Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Appl Environ Microbiol ; : e0101024, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140740

RESUMO

The ability to genetically manipulate bacteria is a staple of modern molecular microbiology. Since the 2000s, marker-less mutants of Streptococcus pneumoniae (Spn) have been made by allelic exchange predominantly using the kanR-rpsL cassette known as "Janus." The conventional Janus protocol involves two transformation steps using multiple PCR-assembled products containing the Janus cassette and the target gene's flanking DNA. We present an innovative strategy to achieve marker-less allelic replacement through a single transformation step. Our strategy involves integrating an additional copy of the target's downstream region before the Janus cassette, leading to a modified genetic arrangement. This single modification reduced the number of required PCR fragments from five to four, lowered the number of assembly reactions from two to one, and simplified the transformation process to a single step. To validate the efficacy of our approach, we implemented this strategy to delete in Spn serotype 4 strain TIGR4 the virulence gene pspA, the entire capsular polysaccharide synthesis locus cps4, and to introduce a single-nucleotide replacement into the chromosome. Notably, beyond streamlining the procedure, our method markedly reduced false positives typically encountered during negative selection with streptomycin when employing the traditional Janus protocol. Furthermore, and as consequence of reducing the amount of exogenous DNA required for construct synthesis, we show that our new method is amendable to the use of commercially available synthetic DNA for construct creation, further reducing the work needed to obtain a mutant. Our streamlined strategy, termed easyJanus, substantially expedites the genetic manipulation of Spn facilitating future research endeavors. IMPORTANCE: We introduce a new strategy aimed at streamlining the process for marker-less allelic replacement in Streptococcus pneumoniae, a Gram-positive bacterium and leading cause of pneumonia, meningitis, and ear infections. Our approach involves a modified genetic arrangement of the Janus cassette to facilitate self-excision during the segregation step. Since this new method reduces the amount of exogenous DNA required, it is highly amendable to the use of synthetic DNA for construction of the mutagenic construct. Our streamlined strategy, called easyJanus, offers significant time and cost savings while concurrently enhancing the efficiency of obtaining marker-less allelic replacement in S. pneumoniae.

2.
BMC Microbiol ; 23(1): 137, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202723

RESUMO

BACKGROUND: Acinetobacter baumannii is an opportunistic human pathogen that causes a variety of infections in immunosuppressed individuals and patients in intensive care units. The success of this pathogen in nosocomial settings can be directly attributed to its persistent nature and its ability to rapidly acquire multidrug resistance. It is now considered to be one of the top priority pathogens for development of novel therapeutic approaches. Several high-throughput techniques have been utilised to identify the genetic determinants contributing to the success of A. baumannii as a global pathogen. However, targeted gene-function studies remain challenging due to the lack of appropriate genetic tools. RESULTS: Here, we have constructed a series of all-synthetic allelic exchange vectors - pALFI1, pALFI2 and pALFI3 - with suitable selection markers for targeted genetic studies in highly drug resistant A. baumannii isolates. The vectors follow the Standard European Vector Architecture (SEVA) framework for easy replacement of components. This method allows for rapid plasmid construction with the mutant allele, efficient conjugational transfer using a diaminopimelic acid-dependent Escherichia coli donor strain, efficient positive selection using the suitable selection markers and finally, sucrose-dependent counter-selection to obtain double-crossovers. CONCLUSIONS: We have used this method to create scar-less deletion mutants in three different strains of A. baumannii, which resulted in up to 75% deletion frequency of the targeted gene. We believe this method can be effectively used to perform genetic manipulation studies in multidrug resistant Gram-negative bacterial strains.


Assuntos
Acinetobacter baumannii , Antibacterianos , Humanos , Antibacterianos/farmacologia , Alelos , Plasmídeos/genética , Farmacorresistência Bacteriana Múltipla/genética , Mutagênese , Testes de Sensibilidade Microbiana
3.
Microbiology (Reading) ; 165(5): 572-584, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30942689

RESUMO

The gold standard method for the creation of gene deletions in Staphylococcus aureus is homologous recombination using allelic exchange plasmids with a temperature-sensitive origin of replication. A knockout vector that contains regions of homology is first integrated into the chromosome of S. aureus by a single crossover event selected for at high temperatures (non-permissive for plasmid replication) and antibiotic selection. Next, the second crossover event is encouraged by growth without antibiotic selection at low temperature, leading at a certain frequency to the excision of the plasmid and the deletion of the gene of interest. To detect or encourage plasmid loss, either a beta-galactosidase screening method or, more typically, a counterselection step is used. We present here the adaptation of the counter-selectable marker pheS*, coding for a mutated subunit of the phenylalanine tRNA synthetase, for use in S. aureus. The PheS* protein variant allows for the incorporation of the toxic phenylalanine amino acid analogue para-chlorophenylalanine (PCPA) into proteins and the addition of 20-40 mM PCPA to rich media leads to drastic growth reduction for S. aureus and supplementing chemically defined medium with 2.5-5 mM PCPA leads to complete growth inhibition. Using the new allelic exchange plasmid pIMAY*, we delete the magnesium transporter gene mgtE in S. aureus USA300 LAC* (SAUSA300_0910/SAUSA300_RS04895) and RN4220 (SAOUHSC_00945) and demonstrate that cobalt toxicity in S. aureus is mainly mediated by the presence of MgtE. This new plasmid will aid the efficient and easy creation of gene knockouts in S. aureus.


Assuntos
Proteínas de Bactérias/genética , Engenharia Genética , Fenilalanina-tRNA Ligase/genética , Staphylococcus aureus/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Técnicas de Inativação de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Genoma Bacteriano , Humanos , Fenilalanina-tRNA Ligase/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo
4.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478235

RESUMO

Clostridium difficile is an important nosocomial pathogen associated with potentially fatal disease induced by the use of antibiotics. Genetic characterization of such clinically important bacteria is often hampered by lack of availability of suitable tools. Here, we describe the use of I-SceI to induce DNA double-strand breaks, which increase the frequency of allelic exchange and enable the generation of markerless deletions in C. difficile The usefulness of the system is illustrated by the deletion of genes encoding putative AddAB homologues. The ΔaddAB mutants are sensitive to ultraviolet light and the antibiotic metronidazole, indicating a role in homologous recombination and the repair of DNA breaks. Despite the impairment in recombination, the mutants are still proficient for induction of the SOS response. In addition, deletion of the fliC gene, and subsequent complementation, reveals the importance of potential regulatory elements required for expression of a downstream gene encoding the flagellin glycosyltransferase.IMPORTANCE Most sequenced bacterial genomes contain genes encoding proteins of unknown or hypothetical function. To identify a phenotype for mutations in such genes, deletion is the preferred method for mutagenesis because it reduces the likelihood of polar effects, although it does not eliminate the possibility. Allelic exchange to produce deletions is dependent on the length of homologous regions used to generate merodiploids. Shorter regions of homology resolve at lower frequencies. The work presented here demonstrates the utility of inducing DNA double-strand breaks to increase the frequency of merodiploid resolution in Clostridium difficile Using this approach, we reveal the roles of two genes, encoding homologues of AddAB, in survival following DNA damage. The method is readily applicable to the production of deletions in C. difficile and expands the toolbox available for genetic analysis of this important anaerobic pathogen.


Assuntos
Clostridioides difficile/genética , Deleção de Genes , Técnicas Genéticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Infecção Hospitalar/microbiologia , Quebras de DNA de Cadeia Dupla , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Recombinação Homóloga , Humanos , Mutagênese , Mutação
5.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201277

RESUMO

Despite the advent of new techniques for genetic engineering of bacteria, allelic exchange through homologous recombination remains an important tool for genetic analysis. Currently, sacB-based vector systems are often used for allelic exchange, but counterselection escape, which prevents isolation of cells with the desired mutation, occasionally limits their utility. To circumvent this, we engineered a series of "pTOX" allelic-exchange vectors. Each plasmid encodes one of a set of inducible toxins, chosen for their potential utility in a wide range of medically important proteobacteria. A codon-optimized rhaS transcriptional activator with a strong synthetic ribosome-binding site enables tight toxin induction even in organisms lacking an endogenous rhamnose regulon. Expression of the gene encoding blue AmilCP or magenta TsPurple nonfluorescent chromoprotein facilitates monitoring of successful single- and double-crossover events using these vectors. The versatility of these vectors was demonstrated by deleting genes in Serratia marcescens, Escherichia coli O157:H7, Enterobacter cloacae, and Shigella flexneri Finally, pTOX was used to characterize the impact of disruption of all combinations of the 3 paralogous S. marcescens peptidoglycan amidohydrolases on chromosomal ampC ß-lactamase activity and the corresponding ß-lactam antibiotic resistance. Mutation of multiple amidohydrolases was necessary for high-level ampC derepression and ß-lactam resistance. These data suggest why ß-lactam resistance may emerge during treatment less frequently in S. marcescens than in other AmpC-producing pathogens, like E. cloacae Collectively, our findings suggest that the pTOX vectors should be broadly useful for genetic engineering of Gram-negative bacteria.IMPORTANCE Targeted modification of bacterial genomes is critical for genetic analysis of microorganisms. Allelic exchange is a technique that relies on homologous recombination to replace native loci with engineered sequences. However, current allelic-exchange vectors often enable only weak selection for successful homologous recombination. We developed a suite of new allelic-exchange vectors, pTOX, which were validated in several medically important proteobacteria. They encode visible nonfluorescent chromoproteins that enable easy identification of colonies bearing integrated vectors and permit stringent selection for the second step of homologous recombination. We demonstrate the utility of these vectors by using them to investigate the effect of inactivation of Serratia marcescens peptidoglycan amidohydrolases on ß-lactam antibiotic resistance.


Assuntos
Vetores Genéticos/genética , Genoma Bacteriano , Proteobactérias/genética , Alelos , Antibacterianos/farmacologia , Vetores Genéticos/metabolismo , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Plasmídeos/metabolismo , Proteobactérias/efeitos dos fármacos , Proteobactérias/metabolismo , beta-Lactamas/farmacologia
6.
Emerg Infect Dis ; 24(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29553922

RESUMO

The revelation in May 2015 of the shipment of γ irradiation-inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.


Assuntos
Antraz/microbiologia , Bacillus anthracis/fisiologia , Bacillus anthracis/efeitos da radiação , Radiação , Esporos Bacterianos/efeitos da radiação , Animais , Bacillus anthracis/virologia , Toxinas Bacterianas/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mutagênese Insercional , Plasmídeos/genética , Recombinação Genética , Reprodutibilidade dos Testes , Virulência , Sequenciamento Completo do Genoma
7.
Microbiology (Reading) ; 163(10): 1399-1408, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28933689

RESUMO

Mycobacterium abscessus is a fast-growing environmental organism and an important emerging pathogen. It is highly resistant to many antibiotics and undergoes a smooth to rough colony morphology change that appears to be important for pathogenesis. Smooth environmental strains have a glycopeptidolipid (GPL) on the surface, while certain types of clinical strains are often rough and lack this GPL, due to mutations in biosynthetic genes or the mmpL4b transporter gene. We report here the development and evaluation of an allelic exchange system for unmarked alleles in M. abscessus ATCC19977, using a suicide vector bearing the E. coli galK gene and 2-deoxygalactose counterselection. We describe here two variant galK suicide vectors, and demonstrate their utility in constructing a variety of mutants with deletion alleles of the mmpL4b GPL transporter gene, the mbtH GPL biosynthesis gene, the known ß-lactamase gene MAB_2875 and a putative ß-lactamase gene, MAB_2833. We also show that a novel allele of the E. coli aacC4 gene, conferring apramycin resistance (aacC41), can be used as a selectable marker in M. abscessus ATCC19977 at single copy.

8.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28039138

RESUMO

Construction of Listeria monocytogenes mutants by allelic exchange has been laborious and time-consuming due to lack of proficient selection markers for the final recombination event, that is, a marker conveying substance sensitivity to the bacteria bearing it, enabling the exclusion of merodiploids and selection for plasmid loss. In order to address this issue, we engineered a counterselection marker based on a mutated phenylalanyl-tRNA synthetase gene (pheS*). This mutation renders the phenylalanine-binding site of the enzyme more promiscuous and allows the binding of the toxic p-chloro-phenylalanine analog (p-Cl-phe) as a substrate. When pheS* is introduced into L. monocytogenes and highly expressed under control of a constitutively active promoter, the bacteria become sensitive to p-Cl-phe supplemented in the medium. This enabled us to utilize pheS* as a negative selection marker and generate a novel, efficient suicide vector for allelic exchange in L. monocytogenes We used this vector to investigate the monocin genomic region in L. monocytogenes strain 10403S by constructing deletion mutants of the region. We have found this region to be active and to cause bacterial lysis upon mitomycin C treatment. The future applications of such an effective counterselection system, which does not require any background genomic alterations, are vast, as it can be modularly used in various selection systems (e.g., genetic screens). We expect this counterselection marker to be a valuable genetic tool in research on L. monocytogenesIMPORTANCEL. monocytogenes is an opportunistic intracellular pathogen and a widely studied model organism. An efficient counterselection marker is a long-standing need in Listeria research for improving the ability to design and perform various genetic manipulations and screening systems for different purposes. We report the construction and utilization of an efficient suicide vector for allelic exchange which can be conjugated, leaves no marker in the bacterial chromosome, and does not require the use of sometimes leaky inducible promoters. This highly efficient genome editing tool for L. monocytogenes will allow for rapid sequential mutagenesis, introduction of point mutations, and design of screening systems. We anticipate that it will be extensively used by the research community and yield novel insights into the diverse fields studied using this model organism.


Assuntos
Bacteriocinas/genética , Listeria monocytogenes/genética , Mitomicina/farmacologia , Fenilalanina-tRNA Ligase/genética , Fenilalanina/análogos & derivados , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Marcadores Genéticos/genética , Listeria monocytogenes/crescimento & desenvolvimento , Fenilalanina/metabolismo , Regiões Promotoras Genéticas/genética , Seleção Genética/genética , Deleção de Sequência/genética
9.
Extremophiles ; 21(5): 839-850, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28660361

RESUMO

Chromohalobacter salexigens DSM 3043 can grow over a wide range of salinity, which makes it as an excellent model organism for understanding the mechanism of prokaryotic osmoregulation. Functional analysis of C. salexigens genes is an essential way to reveal their roles in cellular osmoregulation. However, the lack of an effective markerless gene deletion system has prevented construction of multiple gene deletion mutants for the members in the genus. Here, we report the development of a markerless gene deletion system in C. salexigens using allelic exchange method. In this system, the in vitro mutant allele of target gene was inserted into a pK18mobsacB-based integrative vector pMDC21, which contained a chloramphenicol resistance cassette as the positive selection marker and a sacB gene from Bacillus subtilis as the counterselectable marker. To validate this system, two single-gene deletion mutants and a double-gene deletion mutant were constructed. In addition, our results showed that growth of the merodiploids and sucrose screening at 25 °C were more effective to decrease the occurrence of spontaneous sucrose resistance colonies than at higher temperature (30 or 37 °C), and growth of the merodiploids in mineral salt medium instead of the complex medium was critical to increase the recovery rate of deletion mutants.


Assuntos
Chromohalobacter/genética , Deleção de Genes , Genética Reversa/métodos , Genes Bacterianos , Recombinação Homóloga
10.
Anaerobe ; 41: 104-112, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27234263

RESUMO

Clostridium species are both heroes and villains. Some cause serious human and animal diseases, those present in the gut microbiota generally contribute to health and wellbeing, while others represent useful industrial chassis for the production of chemicals and fuels. To understand, counter or exploit, there is a fundamental requirement for effective systems that may be used for directed or random genome modifications. We have formulated a simple roadmap whereby the necessary gene systems maybe developed and deployed. At its heart is the use of 'pseudo-suicide' vectors and the creation of a pyrE mutant (a uracil auxotroph), initially aided by ClosTron technology, but ultimately made using a special form of allelic exchange termed ACE (Allele-Coupled Exchange). All mutants, regardless of the mutagen employed, are made in this host. This is because through the use of ACE vectors, mutants can be rapidly complemented concomitant with correction of the pyrE allele and restoration of uracil prototrophy. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Once available, the pyrE host may be used to stably insert all manner of application specific modules. Examples include, a sigma factor to allow deployment of a mariner transposon, hydrolases involved in biomass deconstruction and therapeutic genes in cancer delivery vehicles. To date, provided DNA transfer is obtained, we have not encountered any clostridial species where this technology cannot be applied. These include, Clostridium difficile, Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium botulinum, Clostridium perfringens, Clostridium sporogenes, Clostridium pasteurianum, Clostridium ljungdahlii, Clostridium autoethanogenum and even Geobacillus thermoglucosidasius.


Assuntos
Infecções por Clostridium/microbiologia , Clostridium/genética , Engenharia Genética , Animais , Genes Bacterianos , Vetores Genéticos , Humanos , Mutagênese , Mutação , Replicon
11.
Plasmid ; 79: 8-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25659529

RESUMO

Staphylococcus aureus is one of the most successful bacterial pathogens, harboring a vast repertoire of virulence factors in its arsenal. As such, the genetic manipulation of S. aureus chromosomal DNA is an important tool for the study of genes involved in virulence and survival in the host. Previously reported allelic exchange vectors for S. aureus are shuttle vectors that can be propagated in Escherichia coli, so that standard genetic manipulations can be carried out. Most of the vectors currently in use carry the temperature-sensitive replicon (pE194ts) that was originally developed for use in Bacillus subtilis. Here we show that in S. aureus, the thermosensitivity of a pE194ts vector is incomplete at standard non-permissive temperatures (42 °C), and replication of the plasmid is impaired but not abolished. We report rpsL-based counterselection vectors, with an improved temperature-sensitive replicon (pT181 repC3) that is completely blocked for replication in S. aureus at non-permissive and standard growth temperature (37 °C). We also describe a set of temperature-sensitive vectors that can be cured at standard growth temperature. These vectors provide highly effective tools for rapidly generating allelic replacement mutations and curing expression plasmids, and expand the genetic tool set available for the study of S. aureus.


Assuntos
Proteínas de Bactérias/genética , Engenharia Genética/métodos , Vetores Genéticos , Staphylococcus aureus/genética , Alelos , Clonagem Molecular , DNA Bacteriano/genética , Proteínas de Escherichia coli , Temperatura Alta , Plasmídeos/genética , Replicon , Proteína S9 Ribossômica
12.
Fish Shellfish Immunol ; 41(2): 317-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25240979

RESUMO

In recent years, Streptococcus parauberis infection has been an emerging problem in aquaculture in South Korea because of its more frequent isolation than other streptococcal bacteria including Streptococcus iniae. To develop effective treatment and prophylaxis methods against this emerging disease by S. parauberis, it is necessary to understand the underlying pathogenic mechanisms. To uncover the pathogenicity, the mutant strain of S. parauberis with a deleted phosphoglucomutase (PGM) gene which has been known to be an important virulence factor in bacterial pathogens was generated to investigate the relationship between virulence and gene function using an allelic exchange mutagenesis method. Allelic exchange mutagenesis of the phosphoglucomutase gene resulted in phenotype changes including decreased extracellular capsules, reduced buoyancy, increased hydrophobicity and reduced growth. Moreover, the S. parauberis mutant was more sensitive to innate immune clearance mechanisms including serum, mucus and phagocyte killing and could not induce mortality in olive flounder. These phenotype changes and the attenuated virulence of the pathogen to fish could be due to the reduction in capsule production by mutation of the PGM gene. The results provide evidences that phosphoglucomutase expression contributes to S. parauberis virulence in fish by affecting bacterial survival against the host's humoral and cellular defense mechanisms.


Assuntos
Doenças Transmissíveis Emergentes/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Linguado , Fosfoglucomutase/genética , Infecções Estreptocócicas/veterinária , Streptococcus/enzimologia , Animais , Aquicultura , Clonagem Molecular , Doenças Transmissíveis Emergentes/imunologia , Primers do DNA/genética , Técnicas de Inativação de Genes , Imunidade Inata/imunologia , Microscopia Eletrônica de Transmissão , Mutagênese , Fosfoglucomutase/imunologia , Reação em Cadeia da Polimerase , República da Coreia , Infecções Estreptocócicas/imunologia , Streptococcus/patogenicidade
13.
Front Plant Sci ; 15: 1429353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109064

RESUMO

Agrobacterium-mediated transformation is an essential tool for functional genomics studies and crop improvements. Recently developed ternary vector systems, which consist of a T-DNA vector and a compatible virulence (vir) gene helper plasmid (ternary helper), demonstrated that including an additional vir gene helper plasmid into disarmed Agrobacterium strains significantly improves T-DNA delivery efficiency, enhancing plant transformation. Here, we report the development of a new ternary helper and thymidine auxotrophic Agrobacterium strains to boost Agrobacterium-mediated plant transformation efficiency. Auxotrophic Agrobacterium strains are useful in reducing Agrobacterium overgrowth after the co-cultivation period because they can be easily removed from the explants due to their dependence on essential nutrient supplementation. We generated thymidine auxotrophic strains from public Agrobacterium strains EHA101, EHA105, EHA105D, and LBA4404. These strains exhibited thymidine-dependent growth in the bacterial medium, and transient GUS expression assay using Arabidopsis seedlings showed that they retain similar T-DNA transfer capability as their original strains. Auxotrophic strains EHA105Thy- and LBA4404T1 were tested for maize B104 immature embryo transformation using our rapid transformation method, and both strains demonstrated comparable transformation frequencies to the control strain LBA4404Thy-. In addition, our new ternary helper pKL2299A, which carries the virA gene from pTiBo542 in addition to other vir gene operons (virG, virB, virC, virD, virE, and virJ), demonstrated consistently improved maize B104 immature embryo transformation frequencies compared to the original version of pKL2299 (33.3% vs 25.6%, respectively). Therefore, our improved Agrobacterium system, including auxotrophic disarmed Agrobacterium strains and a new ternary helper plasmid, can be useful for enhancing plant transformation and genome editing applications.

14.
Pathog Dis ; 812023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852672

RESUMO

The rapid occurrence of gonococcal resistance to all classes of antibiotics could lead to untreatable gonorrhea. Thus, development of novel anti-Neisseria gonorrhoeae drugs is urgently needed. Neisseria gonorrhoeae FA1090 is the most used in gonococcal infection mouse models because of its natural resistance to streptomycin. Streptomycin inhibits the urogenital commensal flora that permits gonococcal colonization. However, this strain is drug-susceptible and cannot be used to investigate the efficacy of novel agents against multidrug-resistant N. gonorrhoeae. Hence, to test the in vivo efficacy of new therapeutics against N. gonorrhoeae resistant to the frontline antibiotics, azithromycin, or ceftriaxone, we constructed streptomycin-resistant mutants of N. gonorrhoeae CDC-181 (azithromycin-resistant) and WHO-X (ceftriaxone-resistant). We identified the inoculum size needed to successfully colonize mice. Both mutants, CDC-181-rpsLA128G and WHO-X-rpsLA128G, colonized the genital tract of mice for 14 days with 100% colonization observed for at least 7 days. CDC-181-rpsLA128G demonstrated better colonization of the murine genital tract compared to WHO-X-rpsLA128G. Lower inoculum of WHO-X-rpsLA128G (105 and 106 CFU) colonized mice better than higher inoculum. Overall, our results indicate that CDC-181-rpsLA128G and WHO-X-rpsLA128G can colonize the lower genital tract of mice and are suitable to be used in mouse models to investigate the efficacy of antigonococcal agents.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Animais , Camundongos , Feminino , Ceftriaxona , Azitromicina/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Estreptomicina , Modelos Animais de Doenças
15.
Microbiologyopen ; 12(4): e1374, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37642481

RESUMO

Gene inactivation studies are critical in pathogenic bacteria, where insights into species biology can guide the development of vaccines and treatments. Allelic exchange via homologous recombination is a generic method of targeted gene editing in bacteria. However, generally applicable protocols are lacking, and suboptimal approaches are often used for nonstandard but epidemiologically important species. Photobacterium damselae subsp. piscicida (Pdp) is a primary pathogen of fish in aquaculture and has been considered hard to transform since the mid-1990s. Consequently, conjugative transfer of RK2/RP4 suicide vectors from Escherichia coli S17-1/SM10 donor strains, a system prone to off-target mutagenesis, was used to deliver the allelic exchange DNA in previous studies. Here we have achieved efficient electrotransformation in Pdp using a salt-free highly concentrated sucrose solution, which performs as a hypertonic wash buffer, cryoprotectant, and electroporation buffer. High-efficiency transformation has enabled vector-free mutagenesis for which we have employed circular minimalistic constructs (knockout minicircles) containing only allelic exchange essentials that were generated by Gibson assembly. Preparation of competent cells using sucrose and electroporation/integration of minicircles had virtually no detectable off-target promutagenic effect. In contrast, a downstream sacB selection apparently induced several large deletions via mobilization of transposable elements. Electroporation of minicircles into sucrose-treated cells is a versatile broadly applicable approach that may facilitate allelic exchange in a wide range of microbial species. The method permitted inactivation of a primary virulence factor unique to Pdp, apoptogenic toxin AIP56, demonstrating the efficacy of minicircles for difficult KO targets located on the high copy number of small plasmids.


Assuntos
Eletroporação , Photobacterium , Animais , Photobacterium/genética , Peixes
16.
Methods Mol Biol ; 2427: 3-10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619020

RESUMO

Gene alteration/deletion by allelic exchange is the preferred strategy for gene manipulation in bacteria. Here we present the fundamentals for an efficient allelic exchange gene deletion method in the bacterial pathogen Listeria monocytogenes. Combining vector generation by Gibson assembly with a counterselection system based on the mutated phenylalanine synthetase (pheS*) makes the generation of gene deletion mutants straightforward and time efficient.


Assuntos
Listeria monocytogenes , Alelos , Deleção de Genes , Listeria monocytogenes/genética , Mutação , Fenilalanina/genética
17.
J Glob Antimicrob Resist ; 31: 22-31, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985623

RESUMO

OBJECTIVES: The continued emergence of Campylobacter jejuni strains resistant to fluoroquinolones (FQs) has posed a significant threat to global public health, leading frequently to undesirable outcomes of human campylobacteriosis treatment. The molecular genetic mechanisms contributing to the increased retention of resistance to FQs in natural populations of this species, especially in antibiotic-free environments, are not clearly understood. This study aimed to determine whether genetic recombination could be such a mechanism. METHODS: We applied a large array of algorithms, imbedded in the SplitsTree and RDP4 software packages, to analyse the DNA sequences of the chromosomal loci, including the gyrA gene and the CmeABC operon, to identify events of their genetic recombination between C. jejuni strains. RESULTS: The SplitsTree analyses of the above genetic loci resulted in several parallelograms with the bootstrap values being in a range of 94.7 to 100, with the high fit estimates being 99.3 to 100. These analyses were further strongly supported by the Phi test results (P ≤ 0.02715) and the RDP4-generated statistics (P ≤ 0.04005). The recombined chromosomal regions, along with the gyrA gene and CmeABC operon loci, were also found to contain the genetic loci that included, but were not limited to, the genes encoding for phosphoribosyltransferase, lipoprotein, outer membrane motility protein, and radical SAM domain protein. CONCLUSION: These findings strongly suggest that the genetic recombination of the chromosomal regions involving gyrA, CmeABC, and their adjacent loci may be an additional mechanism underlying the constant emergence of epidemiologically successful FQ-resistant strains in natural populations of C. jejuni.


Assuntos
Campylobacter jejuni , Fluoroquinolonas , Humanos , Fluoroquinolonas/farmacologia , Campylobacter jejuni/genética , Testes de Sensibilidade Microbiana , Óperon , Recombinação Genética
18.
Vaccines (Basel) ; 10(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062769

RESUMO

The genomic analysis of all subspecies F. tularensis, as found in Gen Bank NCBI, reveals the presence of genes encoding proteins like to the multifunctional RecBCD enzyme complex in E. coli and other bacteria. To date, the role of the recD gene in F. tularensis, which encodes the alpha chain of exonuclease V, in DNA metabolism processes, has not been studied either in vitro or in vivo. F. tularensis subsp. holarctica 15 NIIEG, a vaccine strain, served as the basis to create the F. tularensis 15D strain with recD deletion. The lack of the recD gene suppresses the integration of suicide plasmids with F. tularensis genome fragments into the chromosome. The modified strain showed reduced growth in vitro and in vivo. This study shows that such deletion significantly reduces the virulence of the strain in BALB/c mice.

19.
Curr Res Microb Sci ; 3: 100148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909613

RESUMO

Exposure to antibiotics most often generates oxidative stress in bacteria. Oxidative stress survival mechanisms would facilitate the evolution of antibiotic resistance. As part of an effort to understand oxidative stress survival mechanisms in mycobacteria, here we show that the minor subpopulation (SCs; short-sized cells constituting 10% of the population) of Mycobacterium smegmatis significantly increased the survival of its major kin subpopulation (NCs; normal/long-sized cells constituting 90% of the population) in the mid-log-phase (MLP) cultures against the oxidative stress induced by rifampicin and exogenously added H2O2 (positive control). We had earlier shown that the SCs in the MLP cultures inherently and naturally release significantly high levels of H2O2 into the medium. Addition of the SCs' culture supernatant, unlike the supernatant of the dimethylthiourea (H2O2 scavenger) exposed SCs, enhanced the survival of NCs. It indicated that NCs' survival required the H2O2 present in the SCs' supernatant. This H2O2 transcriptionally induced high levels of catalase-peroxidase (KatG) in the NCs. The naturally high KatG levels in the NCs significantly neutralised the endogenous H2O2 formed upon exposure to rifampicin or H2O2, thereby enhancing the survival of NCs against oxidative stress. The absence of such enhanced survival in the furA-katG and katG knockout (KO) mutants of NCs in the presence of wild-type SCs, confirmed the requirement of the H2O2 present in the SCs' supernatant and NCs' KatG for enhanced oxidative stress survival. The presence of SCs:NCs at 1:9 in the pulmonary tuberculosis patients' sputum alludes to the clinical significance of the finding.

20.
Synth Syst Biotechnol ; 7(3): 1002-1011, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35782483

RESUMO

Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories. For some uncommon microbial hosts, such as Mycolicibacterium and Mycobacterium species, however, it is a challenge. Here, we present a multiplexed integrase-assisted site-specific recombination (miSSR) method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories. First, a single-step multi-copy integration method was established in M. neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy, the efficiencies of which were ∼100% for no more than three-copy integration events and decreased sharply to ∼20% for five-copy integration events. Second, the R4, Bxb1 and ΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events. Third, a reconstructed mycolicibacterial Xer recombinases (Xer-cise) system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation. As a proof of concept, the biosynthetic pathway of ergothioneine (EGT) in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system. With six copies of the biosynthetic gene clusters (BGCs) of EGT and pentose phosphate isomerase (PRT), the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L, which was 3.77 times of that in the wild strain. The improvements indicated that the miSSR system was an effective, flexible, and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA