Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Exp Bot ; 75(5): 1615-1632, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988280

RESUMO

Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gß (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta da Proteína de Ligação ao GTP , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Fosforilação
2.
J Biol Inorg Chem ; 26(1): 93-108, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544225

RESUMO

The Schizosaccharomyces pombe Asp1 protein is a bifunctional kinase/pyrophosphatase that belongs to the highly conserved eukaryotic diphosphoinositol pentakisphosphate kinase PPIP5K/Vip1 family. The N-terminal Asp1 kinase domain generates specific high-energy inositol pyrophosphate (IPP) molecules, which are hydrolyzed by the C-terminal Asp1 pyrophosphatase domain (Asp1365-920). Thus, Asp1 activities regulate the intracellular level of a specific class of IPP molecules, which control a wide number of biological processes ranging from cell morphogenesis to chromosome transmission. Recently, it was shown that chemical reconstitution of Asp1371-920 leads to the formation of a [2Fe-2S] cluster; however, the biological relevance of the cofactor remained under debate. In this study, we provide evidence for the presence of the Fe-S cluster in Asp1365-920 inside the cell. However, we show that the Fe-S cluster does not influence Asp1 pyrophosphatase activity in vitro or in vivo. Characterization of the as-isolated protein by electronic absorption spectroscopy, mass spectrometry, and X-ray absorption spectroscopy is consistent with the presence of a [2Fe-2S]2+ cluster in the enzyme. Furthermore, we have identified the cysteine ligands of the cluster. Overall, our work reveals that Asp1 contains an Fe-S cluster in vivo that is not involved in its pyrophosphatase activity.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas Ferro-Enxofre/química , Pirofosfatases/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Biocatálise , Cisteína/química , Proteínas do Citoesqueleto/genética , Proteínas Ferro-Enxofre/genética , Enzimas Multifuncionais/química , Enzimas Multifuncionais/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pirofosfatases/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética
3.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208421

RESUMO

IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates-scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5-from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.


Assuntos
Adenosina Trifosfatases/metabolismo , Fosfatos de Inositol/biossíntese , Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Animais , Ensaios Enzimáticos/métodos , Inositol/química , Camundongos , Simulação de Acoplamento Molecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Transdução de Sinais , Especificidade por Substrato
4.
Mol Biol Rep ; 45(5): 1111-1124, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30039430

RESUMO

Many studies have been performed to identify regulatory circuit underlying plant stress tolerance. However, the reliability of some findings has been criticized because of exclusive use of stress sensitive plant species such as Arabidopsis thaliana. Sensitive plant species often harbor narrow defensive mechanisms and have relatively low capacity for adaptive responses. Therefore, it is useful to employ tolerant model plants, such as Eutrema salsugineum, to provide comprehensive insights into various mechanisms involved in response to abiotic stresses. In this study, comparative transcriptome and regulatory network analysis of stress-sensitive (A. thaliana) and -tolerant (E. salsugineum) model plants uncovered regulatory hierarchies underlying response to abiotic stresses and suggested the transcription factor genes, MYB44 and VIP1 as the candidate hub genes to perform molecular analyses on their Brassica napus homologs, BnMYB44 and BnVIP1. The full-length coding sequence of BnMYB44 and BnVIP1 with 891 and 969 bp long were cloned and sequenced. They shared high similarity with their counterparts in other plants at nucleotide and amino acid levels. The expression patterns of BnMYB44 and BnVIP1 genes of the two B. napus cultivars under drought and salt stress conditions coupled with the data obtained from the physiological measurements as well as analysis of the BnMYB44 and BnVIP1 promoters suggested that BnMYB44 and BnVIP1 genes may contribute to responses to drought and salt stresses in B. napus.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , Brassicaceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica napus/genética , Brassicaceae/genética , Clonagem Molecular , Secas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Salinidade , Análise de Sequência de DNA , Estresse Fisiológico
5.
BMC Geriatr ; 18(1): 162, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005622

RESUMO

BACKGROUND: In intensive care units (ICU) octogenarians become a routine patients group with aggravated therapeutic and diagnostic decision-making. Due to increased mortality and a reduced quality of life in this high-risk population, medical decision-making a fortiori requires an optimum of risk stratification. Recently, the VIP-1 trial prospectively observed that the clinical frailty scale (CFS) performed well in ICU patients in overall-survival and short-term outcome prediction. However, it is known that healthcare systems differ in the 21 countries contributing to the VIP-1 trial. Hence, our main focus was to investigate whether the CFS is usable for risk stratification in octogenarians admitted to diversified and high tech German ICUs. METHODS: This multicentre prospective cohort study analyses very old patients admitted to 20 German ICUs as a sub-analysis of the VIP-1 trial. Three hundred and eight patients of 80 years of age or older admitted consecutively to participating ICUs. CFS, cause of admission, APACHE II, SAPS II and SOFA scores, use of ICU resources and ICU- and 30-day mortality were recorded. Multivariate logistic regression analysis was used to identify factors associated with 30-day mortality. RESULTS: Patients had a median age of 84 [IQR 82-87] years and a mean CFS of 4.75 (± 1.6 standard-deviation) points. More than half of the patients (53.6%) were classified as frail (CFS ≥ 5). ICU-mortality was 17.3% and 30-day mortality was 31.2%. The cause of admission (planned vs. unplanned), (OR 5.74) and the CFS (OR 1.44 per point increase) were independent predictors of 30-day survival. CONCLUSIONS: The CFS is an easy determinable valuable tool for prediction of 30-day ICU survival in octogenarians, thus, it may facilitate decision-making for intensive care givers in Germany. TRIAL REGISTRATION: The VIP-1 study was retrospectively registered on ClinicalTrials.gov (ID: NCT03134807 ) on May 1, 2017.


Assuntos
Fragilidade/diagnóstico , Unidades de Terapia Intensiva , Idoso de 80 Anos ou mais , Cuidados Críticos , Feminino , Alemanha , Mortalidade Hospitalar , Hospitalização , Humanos , Masculino , Análise Multivariada , Estudos Prospectivos , Qualidade de Vida , Estudos Retrospectivos , Fatores de Risco
6.
J Biol Chem ; 291(13): 6772-83, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26828065

RESUMO

Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, theSaccharomyces cerevisiaehomolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the ß-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5or IP7)in vitro. In vivo,siw14Δ yeast mutants possess increased IP7levels, whereas heterologousSIW14overexpression eliminates IP7from cells. IP7levels increased proportionately whensiw14Δ was combined withddp1Δ orvip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7isoform 5PP-IP5to IP6.


Assuntos
Regulação Fúngica da Expressão Gênica , Fosfatos de Inositol/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Teste de Complementação Genética , Cinética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Especificidade por Substrato
7.
Biomolecules ; 14(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397389

RESUMO

The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.


Assuntos
Difosfatos , Fosfatos de Inositol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Difosfatos/metabolismo , Fosfatos de Inositol/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
8.
Future Microbiol ; 15: 1363-1377, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33085539

RESUMO

Aim: Inositol polyphosphate kinases are involved in regulation of many cellular processes in eukaryotic cells. In this study, we investigated the functions of the inositol polyphosphate kinase Vip1 in autophagy and pathogenicity of Candida albicans. Results: Loss of Vip1 caused significantly increased sensitivity to nitrogen source starvation, abnormal localization and degradation of autophagy protein, higher vacuolar pH and higher (rather than lower) intracellular ATP levels compared with control strains. Besides, the mutant showed attenuated hyphal development and virulence during systemic infection to mice. Conclusion: The results reveal that Vip1 is important to autophagy of C. albicans. The maintenance of vacuolar acidic pH contributed to the role of Vip1 in autophagy. Vip1 is also required for pathogenicity of C. albicans.


Assuntos
Autofagia , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autofagossomos/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candidíase/microbiologia , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Hifas/crescimento & desenvolvimento , Fosfatos de Inositol/metabolismo , Rim/microbiologia , Camundongos , Mutação , Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Vacúolos/química , Vacúolos/metabolismo , Virulência
9.
Plant Signal Behav ; 15(2): 1706026, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31861962

RESUMO

VirE2-INTERACTING PROTEIN1 (VIP1) is a basic leucine zipper protein in Arabidopsis thaliana. VIP1 changes its subcellular localization from the cytoplasm to the nucleus when cells are exposed to mechanical or hypo-osmotic stress. The nuclear localization of VIP1 is inhibited either by inhibitors of calcium signaling or by inhibitors of protein phosphatases 1, 2A and 4 (PP1, PP2A and PP4, respectively). VIP1 binds to the PP2A B"-family subunits, which have calcium-binding EF-hand motifs and which act as the regulatory, substrate-recruiting B subunit of PP2A. The VIP1 de-phosphorylation can therefore be mediated by PP2A. However, details of the PP2A-mediated de-phosphorylation of VIP1 are unclear. Here, with yeast two-hybrid assays and in-vitro pull-down assays, we show that VIP1 does not interact with the scaffolding A subunit of PP2A, but that VIP1 does interact with the catalytic C subunits. Our data raise the possibility that not only the B"-family B subunit of PP2A but also its C subunit contributes to the PP2A-mediated de-phosphorylation of VIP1.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Proteínas de Arabidopsis/genética , Domínio Catalítico , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ligação Proteica , Proteína Fosfatase 2/genética
10.
Toxins (Basel) ; 12(9)2020 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842608

RESUMO

The mode of action underlying the insecticidal activity of the Bacillus thuringiensis (Bt) binary pesticidal protein Vpb/Vpa (formerly Vip1/Vip2) is uncertain. In this study, three recombinant baculoviruses were constructed using Bac-to-Bac technology to express Vpa2Ac1 and two novel Vpa2-like genes, Vpa2-like1 and Vpa2-like2, under the baculovirus p10 promoter in transfected Sf9 cells. Pairwise amino acid analyses revealed a higher percentage of identity and a lower number of gaps between Vpa2Ac1 and Vpa2-like2 than to Vpa2-like1. Moreover, Vpa2-like1 lacked the conserved Ser-Thr-Ser motif, involved in NAD binding, and the (F/Y)xx(Q/E)xE consensus sequence, characteristic of the ARTT toxin family involved in actin polymerization. Vpa2Ac1, Vpa2-like1 and Vpa2-like2 transcripts and proteins were detected in Sf9 culture cells, but the signals of Vpa2Ac1 and Vpa2-like2 were weak and decreased over time. Sf9 cells infected by a recombinant bacmid expressing Vpa2-like1 showed typical circular morphology and produced viral occlusion bodies (OBs) at the same level as the control virus. However, expression of Vpa2Ac1 and Vpa2-like2 induced cell polarization, similar to that produced by the microfilament-destabilizing agent cytochalasin D and OBs were not produced. The presence of filament disrupting agents, such as nicotinamide and nocodazole, during transfection prevented cell polarization and OB production was observed. We conclude that Vpa2Ac1 and Vpa2-like2 proteins likely possess ADP-ribosyltransferase activity that modulated actin polarization, whereas Vpa2-like1 is not a typical Vpa2 protein. Vpa2-like2 has now been designated Vpa2Ca1 (accession number AAO86513) by the Bacillus thuringiensis delta-endotoxin nomenclature committee.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/biossíntese , Baculoviridae/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Baculoviridae/genética , Agentes de Controle Biológico/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Células Sf9
11.
Toxins (Basel) ; 11(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349641

RESUMO

Bacillus thuringiensis is a well-known entomopathogenic bacterium that produces vegetative insecticidal proteins (Vips, including Vip1, Vip2, Vip3, and Vip4) during the vegetative phase. Here, we purified Vip1 and Vip2 from B. thuringiensis and characterized the insecticidal effects of these protoxins. Bioassay results showed that a 1:1 mixture of Vip1Ad and Vip2Ag, purified by ion-affinity chromatography independently, exhibited insecticidal activity against Holotrichia parallela larvae, with a 50% lethal concentration value of 2.33 µg/g soil. The brush border membrane (BBM) in the midgut of H. parallela larvae was destroyed after feeding the Vip1Ad and Vip2Ag mixture. Vacuolization of the cytoplasm and slight destruction of BBM were detected with Vip2Ag alone, but not with Vip1Ad alone. Notably, Vip1Ad bound to BBM vesicles (BBMVs) strongly, whereas Vip2Ag showed weak binding; however, binding of Vip2Ag to BBMV was increased when Vip1Ad was added. Ligand blotting showed that Vip2Ag did not bind to Vip1Ad but bound to Vip1Ad-t (Vip1Ad was activated by trypsin), suggesting the activation of Vip1Ad was important for their binary toxicity. Thus, our findings suggested that Vip1Ad may facilitate the binding of Vip2Ag to BBMVs, providing a basis for studies of the insecticidal mechanisms of Vip1Ad and Vip2Ag.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias , Toxinas Bacterianas , Besouros , Inseticidas , Controle Biológico de Vetores , Animais , Larva
12.
Mol Plant Pathol ; 19(5): 1172-1183, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802023

RESUMO

T-DNA transfer from Agrobacterium to its host plant genome relies on multiple interactions between plant proteins and bacterial effectors. One such plant protein is the Arabidopsis VirE2 interacting protein (AtVIP1), a transcription factor that binds Agrobacterium tumefaciens C58 VirE2, potentially acting as an adaptor between VirE2 and several other host factors. It remains unknown, however, whether the same VirE2 protein has evolved to interact with multiple VIP1 homologues in the same host, and whether VirE2 homologues encoded by different bacterial strains/species recognize AtVIP1 or its homologues. Here, we addressed these questions by systematic analysis (using the yeast two-hybrid and co-immunoprecipitation approaches) of interactions between VirE2 proteins encoded by four major representatives of known bacterial species/strains with functional T-DNA transfer machineries and eight VIP1 homologues from Arabidopsis and tobacco. We also analysed the determinants of the VirE2 sequence involved in these interactions. These experiments showed that the VirE2 interaction is degenerate: the same VirE2 protein has evolved to interact with multiple VIP1 homologues in the same host, and different and mutually independent VirE2 domains are involved in interactions with different VIP1 homologues. Furthermore, the VIP1 functionality related to the interaction with VirE2 is independent of its function as a transcriptional regulator. These observations suggest that the ability of VirE2 to interact with VIP1 homologues is deeply ingrained into the process of Agrobacterium infection. Indeed, mutations that abolished VirE2 interaction with AtVIP1 produced no statistically significant effects on interactions with VIP1 homologues or on the efficiency of genetic transformation.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Filogenia , Ligação Proteica , Elementos de Resposta , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo
13.
Front Plant Sci ; 9: 749, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946325

RESUMO

The bZIP transcription factor VIP1 interacts with the Agrobacterium virulence protein VirE2, but the role of VIP1 in Agrobacterium-mediated transformation remains controversial. Previously tested vip1-1 mutant plants produce a truncated protein containing the crucial bZIP DNA-binding domain. We generated the CRISPR/Cas mutant vip1-2 that lacks this domain. The transformation susceptibility of vip1-2 and wild-type plants is similar. Because of potential functional redundancy among VIP1 homologs, we tested transgenic lines expressing VIP1 fused to a SRDX repression domain. All VIP1-SRDX transgenic lines showed wild-type levels of transformation, indicating that neither VIP1 nor its homologs are required for Agrobacterium-mediated transformation. Because VIP1 is involved in innate immune response signaling, we tested the susceptibility of vip1 mutant and VIP1-SRDX plants to Pseudomonas syringae and Botrytis cinerea. vip1 mutant and VIP1-SRDX plants show increased susceptibility to B. cinerea but not to P. syringae infection, suggesting a role for VIP1 in B. cinerea, but not in P. syringae, defense signaling. B. cinerea susceptibility is dependent on abscisic acid (ABA) which is also important for abiotic stress responses. The germination of vip1 mutant and VIP1-SRDX seeds is sensitive to exogenous ABA, suggesting a role for VIP1 in response to ABA. vip1 mutant and VIP1-SRDX plants show increased tolerance to growth in salt, indicating a role for VIP1 in response to salt stress.

14.
Int J Biol Macromol ; 91: 510-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27264647

RESUMO

The Bacillus thuringiensis S1/4 strain was previously found to harbour vip1S, vip2S, and vip3 genes. Its plasmid curing led to the obtaining of four partially cured strains S1/4-2, S1/4-3, S1/4-7, and S1/4-9 (vip2S-vip1S (-), vip3 (+)), one strain S1/4-4 (vip2S-vip1S (+), vip3 (-)), and S1/4-0 strain lacking the three genes. Using these derivative strains as templates, PCR amplification and southern blot assay revealed that vip2S-vip1S operon and vip3 gene were localized on two different large plasmids. Bioinformatics studies showed that vip2S (1.356 kb), and vip1S (2.637 kb) genes are encoding by an operon consisting of two ORFs separated by an intergenic spacer of 4bp. Using the InterPro tool, Vip2S was found to belong to the family of Binary exotoxin A and Vip1S to bacterial exotoxin B. In silico modeling indicated that the 3D structure of Vip2S is a mixed α/ß protein and proposed 3D-model of Vip1S. Bioassays of the partially cured strains supernatants showed a weak toxicity of S1/4-4 to the lepidopteran Spodoptera littoralis comparing to a better effect of S1/4-2, S1/4-3, S1/4-7, and S1/4-9, suggesting its eventual contribution to the toxicity. Nevertheless, the concentrated supernatant of S1/4-4 strain was not toxic against the coleopteran Tribolium castaneum.


Assuntos
Bacillus thuringiensis , Inseticidas/química , Animais , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Simulação por Computador , Domínios Proteicos , Spodoptera , Tribolium
15.
Protein Eng Des Sel ; 27(11): 439-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25212215

RESUMO

Agrobacterium is a pathogen that genetically transforms plants. The bacterial VirE2 protein envelopes the T-DNA of Agrobacterium and protects it from degradation. Within the transfected cells, VirE2 interacts with the plant VIP1 leading to nuclear transport of the T-DNA complex. Active VirE2 is an oligomer with a tendency to aggregate, hampering its studies at the molecular level. In addition, no structural or quantitative information is available regarding VIP1 or its interactions. The lack of information is mainly because both VIP1 and VirE2 are difficult to express and purify. Here, we present the development of efficient protocols that resulted in pure and stable His-tagged VIP1 and VirE2. Circular dichroism spectroscopy and computational predictions indicated that VIP1 is mostly intrinsically disordered. This may explain the variety of protein-protein interactions it participates in. Size exclusion chromatography revealed that VirE2 exists in a two-state equilibrium between a monomer and an oligomeric form. Using the purified proteins, we performed peptide array screening and revealed the binding sites on both proteins. VirE2 binds the disordered regions of VIP1, while the site in VirE2 that binds VIP1 is different from the VirE2 DNA-binding site. Peptides derived from these sites may be used as lead compounds that block Agrobacterium infection of plants.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Sítios de Ligação , DNA de Plantas/química , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Canais Iônicos/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Front Plant Sci ; 4: 519, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24391655

RESUMO

The value of Agrobacterium tumefaciens for plant molecular biologists cannot be appreciated enough. This soil-borne pathogen has the unique capability to transfer DNA (T-DNA) into plant systems. Gene transfer involves both bacterial and host factors, and it is the orchestration of these factors that determines the success of transformation. Some plant species readily accept integration of foreign DNA, while others are recalcitrant. The timing and intensity of the microbially activated host defense repertoire sets the switch to "yes" or "no." This repertoire is comprised of the specific induction of mitogen-activated protein kinases (MAPKs), defense gene expression, production of reactive oxygen species (ROS) and hormonal adjustments. Agrobacterium tumefaciens abuses components of the host immunity system it mimics plant protein functions and manipulates hormone levels to bypass or override plant defenses. A better understanding of the ongoing molecular battle between agrobacteria and attacked hosts paves the way toward developing transformation protocols for recalcitrant plant species. This review highlights recent findings in agrobacterial transformation research conducted in diverse plant species. Efficiency-limiting factors, both of plant and bacterial origin, are summarized and discussed in a thought-provoking manner.

17.
Commun Integr Biol ; 2(1): 42-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19513263

RESUMO

Agrobacterium genetically transforms its hosts by transferring a segment of DNA (T-DNA) into the host cell and integrating it into the host genome. Integration requires a close interaction between T-DNA, which is packaged into a nucleoprotein complex (T-complex) by bacterial virulence (Vir) proteins, and the host chromatin. This interaction is facilitated by the host protein VIP 1, which binds both to the major protein component of the T-complex, VirE2, and to the core histones. Recently, VIP1 has been demonstrated to mediate the interaction between plant nucleosomes and VirE2-DNA complexes (i.e., synthetic T-complex-like structures) in vitro. Here, we discuss major implications of these observations-such as the possible role of core histone modifications, proteasomal uncoating of the T-complex mediated by the bacterial F-box protein VirF, and the need for changes in chromatin structure to render it accessible to the T-DNA integration-for the process of chromatin targeting of foreign DNA and its integration into the eukaryotic genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA