Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 34(8): 108774, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626343

RESUMO

Extensive hierarchical yet highly reciprocal interactions among cortical areas are fundamental for information processing. However, connectivity rules governing the specificity of such corticocortical connections, and top-down feedback projections in particular, are poorly understood. We analyze synaptic strength from functionally relevant brain areas to diverse neuronal types in the primary somatosensory cortex (S1). Long-range projections from different areas preferentially engage specific sets of GABAergic neurons in S1. Projections from other somatosensory cortices strongly recruit parvalbumin (PV)-positive GABAergic neurons and lead to PV neuron-mediated feedforward inhibition of pyramidal neurons in S1. In contrast, inputs from whisker-related primary motor cortex are biased to vasoactive intestinal peptide (VIP)-positive GABAergic neurons and potentially result in VIP neuron-mediated disinhibition. Regardless of the input areas, somatostatin-positive neurons receive relatively weak long-range inputs. Computational analyses suggest that a characteristic combination of synaptic inputs to different GABAergic IN types in S1 represents a specific long-range input area.


Assuntos
Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Inibição Neural , Células Piramidais/metabolismo , Córtex Somatossensorial/metabolismo , Transmissão Sináptica , Vibrissas/inervação , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Masculino , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Parvalbuminas/metabolismo , Córtex Somatossensorial/citologia , Peptídeo Intestinal Vasoativo/metabolismo
2.
Neurosci Res ; 141: 13-22, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30110598

RESUMO

Executive control supports our ability to behave flexibly in accordance with a given situation. In order to fully understand how cortical circuits achieve this task, we need to determine the intrinsic physiological and connection profiles of neuron types and analyze their functional roles during behavior. This article introduces current knowledge regarding neuron type classification in the cortex and reviews our understanding of how each neuron type is incorporated in the functional cortical circuit to implement executive control. Recent work using neuron-type specific imaging/recording has begun to reveal significant functional organizations of pyramidal neurons and their subtypes depending on the layers and long-range projection targets. GABAergic interneurons also make crucial contributions to executive control in a subtype-specific manner. Vasoactive intestinal peptide (VIP)-positive interneurons are preferentially recruited by top-down inputs from higher-order cortical regions and amplify the signals in pyramidal neurons by inhibiting other interneuron subtypes. Particularly in the prefrontal cortex, one of the hierarchically highest cortices, executive control signals are regulated by the VIP neuron-mediated disinhibition and robustly maintained through recurrent connections at a long time scale. The differences and commonalities in the functional organization between sensory areas and the prefrontal cortex are discussed.


Assuntos
Função Executiva/fisiologia , Neurônios/fisiologia , Animais , Neurônios GABAérgicos/fisiologia , Humanos , Interneurônios/fisiologia , Modelos Neurológicos , Inibição Neural , Vias Neurais/fisiologia , Células Piramidais/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia
3.
Neuron ; 102(1): 6-8, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30946826

RESUMO

Learning is accompanied by temporal compression and sharpening of neuronal firing sequences. In this issue of Neuron, Adler et al. (2019), using a motor skill paradigm and its variant, uncover a dual role for somatostatin interneuron regulation to support ensemble compaction and protection in learning.


Assuntos
Interneurônios , Somatostatina , Aprendizagem , Neurônios , Células Piramidais
4.
Front Neural Circuits ; 11: 78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093667

RESUMO

Rhythmic motor patterns in invertebrates are often driven by specialized "central pattern generators" (CPGs), containing small numbers of neurons, which are likely to be "identifiable" in one individual compared with another. The dynamics of any particular CPG lies under the control of modulatory substances, amines, or peptides, entering the CPG from outside it, or released by internal constituent neurons; consequently, a particular CPG can generate a given rhythm at different frequencies and amplitudes, and perhaps even generate a repertoire of distinctive patterns. The mechanisms exploited by neuromodulators in this respect are manifold: Intrinsic conductances (e.g., calcium, potassium channels), conductance state of postsynaptic receptors, degree of plasticity, and magnitude and kinetics of transmitter release can all be affected. The CPG concept has been generalized to vertebrate motor pattern generating circuits (e.g., for locomotion), which may contain large numbers of neurons - a construct that is sensible, if there is enough redundancy: that is, the large number of neurons consists of only a small number of classes, and the cells within any one class act stereotypically. Here we suggest that CPG and modulator ideas may also help to understand cortical oscillations, normal ones, and particularly transition to epileptiform pathology. Furthermore, in the case illustrated, the mechanism of the transition appears to be an exaggerated form of a normal modulatory action used to influence sensory processing.


Assuntos
Geradores de Padrão Central/fisiologia , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Animais , Ondas Encefálicas/fisiologia , Humanos , Interneurônios/fisiologia , Modelos Neurológicos , Inibição Neural/fisiologia
5.
Cell Rep ; 16(5): 1391-1404, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27425623

RESUMO

The maturation of inhibitory GABAergic cortical circuits regulates experience-dependent plasticity. We recently showed that the heterochronic transplantation of parvalbumin (PV) or somatostatin (SST) interneurons from the medial ganglionic eminence (MGE) reactivates ocular dominance plasticity (ODP) in the postnatal mouse visual cortex. Might other types of interneurons similarly induce cortical plasticity? Here, we establish that caudal ganglionic eminence (CGE)-derived interneurons, when transplanted into the visual cortex of neonatal mice, migrate extensively in the host brain and acquire laminar distribution, marker expression, electrophysiological properties, and visual response properties like those of host CGE interneurons. Although transplants from the anatomical CGE do induce ODP, we found that this plasticity reactivation is mediated by a small fraction of MGE-derived cells contained in the transplant. These findings demonstrate that transplanted CGE cells can successfully engraft into the postnatal mouse brain and confirm the unique role of MGE lineage neurons in the induction of ODP.


Assuntos
Córtex Cerebral/metabolismo , Neurônios GABAérgicos/metabolismo , Cistos Glanglionares/metabolismo , Interneurônios/metabolismo , Eminência Mediana/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Movimento Celular/fisiologia , Córtex Cerebral/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Córtex Visual/metabolismo , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA