, this study used network pharmacology, molecular docking, and MD simulation to identify the compounds in T. cordifolia and proposed a potential mechanism for anti-aging activity. These results suggest future directions for the prevention and treatment of age-related diseases.

12.
Reprod Domest Anim ; 58(6): 793-801, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37009827

RESUMO

The present study was undertaken to assess the effects of stem extract of Tinospora cordifolia (Giloy or Guduchi) in the semen extender on seminal parameters, leakage of intracellular enzymes and antioxidants in semen of Sahiwal bull. A total of 48 ejaculates from four bulls were selected for the study. Spermatozoa of 25 × 106 were incubated in 100, 300 and 500 µg of stem extract of Guduchi as Gr II, III and IV, respectively, and pre-freeze and post-thaw semen samples were analysed for seminal parameters [motility, viability, total sperm abnormality (TSA), plasma membrane integrity (PMI) and acrosomal integrity (AcI)], intracellular enzymes [aspartate aminotransferase (AST) and lactate dehydrogenase (LDH)] and seminal antioxidants [superoxide dismutase (SOD) and catalase] in comparison with an untreated control group (Gr I). The results revealed that stem extract-treated semen had significantly (p < .05) higher motility, viability, PMI, AcI, SOD and catalase and had significantly (p < .05) lower TSA, AST and LDH compared to those in untreated control group at pre-freeze and post-thaw stages. Semen treated with 100 µg stem extract/25 × 106 spermatozoa had significantly (p < .05) higher motility, viability, PMI, AcI, SOD and catalase and had significantly (p < .05) lower TSA, AST and LDH compared to those in control, 300- and 500-µg-treated groups at pre-freeze and post-thaw stages. Further, these seminal parameters and antioxidants were showing decreasing trend and TSA and leakage of intracellular enzymes were showing increasing trend from Gr II to Gr IV at pre-freeze and post-thaw stages. Thus, 100 µg/25 × 106 spermatozoa were optimum or suitable dose for cryopreservation of Sahiwal bull semen. The study concluded that T. cordifolia stem extract 100 µg/25 × 106 spermatozoa in the semen extender can be effectively utilized to reduce the oxidative stress and improve the pre-freeze and post-thaw seminal parameters in Sahiwal bull. However, further studies on effects of different concentrations of stem extract on in vitro or in vivo fertility trials are to be conducted to assess the impact of the stem extract supplementation in the semen extender on field pregnancy outcomes in bovine species.


Assuntos
Preservação do Sêmen , Tinospora , Gravidez , Feminino , Animais , Masculino , Bovinos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Tinospora/metabolismo , Catalase/farmacologia , Espermatozoides , Análise do Sêmen/veterinária , Análise do Sêmen/métodos , Crioprotetores/farmacologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Criopreservação/veterinária , Criopreservação/métodos , Superóxido Dismutase , L-Lactato Desidrogenase , Motilidade dos Espermatozoides , Sementes/metabolismo
13.
J Asian Nat Prod Res ; 25(6): 603-609, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36069750

RESUMO

One new phenylpropanoid glycoside, tinosinen A (1) and 13 known compounds, tinosinen (2), citrusin B (3), picraquassioside C (4), erythro-guaiacylglycerol-ß-O-4'-coniferyl alcohol (5), erythro-guaiacylglycerol-8-O-4'-(sinapyl alcohol) ether (6), erythro-syringylglycerol-8-O-4'-(sinapyl alcohol) ether (7), seco-isolariciresinol 9-O-D-ß-glucopyranoside (8), tinosposide A (9), pinoresinol-4'-O-ß-D-glucopyranoside (10), syringaresinol-4'-O-ß-D-glucopyranoside (11), pinoresinol (12), syringaresinol (13), and lirioresino-ß-dimethyl ether (14) were isolated from the stems of Tinospora sinensis (Lour.) Merr. Their structures were established by detailed spectroscopic studies and comparisons with those reported in the literature. Compound 13 showed significant inhibitory NO production (IC50 value of 38.53 ± 1.90 µM) in RAW264.7 macrophages, LPS-stimulated. Compounds 3-7, 11, 12, and 14 inhibited NO production with IC50 values ranging from 38.53 to 99.07 µM.


Assuntos
Tinospora , Tinospora/química , Óxido Nítrico , Éteres
14.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202737

RESUMO

Tinospora bakis (A.Rich.) Miers (Menispermaceae) has traditionally been used to alleviate headaches, rheumatism, mycetoma, and diabetes, among others. Despite its extensive use, the active components of the plant have never been investigated. In this work, a series of furanoditerpenoids (1-18) and five compounds from other classes (19-23) were isolated from T. bakis. Notably, two new compounds were discovered and named: tinobakisin (1) and tinobakiside (10). Their molecular structures were elucidated with NMR, MS, UV, IR, and ECD spectra. Additionally, known compounds (2-9 and 11-23) were corroboratively identified through spectral comparisons with previously reported data, while highlighting and addressing some inaccuracies in the prior literature. Remarkably, compounds 6, 7, 13, and 17 exhibited a superior anti-glycation effect, outperforming established agents like rutin and quercetin in a lab model of protein glycation with glucose. The overall findings suggest that furanoditerpenoids play a crucial role in the antidiabetic properties of T. bakis. This research marks the first comprehensive phytochemical investigation of T. bakis, opening the door for further investigation into furanoditerpenoids and their biological mechanisms.


Assuntos
Besouros , Diterpenos Clerodânicos , Menispermaceae , Tinospora , Animais , Diterpenos Clerodânicos/farmacologia , Glucose
15.
Molecules ; 28(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894552

RESUMO

Natural products with curative properties are gaining immense popularity in scientific and food research, possessing no side effects in contrast to other drugs. Guduchi, or Tinospora cordifolia, belongs to the menispermaceae family of universal drugs used to treat various diseases in traditional Indian literature. It has received attention in recent decades because of its utilization in folklore medicine for treating several disorders. Lately, the findings of active phytoconstituents present in herbal plants and their pharmacological function in disease treatment and control have stimulated interest in plants around the world. Guduchi is ethnobotanically used for jaundice, diabetes, urinary problems, stomachaches, prolonged diarrhea, skin ailments, and dysentery. The treatment with Guduchi extracts was accredited to phytochemical constituents, which include glycosides, alkaloids, steroids, and diterpenoid lactones. This review places emphasis on providing in-depth information on the budding applications of herbal medicine in the advancement of functional foods and nutraceuticals to natural product researchers.


Assuntos
Plantas Medicinais , Tinospora , Tinospora/química , Extratos Vegetais/química , Plantas Medicinais/química , Suplementos Nutricionais
16.
Inflammopharmacology ; 31(2): 1009-1025, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840884

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disorder causing cartilage and joint degeneration. In spite of the availability of several robust drugs like biologics, most of the patients are unresponsive, and reports of severe adverse effects following long-term use are also there. Subsequently the use of natural plant-based products in RA therapy is broadening over the years. Tinospora cordifolia is a widely used medicinal plant in Ayurveda against various inflammatory disorders including RA. However, there is very limited knowledge regarding the actual molecular events responsible for its therapeutic effect, and this has limited its acceptance among the professionals. PURPOSE: To explore the anti-inflammatory and anti-arthritic effect of hydro-alcoholic extract from Tinospora cordifolia. METHODS: The rich polyphenol nature of the extract was elucidated using HPLC. LPS-stimulated murine macrophage cell line RAW 264.7 was used for in vitro studies, and collagen-induced arthritis (CIA) model was used for in vivo studies. RESULTS: The polyphenols in TCE were identified using HPLC. TCE effectively downregulated the level of pro-inflammatory mediators (IL-6, TNF-α, PGE2, and NO) in LPS-stimulated RAW 264.7 cells. Subsequently the upregulated expression of COX-2 and iNOS following LPS stimulation were also downregulated by TCE. Furthermore, TCE targeted the upstream kinases of the JAK/STAT pathway, a crucial inflammatory pathway. The expression of VEGF, a key angiogenic factor as well as an inflammatory mediator was also decreased following pre-treatment with TCE. The anti-arthritic effect of TCE (150 mg/kg) was evaluated in the CIA model as well. From the results of histopathology, oral administration of TCE was found to be effective in reducing the clinical symptoms of arthritis including paw edema, erythema, and hyperplasia. In vivo results validated the in vitro results and there was a significant reduction in serum level of pro-inflammatory cytokines and mediators (IL-6, TNF-α, IL-17, NO, and PGE2). The phosphorylation of STAT3 and the expression of VEGF were also downregulated following TCE treatment. CONCLUSION: Our study provided a detailed insight into the molecular events associated with anti-inflammatory and anti-arthritic effect of Tinospora cordifolia.


Assuntos
Artrite Experimental , Artrite Reumatoide , Tinospora , Humanos , Camundongos , Animais , Janus Quinases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Lipopolissacarídeos/farmacologia , Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4598-4609, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802799

RESUMO

Alkaloids are important active ingredients occurring in many traditional Chinese medicines, and alkaloid glycosides are one of their existence forms. The introduction of saccharide units improves the water solubility of alkaloid glycosides thus presenting better biological activity.Because of the low content in plants, alkaloid glycosides have been not comprehensively studied. In this study, ultrahigh performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry(UPLC-QTOF-MS/MS) was employed to identify and analyze the alkaloid glycosides in Coptis chinensis, Phellodendron chinense, Menispermum dauricum, Sinomenium acutum, Tinospora sagittata and Stephania tetrandra. The results showed that except Tinospora sagittata, the other five herbal medicines contained alkaloid glycosides. Furthermore, the alkaloid glycosides in each herbal medicine were identified based on UV absorption spectra, quasimolecular ion peaks in MS, fragment ions information in the MS/MS, and previous literature reports. A total of 42 alkaloid glycosides were identified. More alkaloid glycosides were identified in C. chinensis and Menispermum dauricum, and eleven in C. chinensis were potential new compounds. Furthermore, the alkaloid glycosides in the water extract of C. chinensis were coarsely se-parated by macroporous adsorption resin, purified by column chromatography with D151 cation exchange resin, ODS and MCI, combined with semi-preparative high performance liquid chromatography. Two new alkaloid glycosides were obtained, and their structures were identified by mass spectrometry and NMR data as(S)-7-hydroxy-1-(p-hydroxybenzyl)-2,2-N,N-dimethyl-1,2,3,4-tetrahydroisoquinoline-6-O-ß-D-glucopyranoside and(S)-N-methyltetrahydropalmatubine-9-O-ß-D-glucopyranoside, respectively. This study is of great significance for enriching the information about the chemical composition and the in-depth development of C. chinensis. Meanwhile, it can provide a reference for rapid identification and isolation of alkaloid glycosides from other Chinese herbal medicines.


Assuntos
Alcaloides , Antineoplásicos , Coptis , Medicamentos de Ervas Chinesas , Plantas Medicinais , Glicosídeos/química , Medicina Tradicional Chinesa , Espectrometria de Massas em Tandem/métodos , Coptis chinensis , Medicamentos de Ervas Chinesas/química , Alcaloides/análise , Extratos Vegetais/química , Plantas Medicinais/química , Água , Cromatografia Líquida de Alta Pressão/métodos , Coptis/química
18.
Neurochem Res ; 47(6): 1692-1706, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35230647

RESUMO

Since sleep is a key homeostatic phenomenon of the body, therefore understanding the complex etiology of the neurological outcome of sleep deprivation (SD) such as anxiety, depression, cognitive dysfunctions, and their management is of utmost importance. The findings of the current study encompass the neurobehavioral as well as hormonal, and neuroinflammatory changes in serum and hypothalamus region of the brain as an outcome of acute SD and their amelioration by pre-treatment with butanol extract of Tinospora cordifolia. SD group animals showed anxiety-like behavior as evident from Elevated Plus Maze data and higher serum cortisol levels, whereas, pre-treatment with B-TCE showed anxiolytic activity and also reduced cortisol levels which was corroborated by an increase in leptin and insulin levels. Further, SD induced elevation of serum pro-inflammatory cytokines IL-6, TNF-α, IL-1ß, and MCP-1 and subsequent activation of astroglial cells in the hypothalamus was suppressed in B-TCE pre-treated animals. The current findings suggest that besides the cortical structures, hypothalamus region's synaptic plasticity and cell survival are adversely impacted by acute SD. Further active ingredients present in B-TCE may be useful for the management of SD-induced anxiety, systemic inflammation, and neuroinflammation by targeting hypothalamic BDNF-TrkB/PI3K-Akt pathways.


Assuntos
Tinospora , Animais , Ansiedade , Butanóis , Sobrevivência Celular , Hidrocortisona , Hipotálamo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Privação do Sono/complicações , Privação do Sono/metabolismo , Tinospora/química , Tinospora/metabolismo
19.
Biogerontology ; 23(3): 363-380, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35488997

RESUMO

Conflicting reports of HRT necessitates exploration of therapeutic interventions with the least side effects to preserve metabolic homeodynamics in women later in life. The current study was designed to elucidate the cumulative effects of aging and/or high fat diet (HFD) on some metabolic indicators and their management by Tinospora cordifolia stem powder (TCP) using middle-aged acyclic and young adult cyclic female rats as the model system. Animals were fed on either normal chow or HFD supplemented with or without TCP. Blood and liver tissue were collected for biochemical, and histological studies as well as for expression of proteins regulating lipid metabolism. Animals fed with TCP supplemented normal chow feed showed bodyweight management over 12-weeks despite their high feed and calories intake compared to young and age-matched controls as well as HFD-fed animals. TCP dose used was not toxic and rather prevented age-associated liver dysfunctions and ameliorated dyslipidemia and oxidative stress, normalized blood glucose, insulin, leptin, and secretary pro-inflammatory cytokines. Further, bodyweight management effect of TCP was observed to target AMPK signalling pathway as the mediator of lipogenesis, sterol biosynthesis, lipolysis, and ß-oxidation of fatty acids. These findings suggest that TCP supplementation in diet may be a potential interventional strategy to ameliorate aging-associated hepatic and metabolic dysfunctions and to promote healthy aging.


Assuntos
Tinospora , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Metabolismo dos Lipídeos , Lipogênese , Fígado/metabolismo , Pessoa de Meia-Idade , Ratos
20.
Biogerontology ; 23(6): 809-824, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35767131

RESUMO

Reduced bone mineral density, and muscle strength are the hallmark of aging-related motor coordination deficits and related neuropathologies. Since cerebellum regulates motor movements and balance perception of our body, therefore it may be an important target to control the age-related progression of motor dysfunctions. Dry stem powder of Tinospora cordifolia (TCP) was tested as a food supplement to elucidate its activity to attenuate age-associated locomotor dysfunctions. Intact acyclic middle-aged female rats were used in this study as the model system of the transition phase from premenopause to menopause in women along with cycling young adult rats. Normal chow or 30% High Fat Diet (HFD), supplemented with or without TCP was fed to animals for 12 weeks and then tested for locomotor performance on rotarod followed by post-sacrifice protein expression studies. In comparison to young adults, middle-aged animals showed an increase in number of falls and lesser time spent in rotarod performance test, whereas, animals given TCP supplemented feed showed improvement in performance with more pronounced effects observed in normal chow than HFD fed middle-aged rats. Further, due to its multicomponent nature TCP was found to target the expression of various markers of neuroinflammation, apoptosis, cell survival, and synaptic plasticity in the cerebellum region. The current findings suggest that TCP supplementation in the diet may prove to be a potential interventional strategy for the management of frailty and fall-associated morbidities caused by aging-related deterioration of bone mineral density, and muscle strength.


Assuntos
Tinospora , Animais , Feminino , Ratos , Sobrevivência Celular , Extratos Vegetais , Envelhecimento , Dieta Hiperlipídica , Cerebelo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA