Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996487

RESUMO

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Assuntos
Genoma , Mamutes , Pele , Animais , Mamutes/genética , Genoma/genética , Feminino , Elefantes/genética , Cromatina/genética , Fósseis , DNA Antigo/análise , Camundongos , Humanos , Cromossomo X/genética
2.
Cell ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39168126

RESUMO

Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.

3.
Cell ; 185(21): 3913-3930.e19, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36198316

RESUMO

Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Caracteres Sexuais , Tauopatias/genética , Tauopatias/patologia , Tioléster Hidrolases/genética , Proteases Específicas de Ubiquitina , Proteínas tau/genética
4.
Mol Cell ; 84(10): 1870-1885.e9, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759625

RESUMO

How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.


Assuntos
Quadruplex G , Histonas , Complexo Repressor Polycomb 2 , RNA Longo não Codificante , Inativação do Cromossomo X , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Histonas/metabolismo , Histonas/genética , Células-Tronco Embrionárias Murinas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação Gênica , Dobramento de RNA , Ligação Proteica
5.
Mol Cell ; 84(8): 1442-1459.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38458200

RESUMO

In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Feminino , Camundongos , Masculino , Animais , Inativação do Cromossomo X/genética , Impressão Genômica , Células Germinativas , Epigênese Genética , Embrião de Mamíferos , RNA Longo não Codificante/genética , Cromossomo X/genética , Mamíferos/genética
6.
Mol Cell ; 77(2): 352-367.e8, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31759823

RESUMO

cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.


Assuntos
Sequência Conservada/genética , RNA Longo não Codificante/genética , Cromossomo X/genética , Animais , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Camundongos , Regiões Promotoras Genéticas/genética , RNA Antissenso/genética , Elementos Silenciadores Transcricionais/genética , Transcrição Gênica/genética
7.
Mol Cell ; 74(1): 101-117.e10, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30827740

RESUMO

During X-inactivation, Xist RNA spreads along an entire chromosome to establish silencing. However, the mechanism and functional RNA elements involved in spreading remain undefined. By performing a comprehensive endogenous Xist deletion screen, we identify Repeat B as crucial for spreading Xist and maintaining Polycomb repressive complexes 1 and 2 (PRC1/PRC2) along the inactive X (Xi). Unexpectedly, spreading of these three factors is inextricably linked. Deleting Repeat B or its direct binding partner, HNRNPK, compromises recruitment of PRC1 and PRC2. In turn, ablating PRC1 or PRC2 impairs Xist spreading. Therefore, Xist and Polycomb complexes require each other to propagate along the Xi, suggesting a positive feedback mechanism between RNA initiator and protein effectors. Perturbing Xist/Polycomb spreading causes failure of de novo Xi silencing, with partial compensatory downregulation of the active X, and also disrupts topological Xi reconfiguration. Thus, Repeat B is a multifunctional element that integrates interdependent Xist/Polycomb spreading, silencing, and changes in chromosome architecture.


Assuntos
Fibroblastos/metabolismo , Deleção de Genes , Inativação Gênica , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Linhagem Celular Transformada , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Masculino , Camundongos , Motivos de Nucleotídeos , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , RNA Longo não Codificante/metabolismo , Sequências Repetitivas de Ácido Nucleico , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Cromossomo X/metabolismo
8.
EMBO J ; 41(7): e108677, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35199868

RESUMO

Environmental factors can trigger cellular responses that propagate across mitosis or even generations. Perturbations to the epigenome could underpin such acquired changes, however, the extent and contexts in which modified chromatin states confer heritable memory in mammals is unclear. Here, we exploit a precision epigenetic editing strategy and forced Xist activity to programme de novo heterochromatin domains (epialleles) at endogenous loci and track their inheritance in a developmental model. We find that naïve pluripotent phases systematically erase ectopic domains of heterochromatin via active mechanisms, which likely acts as an intergenerational safeguard against transmission of epialleles. Upon lineage specification, however, acquired chromatin states can be probabilistically inherited under selectively favourable conditions, including propagation of p53 silencing through in vivo development. Using genome-wide CRISPR screening, we identify molecular factors that restrict heritable memory of epialleles in naïve pluripotent cells, and demonstrate that removal of chromatin factor Dppa2 unlocks the potential for epigenetic inheritance uncoupled from DNA sequence. Our study outlines a mechanistic basis for how epigenetic inheritance is constrained in mammals, and reveals genomic and developmental contexts in which heritable memory is feasible.


Assuntos
Epigênese Genética , Epigenômica , Animais , Cromatina , Genoma , Heterocromatina , Mamíferos/genética
9.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37991053

RESUMO

In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Masculino , Animais , Feminino , Inativação do Cromossomo X/genética , RNA Longo não Codificante/genética , Cromossomo X/genética , Cromatina/genética , Mecanismo Genético de Compensação de Dose , Mamíferos/genética
10.
EMBO Rep ; 25(5): 2258-2277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654121

RESUMO

X chromosome inactivation (XCI) in mammals is mediated by Xist RNA which functions in cis to silence genes on a single X chromosome in XX female cells, thereby equalising levels of X-linked gene expression relative to XY males. XCI progresses over a period of several days, with some X-linked genes silencing faster than others. The chromosomal location of a gene is an important determinant of silencing rate, but uncharacterised gene-intrinsic features also mediate resistance or susceptibility to silencing. In this study, we examine mouse embryonic stem cell lines with an inducible Xist allele (iXist-ChrX mESCs) and integrate allele-specific data of gene silencing and decreasing inactive X (Xi) chromatin accessibility over time courses of Xist induction with cellular differentiation. Our analysis reveals that motifs bound by the transcription factor YY1 are associated with persistently accessible regulatory elements, including many promoters and enhancers of slow-silencing genes. We further show that YY1 is evicted relatively slowly from target sites on Xi, and that silencing of X-linked genes is increased upon YY1 degradation. Together our results suggest that YY1 acts as a barrier to Xist-mediated silencing until the late stages of the XCI process.


Assuntos
Inativação Gênica , RNA Longo não Codificante , Inativação do Cromossomo X , Fator de Transcrição YY1 , Animais , Feminino , Masculino , Camundongos , Alelos , Diferenciação Celular/genética , Linhagem Celular , Cromatina/metabolismo , Cromatina/genética , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética
11.
Proc Natl Acad Sci U S A ; 120(4): e2213810120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669113

RESUMO

Reactivation of the inactive X chromosome is a hallmark epigenetic event during reprogramming of mouse female somatic cells to induced pluripotent stem cells (iPSCs). This involves global structural remodeling from a condensed, heterochromatic into an open, euchromatic state, thereby changing a transcriptionally inactive into an active chromosome. Despite recent advances, very little is currently known about the molecular players mediating this process and how this relates to iPSC-reprogramming in general. To gain more insight, here we perform a RNAi-based knockdown screen during iPSC-reprogramming of mouse fibroblasts. We discover factors important for X chromosome reactivation (XCR) and iPSC-reprogramming. Among those, we identify the cohesin complex member SMC1a as a key molecule with a specific function in XCR, as its knockdown greatly affects XCR without interfering with iPSC-reprogramming. Using super-resolution microscopy, we find SMC1a to be preferentially enriched on the active compared with the inactive X chromosome and that SMC1a is critical for the decompacted state of the active X. Specifically, depletion of SMC1a leads to contraction of the active X both in differentiated and in pluripotent cells, where it normally is in its most open state. In summary, we reveal cohesin as a key factor for remodeling of the X chromosome from an inactive to an active structure and that this is a critical step for XCR during iPSC-reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Feminino , Animais , Camundongos , Reprogramação Celular , Inativação do Cromossomo X/genética , Cromossomo X/genética , Estruturas Cromossômicas , Coesinas
12.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35502750

RESUMO

The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina , Comunicação , Expressão Gênica , Genoma , Camundongos , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética
13.
Proc Natl Acad Sci U S A ; 119(10): e2113374119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35239439

RESUMO

SignificanceGenes on sex chromosomes (i.e. human chX) are regulated differently in males and females to balance gene expression levels between sexes (XY vs. XX). This sex-specific regulation is called dosage compensation (DC). DC is achieved by altering the shape and compaction of sex chromosomes specifically in one sex. In this study, we use Oligopaints to examine DC in silkworms. This study visualizes this phenomenon in a species with ZW sex chromosomes, which evolved independently of XY. Our data support a long-standing model for how DC mechanisms evolved across species, and we show potential similarity between DC in silkworms and nematodes, suggesting that this type of DC may have emerged multiple independent times throughout evolution.


Assuntos
Bombyx/genética , Cromossomos de Insetos/genética , Mecanismo Genético de Compensação de Dose , Cromossomos Sexuais/genética , Animais
14.
Semin Cell Dev Biol ; 128: 15-25, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644878

RESUMO

Satellite DNAs are present on every chromosome in the cell and are typically enriched in repetitive, heterochromatic parts of the human genome. Sex chromosomes represent a unique genomic and epigenetic context. In this review, we first report what is known about satellite DNA biology on human X and Y chromosomes, including repeat content and organization, as well as satellite variation in typical euploid individuals. Then, we review sex chromosome aneuploidies that are among the most common types of aneuploidies in the general population, and are better tolerated than autosomal aneuploidies. This is demonstrated also by the fact that aging is associated with the loss of the X, and especially the Y chromosome. In addition, supernumerary sex chromosomes enable us to study general processes in a cell, such as analyzing heterochromatin dosage (i.e. additional Barr bodies and long heterochromatin arrays on Yq) and their downstream consequences. Finally, genomic and epigenetic organization and regulation of satellite DNA could influence chromosome stability and lead to aneuploidy. In this review, we argue that the complete annotation of satellite DNA on sex chromosomes in human, and especially in centromeric regions, will aid in explaining the prevalence and the consequences of sex chromosome aneuploidies.


Assuntos
DNA Satélite , Heterocromatina , Aneuploidia , Centrômero/genética , Cromossomos Humanos , DNA Satélite/genética , Heterocromatina/genética , Humanos , Cromossomos Sexuais/genética
15.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35901513

RESUMO

Genetic association studies have been very successful at elucidating the genetic background of many complex diseases/traits. However, the X-chromosome is often neglected in these studies because of technical difficulties and the fact that most tools only utilize genetic data from autosomes. In this review, we aim to provide an overview of different practical approaches that are followed to incorporate the X-chromosome in association analysis, such as Genome-Wide Association Studies and Expression Quantitative Trait Loci Analysis. In general, the choice of which test statistics is most appropriate will depend on three main criteria: (1) the underlying X-inactivation model, (2) if Hardy-Weinberg equilibrium holds and sex-specific allele frequencies are expected and (3) whether adjustment for confounding variables is required. All in all, it is recommended that a combination of different association tests should be used for the analysis of X-chromosome.


Assuntos
Cromossomos Humanos X , Estudo de Associação Genômica Ampla , Cromossomos Humanos X/genética , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Inativação do Cromossomo X
16.
Histochem Cell Biol ; 162(1-2): 41-52, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762823

RESUMO

During development and differentiation, histone modifications dynamically change locally and globally, associated with transcriptional regulation, DNA replication and repair, and chromosome condensation. The level of histone H4 Lys20 monomethylation (H4K20me1) increases during the G2 to M phases of the cell cycle and is enriched in facultative heterochromatin, such as inactive X chromosomes in cycling cells. To track the dynamic changes of H4K20me1 in living cells, we have developed a genetically encoded modification-specific intracellular antibody (mintbody) probe that specifically binds to the modification. Here, we report the generation of knock-in mice in which the coding sequence of the mCherry-tagged version of the H4K20me1-mintbody is inserted into the Rosa26 locus. The knock-in mice, which ubiquitously expressed the H4K20me1-mintbody, developed normally and were fertile, indicating that the expression of the probe does not disturb the cell growth, development, or differentiation. Various tissues isolated from the knock-in mice exhibited nuclear fluorescence without the need for fixation. The H4K20me1-mintbody was enriched in inactive X chromosomes in developing embryos and in XY bodies during spermatogenesis. The knock-in mice will be useful for the histochemical analysis of H4K20me1 in any cell types.


Assuntos
Técnicas de Introdução de Genes , Histonas , Proteínas Luminescentes , Animais , Camundongos , Histonas/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Anticorpos/metabolismo , Proteína Vermelha Fluorescente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
Curr Top Microbiol Immunol ; 441: 1-19, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37695423

RESUMO

Women have a stronger immune response and a higher frequency of most autoimmune diseases than men. While much of the difference between men and women is due to the effect of gonadal hormones, genetic differences play a major role in the difference between the immune response and disease frequencies in women and men. Here, we focus on the immune differences between the sexes that are not downstream of the gonadal hormones. These differences include the gene content of the sex chromosomes, the inactivation of chromosome X in women, the consequences of non-random X inactivation and escape from inactivation, and the states that are uniquely met by the immune system of women-pregnancy, birth, and breast feeding. While these female-specific states are temporary and involve gonadal hormonal changes, they may leave a long-lasting footprint on the health of women, for example, by fetal cells that remain in the mother's body for decades. We also briefly discuss the immune phenotype of congenital sex chromosomal aberrations and experimental models that enable hormonal and the non-hormonal effects of the sex chromosomes to be disentangled. The increasing human life expectancy lengthens the period during which gonadal hormones levels are reduced in both sexes. A better understanding of the non-hormonal effects of sex chromosomes thus becomes more important for improving the life quality during that period.


Assuntos
Doenças Autoimunes , Caracteres Sexuais , Gravidez , Feminino , Humanos , Masculino , Doenças Autoimunes/genética , Fenótipo , Qualidade de Vida
18.
Bioessays ; 44(10): e2200105, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028473

RESUMO

The spatial organization of genomes is becoming increasingly understood. In mammals, where it is most investigated, this organization ties in with transcription, so an important research objective is to understand whether gene activity is a cause or a consequence of genome folding in space. In this regard, the phenomena of X-chromosome inactivation and reactivation open a unique window of investigation because of the singularities of the inactive X chromosome. Here we focus on the cause-consequence nexus between genome conformation and transcription and explain how recent results about the structural changes associated with inactivation and reactivation of the X chromosome shed light on this problem.


Assuntos
Inativação do Cromossomo X , Cromossomo X , Animais , Genoma/genética , Mamíferos/genética , Inativação do Cromossomo X/genética
19.
Endocr J ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38987196

RESUMO

The mean height is taller in males than in females, except for early teens. In this regard, previous studies have revealed that (1) distribution of the mean adult heights in subjects with disorders accompanied by discordance between sex chromosome complement and bioactive sex steroids and in control subjects (the British height standards) indicates that, of the ~12.5 cm of sex difference in the mean adult height, ~9 cm is accounted for by the difference in the sex chromosome complement and the remaining ~3.5 cm is explained by the dimorphism in sex steroids (primarily due to the growth-promoting effect of gonadal androgens); (2) according to the infancy-childhood-puberty growth model, the sex difference in the childhood growth function produces height differences of ~1 cm in childhood and 8-10 cm at 18-20 years of age, whereas the sex difference in the pubertal growth function yields height difference of ~4.5 cm at 18-20 years of age; and (3) SHOX expression and methylation analyses using knee cartilage tissues and cultured chondrocytes have shown lower SHOX expression levels in female samples than in male samples and methylation patterns consistent with partial spreading of X-inactivation affecting SHOX in female samples. These findings suggest that small but persistent sex difference in SHOX expression dosage leads to the variation in the sex steroid independent childhood growth function, thereby yielding the sex difference in height which remains small in childhood but becomes obvious in adulthood.

20.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161282

RESUMO

Mammalian cells equalize X-linked dosages between the male (XY) and female (XX) sexes by silencing one X chromosome in the female sex. This process, known as "X chromosome inactivation" (XCI), requires a master switch within the X inactivation center (Xic). The Xic spans several hundred kilobases in the mouse and includes a number of regulatory noncoding genes that produce functional transcripts. Over three decades, transgenic and deletional analyses have demonstrated both the necessity and sufficiency of the Xic to induce XCI, including the steps of X chromosome counting, choice, and initiation of whole-chromosome silencing. One recent study, however, reported that deleting the noncoding sequences of the Xic surprisingly had no effect for XCI and attributed a sufficiency to drive counting to the coding gene, Rnf12/Rlim Here, we revisit the question by creating independent Xic deletion cell lines. Multiple independent clones carrying heterozygous deletions of the Xic display an inability to up-regulate Xist expression, consistent with a counting defect. This defect is rescued by a second site mutation in Tsix occurring in trans, bypassing the defect in counting. These findings reaffirm the essential nature of noncoding Xic elements for the initiation of XCI.


Assuntos
Deleção de Sequência , Inativação do Cromossomo X/genética , Alelos , Animais , Morte Celular , Linhagem Celular , Feminino , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA