Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Int J Legal Med ; 138(5): 1925-1938, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38844617

RESUMO

The ability to analyze blunt-force trauma is crucial for deciphering valuable clues concerning mechanisms of injury and as evidence for medico-legal investigations. The use of alternate light sources (ALS) has been studied over the past decade, and is proposed to outperform conventional white light (CWL) during bruise assessments. In response to the growing interest of the technology worldwide, a systematic review of the literature was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) to address the ability of ALS to detect and visualize bruising. From an initial 4055 records identified, ten studies met the eligibly criteria and were selected for this review. Evaluation also included a novel framework, referred to as SPICOT, to further systematically assess both scientific evidence and risk of bias in forensic literature. Analysis reveals that narrowband wavelengths within in the infrared or ultraviolet spectral ranges do not significantly outperform CWL in visualizing or detecting bruising. However, wavelengths within the visible spectrum, particularly 415 nm combined with longpass or bandpass yellow filters, are more effective. However, the majority of selected studies only address the sensitivity of ALS, and therefore, results may only be considered valid when the location of a bruise is known. Further investigation is required to understand the specificity of ALS, in particular how the use of topical cosmetic products, previous wounds/scar-tissue, tattoos, moles and freckles may affect detection. The ethical concern regarding the interpretation of enhanced visualized trauma should also be considered in prospect discussions prior to implementing ALS into routine practice. Nevertheless, this review finds that narrowband ALS within the visible spectrum demonstrates potential for improved injury documentation, outperforming CWL in the detection and visualization of bruising.


Assuntos
Contusões , Ferimentos não Penetrantes , Humanos , Luz , Medicina Legal/métodos
2.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474960

RESUMO

Emissions from thermal power plants have always been the central consideration for environmental protection. Existing optical sensors in thermal power plants usually measure the total mass concentration of the particulate matter (PM) by a single-wavelength laser, bearing intrinsic errors owing to the variation in particle size distribution (PSD). However, the total mass concentration alone cannot characterize all the harmful effects of the air pollution caused by the power plant. Therefore, it is necessary to measure the mass concentration and PSD simultaneously, based on which we can obtain multi-particle-size channel mass concentration. To achieve this, we designed an optical sensor based on the three-wavelength technique and tested its performance in a practical environment. Results showed that the prototype cannot only correctly measure the mass concentration of the emitted PM but also determine the mean diameter and standard deviation of the PSDs. Hence, the mass concentrations of PM10, PM2.5, and PM1 are calculated, and the air pollutants emission by a thermal power plant can be estimated comprehensively.

3.
Exp Appl Acarol ; 93(3): 627-644, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39177713

RESUMO

Two-spotted spider mite (Tetranychus urticae) is an important greenhouse pest. In cucumbers, heavy infestations lead to the complete loss of leaf assimilation surface, resulting in plant death. Symptoms caused by spider mite feeding alter the light reflection of leaves and could therefore be optically detected. Machine learning methods have already been employed to analyze spectral information in order to differentiate between healthy and spider mite-infested leaves of crops such as tomatoes or cotton. In this study, machine learning methods were applied to cucumbers. Hyperspectral data of leaves were recorded under controlled conditions. Effective wavelengths were identified using three feature selection methods. Subsequently, three supervised machine learning algorithms were used to classify healthy and spider mite-infested leaves. All combinations of feature selection and classification methods yielded accuracy of over 80%, even when using ten or five wavelengths. These results suggest that machine learning methods are a powerful tool for image-based detection of spider mites in cucumbers. In addition, due to the limited number of wavelengths, there is also substantial potential for practical application.


Assuntos
Cucumis sativus , Aprendizado de Máquina , Folhas de Planta , Tetranychidae , Animais , Tetranychidae/fisiologia , Tetranychidae/classificação , Cucumis sativus/parasitologia , Imageamento Hiperespectral/métodos
4.
J Fluoresc ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37597134

RESUMO

Rapid identification of bacterial species in patient samples is essential for the treatment of infectious diseases and the economics of health care. In this study, we investigated an algorithm to improve the accuracy of bacterial species identification with fluorescence spectroscopy based on autofluorescence from bacteria, and excitation wavelengths suitable for identification. The diagnostic accuracy of each algorithm for ten bacterial species was verified in a machine learning classifier algorithm. The three machine learning algorithms with the highest diagnostic accuracy, extra tree (ET), logistic regression (LR), and multilayer perceptron (MLP), were used to determine the number and wavelength of excitation wavelengths suitable for the diagnosis of bacterial species. The key excitation wavelengths for the diagnosis of bacterial species were 280 nm, 300 nm, 380 nm, and 480 nm, with 280 nm being the most important. The median diagnostic accuracy was equivalent to that of 200 excitation wavelengths when two excitation wavelengths were used for ET and LR, and three excitation wavelengths for MLP. These results demonstrate that there is an optimum wavelength range of excitation wavelengths required for spectroscopic measurement of bacterial autofluorescence for bacterial species identification, and that measurement of only a few wavelengths in this range is sufficient to achieve sufficient accuracy for diagnosis of bacterial species.

5.
Sensors (Basel) ; 23(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430550

RESUMO

To produce high-quality crops, not only excellent cultivation techniques but also accurate nutrient management techniques are important. In recent years, many nondestructive tools such as the chlorophyll meter "SPAD" and the leaf nitrogen meter "Agri Expert CCN" have been developed for measuring crop leaf chlorophyll and nitrogen contents. However, such devices are still relatively expensive for individual farmers. In this research, we developed a low-cost and small-size camera with built-in LEDs of several specific wavelengths for evaluating the nutrient status of fruit trees. A total of 2 camera prototypes were developed by integrating 3 independent LEDs of specific wavelengths (Camera 1: 950 nm, 660 nm and 560 nm; Camera 2: 950 nm, 660 nm and 727 nm) into the device. In addition, a simple software tool was developed to enable the camera to capture leaf images under different LED lighting conditions. Using the prototypes, we acquired images of apple leaves and investigated the possibility of using the images to estimate the leaf nutrient status indicator SPAD (chlorophyll) and CCN (nitrogen) values obtained using the above-mentioned standard tools. The results indicate that the Camera 1 prototype is superior to the Camera 2 prototype and can potentially be applied to the evaluation of nutrient status in apple leaves.


Assuntos
Fabaceae , Frutas , Iluminação , Árvores , Clorofila , Nitrogênio
6.
J Environ Manage ; 337: 117750, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36934501

RESUMO

High value-added products recovery from algal-bacterial granular sludge (ABGS) has received great attention recently. This study aimed to explore the role of different light wavelengths in regulating granule formation, protein and lipid production, and microbial functions. Bacterial granular sludge (BGS, R0) was most conducive to forming ABGS under blue (R2) light with the highest chlorophyll a (10.2 mg/g-VSS) and diameter (1800 µm), followed by red (R1) and white (R3) lights. R0-R3 acquired high protein contents (>164.8 mg/g-VSS) with essential amino acids above 44.4%, all of which were suitable for recycling, but R2 was the best. Also, blue light significantly increased total lipid production, while red light promoted the accumulation of some unsaturated fatty acids (C18:2 and C18:3). Some unique algae and dominant bacteria (e.g., Stigeoclonium, Chlamydomonas, and Flavobacteria) enrichment and some key functions (e.g., amino acid, fatty acid, and lipid biosynthesis) up-regulation in R2 might help to improve proteins and lipids quality. Combined, this study provides valuable guidance for protein and lipid recovery from ABGS.


Assuntos
Reatores Biológicos , Esgotos , Clorofila A/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Ácidos Graxos/metabolismo
7.
Nano Lett ; 21(14): 6237-6244, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34270271

RESUMO

Spin waves can transfer information free of electron transport and are promising for wave-based computing technologies with low-power consumption as a solution to severe energy losses in modern electronics. Logic circuits based on the spin-wave interference have been proposed for more than a decade, while it has yet been realized at the nanoscale. Here, we demonstrate the interference of spin waves with wavelengths down to 50 nm in a low-damping magnetic insulator. The constructive and destructive interference of spin waves is detected in the frequency domain using propagating spin-wave spectroscopy, which is further confirmed by the Brillouin light scattering. The interference pattern is found to be highly sensitive to the distance between two magnetic nanowires acting as spin-wave emitters. By controlling the magnetic configurations, one can switch the spin-wave interferometer on and off. Our demonstrations are thus key to the realization of spin-wave computing system based on nonvolatile nanomagnets.

8.
Nano Lett ; 21(24): 10501-10506, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894699

RESUMO

Entangled photon generation at 1550 nm in the telecom C-band is of critical importance as it enables the realization of quantum communication protocols over long distance using deployed telecommunication infrastructure. InAs epitaxial quantum dots have recently enabled on-demand generation of entangled photons in this wavelength range. However, time-dependent state evolution, caused by the fine-structure splitting, currently limits the fidelity to a specific entangled state. Here, we show fine-structure suppression for InAs quantum dots using micromachined piezoelectric actuators and demonstrate generation of highly entangled photons at 1550 nm. At the lowest fine-structure setting, we obtain a maximum fidelity of 90.0 ± 2.7% (concurrence of 87.5 ± 3.1%). The concurrence remains high also for moderate (weak) temporal filtering, with values close to 80% (50%), corresponding to 30% (80%) of collected photons, respectively. The presented fine-structure control opens the way for exploiting entangled photons from quantum dots in fiber-based quantum communication protocols.

9.
Molecules ; 27(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557781

RESUMO

(1) In order to accurately judge the new maturity of wheat and better serve the collection, storage, processing and utilization of wheat, it is urgent to explore a fast, convenient and non-destructively technology. (2) Methods: Catalase activity (CAT) is an important index to evaluate the ageing of wheat. In this study, hyperspectral imaging technology (850-1700 nm) combined with a BP neural network (BPNN) and a support vector machine (SVM) were used to establish a quantitative prediction model for the CAT of wheat with the classification of the ageing of wheat based on different storage durations. (3) Results: The results showed that the model of 1ST-SVM based on the full-band spectral data had the best prediction performance (R2 = 0.9689). The SPA extracted eleven characteristic bands as the optimal wavelengths, and the established model of MSC-SPA-SVM showed the best prediction result with R2 = 0.9664. (4) Conclusions: The model of MSC-SPA-SVM was used to visualize the CAT distribution of wheat ageing. In conclusion, hyperspectral imaging technology can be used to determine the CAT content and evaluate wheat ageing, rapidly and non-destructively.


Assuntos
Imageamento Hiperespectral , Triticum , Catalase , Máquina de Vetores de Suporte , Redes Neurais de Computação , Algoritmos , Análise dos Mínimos Quadrados
10.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696141

RESUMO

This paper describes a computational 3-D imaging system based on diffraction grating imaging with laser sources of multiple wavelengths. It was proven that a diffraction grating imaging system works well as a 3-D imaging system in our previous studies. The diffraction grating imaging system has advantages such as no spherical aberration and a low-cost system, compared with the well-known 3-D imaging systems based on a lens array or a camera array. However, a diffraction grating imaging system still suffers from noises, artifacts, and blurring due to the diffraction nature and illumination of single wavelength lasers. In this paper, we propose a diffraction grating imaging system with multiple wavelengths to overcome these problems. The proposed imaging system can produce multiple volumes through multiple laser illuminators with different wavelengths. Integration of these volumes can reduce noises, artifacts, and blurring in grating imaging since the original signals of 3-D objects inside these volumes are integrated by our computational reconstruction method. To apply the multiple wavelength system to a diffraction grating imaging system efficiently, we analyze the effects on the system parameters such as spatial periods and parallax angles for different wavelengths. A computational 3-D imaging system based on the analysis is proposed to enhance the image quality in diffraction grating imaging. Optical experiments with three-wavelength lasers are conducted to evaluate the proposed system. The results indicate that our diffraction grating imaging system is superior to the existing method.


Assuntos
Imageamento Tridimensional , Lentes , Artefatos , Lasers
11.
Nano Lett ; 20(12): 8768-8772, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33216555

RESUMO

Photonic crystal (PhC) cavities are promising candidates for Si photonics integrated circuits due to their ultrahigh quality (Q)-factors and small mode volumes. Here, we demonstrate a novel concept of a one-dimensional hybrid III-V/Si PhC cavity which exploits a combination of standard silicon-on-insulator technology and active III-V materials. Using template-assisted selective epitaxy, the central part of a Si PhC lattice is locally replaced with III-V gain material. The III-V material is placed to overlap with the maximum of the cavity mode field profile, while keeping the major part of the PhC in Si. The selective epitaxy process enables growth parallel to the substrate, and hence in-plane integration with Si, and in-situ in-plane homo- and heterojunctions. The fabricated hybrid III-V/Si PhCs show emission over the entire telecommunication band from 1.2 to 1.6 µm at room temperature validating the device concept and its potential towards fully integrated light sources on silicon.

12.
Sensors (Basel) ; 20(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212798

RESUMO

Photoplethysmography (PPG), a noninvasive optical sensing technology, has been widely used to measure various physiological indices. Over-the-counter PPG devices are typically composed of a single-wavelength light source, namely, single-wavelength PPG (SW-PPG). It is known that signals of SW-PPG are easily contaminated or distorted by measurement conditions such as motion artifacts, wearing pressure, and skin type. Since lights of different wavelengths can penetrate skin tissues at different depths, how to effectively construct a multiwavelength PPG (MW-PPG) device or even an all-wavelength PPG (AW-PPG) device has attracted great attention. There is also a very interesting question, that is, what could be the potential benefits of using MW-PPG or AW-PPG devices? This paper demonstrates the construction of an AW-PPG portable device and conducts a preliminary evaluation. The presented device consists of four light-emitting diodes, a chip-scale spectrometer, a microcontroller, a Bluetooth Low Energy transceiver, and a phone app. The maximum ratio combining algorithm (MRC) is used to combine the PPG signals derived from different wavelengths to achieve a better signal-to-noise ratio (S/N). The PPG signals from the developed MRC-AW-PPG device versus those from the conventional SW-PPG device are compared in terms of different hydrostatic pressure conditions. It has been observed that the MRC-AW-PPG device can provide more stable PPG signals than that of a conventional PPG device. The results shine a light on the potential benefits of using multiple wavelengths for the next generation of noninvasive PPG sensing.

13.
J Environ Manage ; 260: 110134, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090830

RESUMO

Attached-growth photobioreactors (AG-PBRs) employing low-cost attached-growth media were applied to treat septic tank effluent which contained abundant organic and nutrient matters as well as pathogenic microorganisms. This study investigated effects of blue and red LED lights on organic, nutrient and pathogenic removals, biomass productivity and compositions of microbial community in the AG-PBR system. The experimental results showed the blue AG-PBR to be more effective in removing chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH3-N) and generating biomass productivity than those of the red AG-PBR (P < 0.05). Mass balance analysis indicated that the TN and total phosphorus (TP) were removed mainly by assimilation into the biomass. The TN removal rates via nitrification and denitrification processes in the blue AG-PBR were found to be higher than that of the red AG-PBR, corresponding to the observed results of bacterial biomass and abundances of nitrifying and denitrifying bacterial species in the treatment systems. The maximal areal algal biomass productivity of 47 gDW/(m2. d) in the blue AG-PBRs was found to be higher than those of other algal attached-growth systems. Although, the red and blue AG-PBR systems could effectively treat the septic tank effluent to meet the national and international discharge standards, based on treatment efficiencies and biomass productivity, the blue AG-PBR is recommended for treatment of septic tank effluent.


Assuntos
Fósforo , Fotobiorreatores , Biomassa , Veículos Automotores , Nitrificação , Nitrogênio
14.
Fish Physiol Biochem ; 46(6): 2169-2180, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32860607

RESUMO

Rainbow trout (Oncorhynchus mykiss) farming is one of the major aquacultures in Turkey. Some conditions in fish farming can induce oxidative stress leading to the deterioration in properties such as appearance/color, texture, and flavor in fish meat. This situation may cause the consumer not to prefer edible fish. Although there are some studies on the impacts of light intensity on fish welfare, the changes in the antioxidant enzyme activities have not been elucidated. In the current study, it was intended to examine in rainbow trout how cultivating under different wavelengths affects the antioxidant enzymes and acetylcholine esterase (AChE) activity, because its activity is associated with oxidative stress, and also the determination of which light is suitable for fish welfare was aimed. Rainbow trout larvae were grown under four lights with different wavelengths: natural sunlight and incandescent long-wave (red light), medium-wave (green light), and short-wave (blue light) LED light. The experiment lasted for 64 days. Biochemical assays were carried on in the brain, gill, and liver of rainbow trout. Antioxidant enzymes and AChE activity, which play an important role in the central nervous system, were assayed. In gill tissues, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glucose 6 phosphate dehydrogenase (G6PD), glutathione reductase (GR), glutathione S-transferase (GST), and AChE activities increased under all three light wavelengths. In the liver, while activities of antioxidant enzymes and AChE decreased in red light, all of them increased in blue and green light. In the brain, GPx, GST, G6PD, and SOD activities were reduced but AChE activity did not alter under all three light sources. In conclusion, light sources with different spectral structures caused important changes in the activities of antioxidant enzymes in rainbow trout. On this basis, it may be thought that this may be a response to the changing redox status of a cell. Based on our results, blue light sources may be suggested for fish welfare in rainbow trout culture, and providing fish welfare by changing light sources can be easy and cheap in fish farming.


Assuntos
Luz , Oncorhynchus mykiss/metabolismo , Acetilcolinesterase/metabolismo , Animais , Aquicultura/métodos , Encéfalo/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Fígado/metabolismo , Oxirredutases/metabolismo
15.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315076

RESUMO

The purpose of this study was to investigate the synergistic bactericidal effect of 222-nm KrCl excilamp and 254-nm low-pressure (LP) Hg lamp simultaneous treatment against Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Typhimurium, and Listeria monocytogenes in tap water and to identify the synergistic bactericidal mechanism. Sterilized tap water inoculated with pathogens was treated individually or simultaneously with a 254-nm LP Hg lamp or 222-nm KrCl excilamp. Overall, for all pathogens, an additional reduction was found compared to the sum of the log unit reductions of the individual treatments resulting from synergy in the simultaneous treatment with both kinds of lamps. In order to identify the mechanism of this synergistic bactericidal action, the form and cause of membrane damage were analyzed. Total reactive oxygen species (ROS) and superoxide generation as well as the activity of ROS defense enzymes then were measured, and the overall mechanism was described as follows. When the 222-nm KrCl excilamp and the 254-nm LP Hg lamp were treated simultaneously, inactivation of ROS defense enzymes by the 222-nm KrCl excilamp induced additional ROS generation following exposure to 254-nm LP Hg lamp (synergistic) generation, resulting in synergistic lipid peroxidation in the cell membrane. As a result, there was a synergistic increase in cell membrane permeability leading to a synergistic bactericidal effect. This identification of the fundamental mechanism of the combined disinfection system of the 222-nm KrCl excilamp and 254-nm LP Hg lamp, which exhibited a synergistic bactericidal effect, can provide important baseline data for further related studies or industrial applications in the future.IMPORTANCE Contamination of pathogenic microorganisms in water plays an important role in inducing outbreaks of food-borne illness by causing cross-contamination in foods. Thus, proper disinfection of water before use in food production is essential to prevent outbreaks of food-borne illness. As technologies capable of selecting UV radiation wavelengths (such as UV-LEDs and excilamps) have been developed, wavelength combination treatment with UV radiation, which is widely used in water disinfection systems, is actively being studied. In this regard, we have confirmed synergistic bactericidal effects in combination with 222-nm and 254-nm wavelengths and have identified mechanisms for this. This study clearly analyzed the mechanism of synergistic bactericidal effect by wavelength combination treatment, which has not been attempted in other studies. Therefore, it is also expected that these results will play an important role as baseline data for future research on, as well as industrial applications for, the disinfection strategy of effective wavelength combinations.


Assuntos
Desinfecção/métodos , Água Potável/microbiologia , Escherichia coli O157/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Salmonella typhimurium/efeitos da radiação , Raios Ultravioleta , Cloro/química , Criptônio/química , Mercúrio/química
16.
Lasers Med Sci ; 34(1): 115-126, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30264177

RESUMO

Tissue engineering aims to take advantage of the ability of undifferentiated stem cells to differentiate into multiple cell types to repair damaged tissue. Photobiomodulation uses either lasers or light-emitting diodes to promote stem cell proliferation and differentiation. The present study aimed to investigate single and dual combinations of laser wavelengths on mesenchymal stem cells (MSCs). MSCs were derived from rabbit iliac bone marrow. One control and eight laser irradiated groups were designated as Infrared (IR, 810 nm), Red (R, 660 nm), Green (G, 532 nm), Blue (B, 485 nm), IR-R, IR-B, R-G, and B-G. Irradiation was repeated daily for 21 days and cell proliferation, osseous, or cartilaginous differentiation was then measured. RT-PCR biomarkers were SOX9, aggrecan, COL 2, and COL 10 expression for cartilage and ALP, COL 1, and osteocalcin expression for bone. Cellular proliferation was increased in all irradiated groups except G. All cartilage markers were significantly increased by IR and IR-B except COL 10 which was suppressed by IR-B combination. ALP expression was highest in R and IR groups during osseous differentiation. ALP was decreased by combinations of IR with B and with R, and also by G alone. R and B-G groups showed stimulated COL 1 expression; however, COL 1 was suppressed in IR-B, IR-R, and G groups. IR significantly increased osteocalcin expression, but in B, B-G, and G groups it was reduced. Cartilage differentiation was stimulated by IR and IR-B laser irradiation. The effects of single or combined laser irradiation were not clear-cut on osseous differentiation. Stimulatory effects on osteogenesis were seen for R and IR lasers, while G laser had inhibitory effects.


Assuntos
Osso e Ossos/citologia , Cartilagem/citologia , Diferenciação Celular/efeitos da radiação , Lasers , Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Linhagem da Célula/efeitos da radiação , Proliferação de Células/efeitos da radiação , Forma Celular/efeitos da radiação , Células Cultivadas , Condrogênese/genética , Condrogênese/efeitos da radiação , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Osteogênese/genética , Osteogênese/efeitos da radiação , Coelhos
17.
Sensors (Basel) ; 19(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454930

RESUMO

Multi-wavelength photoplethysmography (MW-PPG) sensing technology has been known to be superior to signal-wavelength photoplethysmography (SW-PPG) sensing technology. However, limited by the availability of sensing detectors, many prior studies can only use conventional bulky and pricy spectrometers as the detectors, and hence cannot bring the MW-PPG technology to daily-life applications. In this study we developed a chip-scale MW-PPG sensor using innovative on-chip spectrometers, aimed at wearable applications. Also in this paper we present signal processing methods for robustly extracting the PPG signals, in which an increase of up to 50% in the signal-to-noise ratio (S/N) was observed. Example measurements of saturation of peripheral blood oxygen (SpO2) and blood pressure were conducted.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Fotopletismografia , Humanos , Análise Espectral
18.
J Sci Food Agric ; 99(13): 5671-5679, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31150109

RESUMO

BACKGROUND: Aspergillus flavus is a major pollutant in moldy peanuts, and it has a large influence on the taste of food. The secondary metabolites of Aspergillus flavus, including aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2), are highly toxic and can expose humans to high risk. The total mold count (TMC) is an important index to determine the contamination degree and hygiene quality of peanut. RESULTS: Quantitative calibration models were established based on full-band wavelengths and characteristic wavelengths, combined with chemometric methods, to explore the feasibility of the use of near-infrared spectroscopy (NIRS) for rapid detection of the TMC in peanuts. The successive projection algorithm (SPA) and elimination of uninformative variables (UVE) algorithms were used to extract the characteristic wavelengths. In comparison, the model built by original spectrum, selected with the UVE algorithm, gave the best result, with a correlation coefficient in a prediction set (RP ) of 0.9577, a root mean square error for the prediction set (RMSEP) of 0.2336 Log CFU/g, and a residual predictive deviation (RPD) of 3.5041. CONCLUSIONS: The results showed that NIRS is a rapid, practicable method for the quantitative detection of peanut Aspergillus flavus contamination. It is a promising method for detecting moldy peanuts and increasing peanut safety. © 2019 Society of Chemical Industry.


Assuntos
Arachis/microbiologia , Aspergillus flavus/isolamento & purificação , Contaminação de Alimentos/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Algoritmos , Arachis/química , Aspergillus flavus/química , Aspergillus flavus/fisiologia
19.
J Synchrotron Radiat ; 25(Pt 3): 885-891, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714201

RESUMO

MX2 is an in-vacuum undulator-based crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range 4.8-21 keV to a focal spot of 22 × 12 µm FWHM (H × V). At 13 keV the flux at the sample is 3.4 × 1012 photons s-1. The beamline endstation allows robotic handling of cryogenic samples via an updated SSRL SAM robot. This beamline is ideal for weakly diffracting hard-to-crystallize proteins, virus particles, protein assemblies and nucleic acids as well as smaller molecules such as inorganic catalysts and organic drug molecules. The beamline is now mature and has enjoyed a full user program for the last nine years. This paper describes the beamline status, plans for its future and some recent scientific highlights.

20.
Mikrochim Acta ; 185(11): 508, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30338352

RESUMO

A dual-color fluorescence resonance energy transfer (FRET) based aptasensor is described for simultaneous determination of the mycotoxins aflatoxin M1 (AFM1) and ochratoxin A (OTA). Aptamers against AFM1 and OTA were labeled with two fluorophores with different excitation wavelengths (Cy5.5; 675 nm; and Alexa 405; 401 nm), respectively. They were used as the signalling probes. A compact dual-color evanescent wave all-fiber detection system with two lasers (635 nm; red; and 405 nm; purple) was used for the simultaneous collection of two-wavelength fluorescence signals. The hybridization of labeled aptamers with complementary sequences (Q-cDNA) labeled with a dark quencher (BHQ3 or dabcyl) causes fluorescence to be strongly reduced because of the fluorescence resonance energy transfer. In the presence of AFM1 and OTA, they bind to their respective aptamer and result in the dissociation of double stranded DNA, which induce fluorescence recovery. Under the optimum conditions, AFM1 and OTA can simultaneously and selectively be determined ranged from 1 ng·L-1 to 1 mg·L-1. The detection limits of AFM1 and OTA are 21 and 330 ng·L-1, respectively (S/N = 3). The FRET-based dual-color detection scheme was applied to the simultaneous detection of AFM1 and OTA in milk with good recovery, precision, and accuracy. Graphical abstract Aptamers against AFM1 and OTA were labeled with two fluorophores with different excitation wavelengths (Cy5.5; 675 nm; and Alexa 405; 401 nm) and then used as signalling probes. A FRET-based aptasensor is described for simultaneous determination of AFM1 and OTA using dual-color evanescent wave system with two lasers (635 nm; red; and 405 nm).


Assuntos
Aflatoxina M1/análise , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/instrumentação , Transferência Ressonante de Energia de Fluorescência/instrumentação , Fluorometria/instrumentação , Ocratoxinas/análise , Fibras Ópticas , Animais , Cor , Estudos de Viabilidade , Leite/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA