Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822624

RESUMO

AIMS: To assess low concentration hydrogen peroxide (LCHP) (H2O2) vapor dispersed with a home humidifier for its ability to decontaminate vehicle interiors contaminated with Bacillus anthracis surrogate Bacillus atrophaeus spores. METHODS AND RESULTS: Efficacy of a vaporized 3% H2O2 solution was evaluated for liquid volumes, on/off vehicle heating, ventilation, and air conditioning (HVAC) system operations, and temperatures that ranged from 5 to 27°C. Survival of the spores was assessed by quantification of remaining viable spores with efficacy quantified in terms of mean log10 reduction. Decontamination efficacy after the 6-day dwell time increased when the 3% H2O2 liquid volume was doubled, increasing from 4-of-10 to 10-of-10 nondetects (zero colonies counted using standard dilution and filter plating) inside the vehicle cabin. Recirculating cabin air through the HVAC system during decontamination decreased efficacy to 6-of-10 non-detects. While no 6-log10 reduction in viable spores was observed on the cabin filter with the cabin filter kept in place, a 6-log10 reduction was achieved after its removal and placement in the cabin during treatment. CONCLUSIONS: Results from this study allow for informed decisions on the use of LCHP vapor as an effective decontamination approach for vehicle interiors.


Assuntos
Bacillus anthracis , Bacillus , Peróxido de Hidrogênio/farmacologia , Descontaminação/métodos , Esporos Bacterianos
2.
Food Microbiol ; 104: 103969, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287826

RESUMO

Deviations in linearity in survival curves are common in inactivation kinetics during heat treatment. These might lead one to underestimate how effective thermal treatment is. In previous research we reported a relationship between decimal reduction time values (DT) and shoulder lengths (Sl) of survival curves which was characteristic of each microorganism. However, the impact of other factors such as sporulation temperature and pH of the treatment media on shoulder length is still not known. The objective of this research was to evaluate the effect of sporulation temperature (45, 55 and 65 °C) and pH (4.0, 5.0, 6.0 and 7.0) treatment has on the profile of survival curves and on the relationship between Sl/DT of G. stearothermophilus STCC 4517. The results obtained demonstrated that all the spore suspensions, independently of sporulation temperature and pH, showed survival curves with shoulder phenomena, whose duration was an exponential function of treatment temperature. Although both parameters had a significant effect on heat resistance, the relationship between the shoulder length and DT values was constant at all pHs for spores produced at the optimum sporulation temperature.


Assuntos
Geobacillus stearothermophilus , Esporos Bacterianos , Geobacillus stearothermophilus/fisiologia , Ombro , Suspensões , Temperatura
3.
J Appl Microbiol ; 130(3): 699-706, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32767796

RESUMO

AIM: The aim of the present study was to examine the vaccine immune response in ewes supplemented with Bacillus toyonensis BCT-7112T during a period of 5-day supplementation before vaccination against a recombinant Clostridium perfringens epsilon toxin (rETX). METHODS AND RESULTS: Ewes were vaccinated with 200 µg of rETX adjuvanted with 10% aluminium hydroxide. The treat group was orally supplemented with B. toyonensis BCT-7112T (3 × 108 viable spores) for 5 days prior to the first and second vaccination. Ewes supplemented with B. toyonensis BCT-7112T showed higher neutralizing antibody titres than the non-supplemented ewes (P < 0·05), with an increase in serum levels for total IgG anti-rETX by 3·2-fold (P < 0·0001), and for both IgG isotypes IgG1 and IgG2 by 2·1-fold and 2·3-fold (P < 0·01), respectively, compared with the control group. The peripheral blood mononuclear cells of ewes in the supplemented group had a higher (P < 0·05) cytokine mRNA transcription levels for IL-2 (6·4-fold increase), IFN-γ (2·9-fold increase) and transcription factor Bcl6 (2·3-fold increase) compared with the control group. CONCLUSION: We conclude that a 5 days of supplementation with B. toyonensis BCT-7112T prior vaccination is sufficient to significantly improve the humoral immune response of ewes against C. perfringens recombinant ETX vaccine. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings open a new perspective in the utilization of B. toyonensis BCT-7112T as an immunomodulator since a 5 days period of probiotic supplementation is sufficient to improve the vaccine immune response.


Assuntos
Bacillus , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Probióticos , Ovinos/imunologia , Animais , Toxinas Bacterianas/genética , Vacinas Bacterianas/genética , Feminino , Imunidade Humoral , Imunoglobulina G/sangue , Imunomodulação , Leucócitos Mononucleares/imunologia , Vacinação , Vacinas Sintéticas/imunologia
4.
J Microsc ; 274(2): 92-101, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30802953

RESUMO

High-pressure freezing limits the size of biological samples, because only small samples can be frozen without ice damage. Additionally, these samples must fit into the dimensions of the sample holder provided by the high-pressure freezer. We explored the potential of a 10 µm thin polyester filter membrane (PE-filter) as a versatile sample substrate for high-pressure freezing. Planktonic bacteria, bacterial spores and suspended eukaryotic cells could be concentrated on the PE-filter, whereas biofilm, bacterial microcolonies and HeLa cells were able to grow directly on the PE-filter. These microorganism-loaded PE-filters were used for high-pressure freezing, freeze-substitution and plastic embedding in Epon or Lowicryl. Embedded filters were cross-sectioned so that the interface between microorganism and substrate as well as the overlying medium was revealed. Although the structural preservation was good for thin samples and samples with lower water content, such as biofilms, adherent HeLa-cell cultures were likewise sufficiently preserved for transmission electron microscopy imaging. The fact that microorganism-loaded PE-filters could be also examined with confocal laser scanning fluorescence microscopy under fully hydrated conditions, and freeze-substituted PE-filters samples with scanning electron microscopy, demonstrates the versatility of the PE-filter as a sample substrate for a wide array of microorganisms. LAY DESCRIPTION: In order to investigate biological samples in the transmission electron microscope it is imperative to remove all their water content, or the specimens will be destroyed by boiling in the high vacuum of the microscope. In order to avoid dramatic morphology-changes due to drying artefacts or the impact of chemical stabilisers, high-pressure freezing (HPF) was developed. This protocol allows freezing biological samples in an instant (within a few milliseconds) down to -196°C while applying high pressure at the same time so that the specimen retains all its water in a solidified noncrystalline form. However, the formation of morphology-destroying ice crystals is only avoided, if the cooling of the sample is faster than the ice crystal formation, which is only possible with very thin samples (up to a maximum of 200 µm in optimal cases). High-pressure freezing is regarded as the gold-standard for sample preparation of cells, tissues and small organisms. However, all of these samples must fit into the dimensions of the specific sample holder of the high-pressure freezer and their transfer into the high-pressure freezing machine must be achieved without significant impact on sample physiology. Additionally, it may also necessary to concentrate and immobilise a biological specimen before they can be placed in the HPF sample holder. Although a few number of strategies and sample substrates have been used for different types of biological samples, we explored the potential of a 10 µm thin polyester filter membrane (PE-filter) as a versatile sample substrate for HPF. In culture medium suspended bacteria, suspended bacterial spores and in medium suspended higher cells could be concentrated on the PE-filter, whereas bacterial biofilm or bacterial microcolonies from an agar plate, and surface-adhering higher cells were able to grow directly on the PE-filter. These microorganism-loaded PE-filters could be directly used for high-pressure freezing, and were finally embedded in a plastic resin like Epon or Lowicryl. Embedded filters were cross-sectioned so that the interface between microorganism and substrate or overlying medium was revealed. Although the structural preservation was good for thin samples and samples with lower water content, such as biofilms, adherent HeLa-cell cultures were likewise sufficiently preserved for transmission electron microscopy imaging. The fact that microorganism-loaded PE-filters could be also examined with confocal laser scanning fluorescence microscopy under fully hydrated conditions, and freeze-substituted PE-filters samples with scanning-electron microscopy, demonstrates the versatility of the PE-filter as a sample substrate for a wide array of microorganisms.


Assuntos
Bactérias/citologia , Substituição ao Congelamento/métodos , Poliésteres/química , Biofilmes , Células HeLa , Humanos , Pressão
5.
Compr Rev Food Sci Food Saf ; 17(3): 646-662, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-33350130

RESUMO

High-pressure thermal sterilization (HPTS) and ultra-high-pressure homogenization (UHPH) are two emerging sterilization techniques that have not been implemented in the food industry yet. The two technologies apply different acting principles as HPTS uses isostatic pressure in combination with heat whereas UHPH uses dynamic pressure in combination with shear stress, cavitation, impingement, and heat. Both technologies offer significant benefits in terms of spore inactivation in food production with reduced thermal intensity and minimized effects on sensory and nutritional profiles. These benefits have resulted in relevant research efforts on both technologies over the past few decades. This state of the art of the discontinuous HPTS-based and the continuous UHPH-based sterilization concepts are assessed within this review. Further, various basic principles and promising future preservation applications of HPTS and UHPH for food processing, that are also applicable in the pharmaceutical, biochemical, and biotechnological sectors, are summarized. In addition, the applications and limitations of these technologies in terms of optimizations needed to overcome the identified challenges are emphasized.

6.
Bioelectromagnetics ; 38(2): 121-127, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862061

RESUMO

This work investigated the effect of static magnetic field (SMF) on Bacillus atrophaeus endospore germination. Germination was triggered by L-alanine in 1.3-T SMF and characterized by ion release, Ca2+ -dipicolinic acid release, and water influx. These events were monitored by electrical conductivity, Tb-DPA fluorescence, and optical density, respectively. Culturability of endospore germinated in SMF exposure was evaluated by CFU enumeration. Results indicated that 1.3-T SMF failed to significantly affect endospore germination and culturability, suggesting that the three aforementioned processes were not sensitive to SMF. Bioelectromagnetics. 38:121-127, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Bacillus/crescimento & desenvolvimento , Campos Magnéticos , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus/metabolismo , Ácidos Picolínicos/metabolismo , Esporos Bacterianos/metabolismo , Água/metabolismo
7.
BMC Microbiol ; 16(1): 148, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405351

RESUMO

BACKGROUND: In the context of spore contamination involved in bio-terrorism and food preservation, the development of new techniques for spore inactivation is an important challenge. RESULTS: Here, a successful application of electric arc discharges resulting in spore death was reported. Two types of electric arcs were compared, different with respect to their durations. The discharges with 0.5 µs duration induced a small inactivation area of 0.6 % of surface treated around their point of entry into the sample, while those with 20 µs duration induced a much larger inactivation area from 7 to 55 % of surface treated roughly proportional to the number of discharges delivered. In particular, 50 discharges of 20 µs duration induced inactivation in more than 55% of surface treated at an inactivation rate above 3.6 log10. CONCLUSIONS: These results are promising and warrant developing electric arcing as a novel method for spore inactivation.


Assuntos
Bacillus pumilus/fisiologia , Esporos Bacterianos/fisiologia , Contagem de Colônia Microbiana , Eletricidade , Viabilidade Microbiana , Água
8.
Crit Rev Food Sci Nutr ; 56(11): 1808-25, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-25830663

RESUMO

High-pressure CO2 (HPCD) is a nonthermal technology that can effectively inactivate the vegetative forms of pathogenic and spoilage bacteria, yeasts, and molds at pressures less than 30 MPa and temperatures in the range of 20°C to 40°C. However, HPCD alone at moderate temperatures (20-40°C) is often insufficient to obtain a substantial reduction in bacterial spore counts because their structures are more complex than those of vegetative cells. In this review, we first thoroughly summarized and discussed the inactivation effect of HPCD treatment on bacterial spores. We then presented and discussed the kinetics by which bacterial spores are inactivated by HPCD treatment. We also summarized hypotheses drawn by different researchers to explain the mechanisms of spore inactivation by HPCD treatment. We then summarized the current research status and future challenges of spore inactivation by HPCD treatment.


Assuntos
Dióxido de Carbono/química , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos , Pressão , Esporos Bacterianos/isolamento & purificação , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Esporos Bacterianos/efeitos dos fármacos , Temperatura
9.
Microb Cell Fact ; 15(1): 153, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609116

RESUMO

BACKGROUND: Bacterial spores have been proposed as vehicles to display heterologous proteins for the development of mucosal vaccines, biocatalysts, bioremediation and diagnostic tools. Two approaches have been developed to display proteins on the spore surface: a recombinant approach, based on the construction of gene fusions between DNA molecules coding for a spore surface protein (carrier) and for the heterologous protein to be displayed (passenger); and a non-recombinant approach based on spore adsorption, a spontaneous interaction between negatively charged, hydrophobic spores and purified proteins. The molecular details of spore adsorption have not been fully clarified yet. RESULTS: We used the monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp. and Bacillus subtilis spores of a wild type and an isogenic mutant strain lacking the CotH protein to clarify the adsorption process. Mutant spores, characterized by a strongly altered coat, were more efficient than wild type spores in adsorbing mRFP but the interaction was less stable and mRFP could be in part released by raising the pH of the spore suspension. A collection of isogenic strains carrying GFP fused to proteins restricted in different compartments of the B. subtilis spore was used to localize adsorbed mRFP molecules. In wild type spores mRFP infiltrated through crust and outer coat, localized in the inner coat and was not surface exposed. In mutant spores mRFP was present in all surface layers, inner, outer coat and crust and was exposed on the spore surface. CONCLUSIONS: Our results indicate that different spores can be selected for different applications. Wild type spores are preferable when a very tight protein-spore interaction is needed, for example to develop reusable biocatalysts or bioremediation systems for field applications. cotH mutant spores are instead preferable when the heterologous protein has to be displayed on the spore surface or has to be released, as could be the case in mucosal delivery systems for antigens and drugs, respectively.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Esporos Bacterianos/química , Esporos Bacterianos/genética , Adsorção , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Fluorescência , Mutação , Proteínas Recombinantes/metabolismo , Esporos Bacterianos/metabolismo , Proteína Vermelha Fluorescente
10.
J Infect Chemother ; 22(8): 521-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27236515

RESUMO

Clostridium species and Bacillus spp. are spore-forming bacteria that cause hospital infections. The spores from these bacteria are transmitted from patient to patient via healthcare workers' hands. Although alcohol-based hand rubbing is an important hand hygiene practice, it is ineffective against bacterial spores. Therefore, healthcare workers should wash their hands with soap when they are contaminated with spores. However, the extent of health care worker hand contamination remains unclear. The aim of this study is to determine the level of bacterial spore contamination on healthcare workers' hands. The hands of 71 healthcare workers were evaluated for bacterial spore contamination. Spores attached to subject's hands were quantitatively examined after 9 working hours. The relationship between bacterial spore contamination and hand hygiene behaviors was also analyzed. Bacterial spores were detected on the hands of 54 subjects (76.1%). The mean number of spores detected was 468.3 CFU/hand (maximum: 3300 CFU/hand). Thirty-seven (52.1%) and 36 (50.7%) subjects were contaminated with Bacillus subtilis and Bacillus cereus, respectively. Nineteen subjects (26.8%) were contaminated with both Bacillus species. Clostridium difficile was detected on only one subject's hands. There was a significant negative correlation between the hand contamination level and the frequency of handwashing (r = -0.44, P < 0.01) and a significant positive correlation between the hand contamination level and the elapsed time since last handwashing (r = 0.34, P < 0.01). Healthcare workers' hands may be frequently contaminated with bacterial spores due to insufficient handwashing during daily patient care.


Assuntos
Infecção Hospitalar/microbiologia , Mãos/microbiologia , Esporos Bacterianos/isolamento & purificação , Álcoois/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/isolamento & purificação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Infecção Hospitalar/prevenção & controle , Desinfecção das Mãos/métodos , Pessoal de Saúde , Humanos , Sabões , Esporos Bacterianos/efeitos dos fármacos
11.
Food Microbiol ; 41: 8-18, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24750808

RESUMO

Bacterial spores are a major concern for food safety due to their high resistance to conventional preservation hurdles. Innovative hurdles can trigger bacterial spore germination or inactivate them. In this work, Geobacillus stearothermophilus spore high pressure (HP) germination and inactivation mechanisms were investigated by in situ infrared spectroscopy (FT-IR) and fluorometry. G. stearothermophilus spores' inner membrane (IM) was stained with Laurdan fluorescent dye. Time-dependent FT-IR and fluorescence spectra were recorded in situ under pressure at different temperatures. The Laurdan spectrum is affected by the lipid packing and level of hydration, and provided information on the IM state through the Laurdan generalized polarization. Changes in the -CH2 and -CH3 asymmetric stretching bands, characteristic of lipids, and in the amide I' band region, characteristic of proteins' secondary structure elements, enabled evaluation of the impact of HP on endospores lipid and protein structures. These studies were complemented by ex situ analyses (plate counts and microscopy). The methods applied showed high potential to identify germination mechanisms, particularly associated to the IM. Germination up to 3 log10 was achieved at 200 MPa and 55 °C. A molecular-level understanding of these mechanisms is important for the development and validation of multi-hurdle approaches to achieve commercial sterility.


Assuntos
Geobacillus stearothermophilus/química , Viabilidade Microbiana , Esporos Bacterianos/crescimento & desenvolvimento , Esterilização/métodos , Geobacillus stearothermophilus/crescimento & desenvolvimento , Temperatura Alta , Pressão , Esporos Bacterianos/química
12.
Int J Food Microbiol ; 422: 110812, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38970996

RESUMO

Mild spore inactivation can be challenging in industry because of the remarkable resistance of bacterial spores. High pressure (HP) can trigger spore germination, which reduces the spore's resistance, and thereby allows mild spore inactivation. However, spore germination is heterogenous. Some slowly germinating or non-germinating spores called superdormant spores remain resistant and can survive. Therefore, superdormant spores need to be characterized to understand the causes of their germination deficiency. Bacillus subtilis spores were pressurized for 50 s - 6 min at a very high pressure (vHP) level of 550 MPa and 60 °C in buffer to trigger germination. For a rapid quantification of the remaining ungerminated superdormant spores, flow cytometry (FCM) analysis was validated using single cell sorting and growth analysis. FCM based on propidium iodide (PI) and SYTO16 can be used for 550 MPa-superdormant spores after short vHP treatments of ≤1 min and post-HP incubation at 37 °C or 60 °C. The need for a post-HP incubation is particular for vHP treatments. The incubation was successful to separate FCM signals from superdormant and germinated spores, thus allowing superdormant spore quantification. The SYTO16 and PI fluorescence levels did not necessarily indicate superdormancy or apparent viability. This highlights the general need for FCM validation for different HP treatment conditions. The ∼7 % of ungerminated, i.e., superdormant, spores were isolated after a vHP treatment (550 MPa, 60 °C, 43-52 s). This allowed the characterization of vHP superdormant spores for the first time. The superdormant spores had a similar dipicolinic acid content as spores of the initial dormant population. Descendants of superdormant spores had a normal vHP germination capacity. The causes of vHP superdormancy were thus unlikely linked to the dipicolinic acid content or a permanent genetic change. Isolated superdormant spores germinated better in a second vHP treatment compared to the initial spore population. This has not been observed for other germination stimuli so far. In addition, the germination capacity of the initial spore population was time-dependent. A vHP germination deficiency can therefore be lost over time and seems to be caused by transient factors. Permanent cellular properties played a minor role as causes of superdormancy under chosen HP treatment conditions. The study gained new fundamental insights in vHP superdormancy which are of applied interest. Understanding superdormancy helps to efficiently develop a strategy to avoid superdormant spores and hence to inactivate all spores. The development of a mild HP spore germination-inactivation process aims at better preserving the food quality.


Assuntos
Bacillus subtilis , Citometria de Fluxo , Viabilidade Microbiana , Esporos Bacterianos , Bacillus subtilis/fisiologia , Bacillus subtilis/crescimento & desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento , Citometria de Fluxo/métodos , Pressão
13.
Bioinspir Biomim ; 19(3)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38569524

RESUMO

The urgency for energy efficient, responsive architectures has propelled smart material development to the forefront of scientific and architectural research. This paper explores biological, physical, and morphological factors influencing the programming of a novel microbial-based smart hybrid material which is responsive to changes in environmental humidity. Hygromorphs respond passively, without energy input, by expanding in high humidity and contracting in low humidity.Bacillus subtilisdevelops environmentally robust, hygromorphic spores which may be harnessed within a bilayer to generate a deflection response with potential for programmability. The bacterial spore-based hygromorph biocomposites (HBCs) were developed and aggregated to enable them to open and close apertures and demonstrate programmable responses to changes in environmental humidity. This study spans many fields including microbiology, materials science, design, fabrication and architectural technology, working at multiple scales from single cells to 'bench-top' prototype.Exploration of biological factors at cellular and ultracellular levels enabled optimisation of growth and sporulation conditions to biologically preprogramme optimum spore hygromorphic response and yield. Material explorations revealed physical factors influencing biomechanics, preprogramming shape and response complexity through fabrication and inert substrate interactions, to produce a palette of HBCs. Morphological aggregation was designed to harness and scale-up the HBC palette into programmable humidity responsive aperture openings. This culminated in pilot performance testing of a humidity-responsive ventilation panel fabricated with aggregatedBacillusHBCs as a bench-top prototype and suggests potential for this novel biotechnology to be further developed.


Assuntos
Esporos Bacterianos
14.
J Food Prot ; 87(6): 100277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615992

RESUMO

Edible insects offer a promising protein source for humans, but their food safety risks have not been previously investigated within the United States. Therefore, the aim of this study was to investigate the microbial content of processed edible insect products. A total of eight different types of edible insect products, including diving beetles, silkworms, grasshoppers, Jamaican crickets, mealworms, mole crickets, whole roasted crickets, and 100% pure cricket powder, were purchased from a large online retailer for the analysis. All the products were purchased in August 2022 and examined between August 2022 and November 2022. Traditional microbiological methods were employed to determine microbial counts for each product type using three replicates (total number of samples = 24). This included assessing aerobic bacterial spore, lactic acid bacteria, Enterobacteriaceae, total viable counts, and the presence of Salmonella. Additionally, whole genome sequencing was employed to further characterize selected colonies (n = 96). Microbial counts data were statistically analyzed using one-way ANOVA, while sequence data were taxonomically classified using Sepia.Bacilluscereusgroup isolates underwent additional characterization with Btyper3. Product type significantly influenced total viable counts, bacterial spore counts, and lactic acid bacteria counts (P = 0.00391, P = 0.0065, and P < 0.001, respectively), with counts ranging from < 1.70 to 6.01 Log10 CFU/g, <1.70 to 5.25 Log10 CFU/g, and < 1.70 to 4.86 Log10 CFU/g, respectively. Enterobacteriaceae were only detected in mole crickets (<2.30 Log10 CFU/g) and house cricket powder (<2.15 Log10 CFU/g). All samples were negative for Salmonella. Whole genome sequencing revealed the presence of 12 different bacterial genera among the analyzed isolates, with a majority belonging to the Bacillus genus. Some of the isolates of Bacillus cereus group were identified as biovar Emeticus. Overall, although edible insects offer a promising food alternative, the presence of Bacillus cereus group in some products could raise concerns regarding food safety.


Assuntos
Insetos Comestíveis , Microbiologia de Alimentos , Sequenciamento Completo do Genoma , Animais , Estados Unidos , Humanos , Contagem de Colônia Microbiana , Bactérias/isolamento & purificação , Bactérias/classificação
15.
mBio ; 14(5): e0222023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830807

RESUMO

IMPORTANCE: Bacillus and Clostridium spores cause food spoilage and disease because of spores' dormancy and resistance to microbicides. However, when spores "come back to life" in germination, their resistance properties are lost. Thus, understanding the mechanisms of spore germination could facilitate the development of "germinate to eradicate" strategies. One germination feature is the memory of a pulsed germinant stimulus leading to greater germination following a second pulse. Recent observations of increases in spore binding of the potentiometric dye thioflavin-T early in their germination of spores led to the suggestion that increasing electrochemical potential is how spores "remember" germinant pulses. However, new work finds no increased thioflavin-T binding in the physiological germination of Coatless spores or of intact spores germinating with dodecylamine, even though spore memory is seen in both cases. Thus, using thioflavin-T uptake by germinating spores to assess the involvement of electrochemical potential in memory of germinant exposure, as suggested recently, is questionable.


Assuntos
Bacillus , Esporos Bacterianos , Clostridium
16.
Microbiol Spectr ; 11(1): e0358222, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475924

RESUMO

There is growing evidence that shows Clostridium (Clostridioides) difficile is a pathogen of One Health importance with a complex dissemination pathway involving animals, humans, and the environment. Thus, environmental discharge and agricultural recycling of human and animal waste have been suspected as factors behind the dissemination of Clostridium difficile in the community. Here, the presence of C. difficile in 12 wastewater treatment plants (WWTPs) in Western Australia was investigated. Overall, C. difficile was found in 90.5% (114/126) of raw sewage influent, 48.1% (50/104) of treated effluent, 40% (2/5) of reclaimed irrigation water, 100% (38/38) of untreated biosolids, 95.2% (20/21) of anaerobically digested biosolids, and 72.7% (8/11) of lime-amended biosolids. Over half of the isolates (55.3% [157/284]) were toxigenic, and 97 C. difficile ribotypes (RTs) were identified, with RT014/020 the most common (14.8% [42/284]). Thirteen C. difficile isolates with the toxin gene profile A+ B+ CDT+ (positive for genes coding for toxins A and B and the binary C. difficile transferase toxin [CDT]) were found, including the hypervirulent RT078 strain. Resistance to the antimicrobials fidaxomicin, vancomycin, metronidazole, rifaximin, amoxicillin-clavulanate, meropenem, and moxifloxacin was uncommon; however, resistance to clindamycin, erythromycin, and tetracycline was relatively frequent at 56.7% (161/284), 14.4% (41/284), and 13.7% (39/284), respectively. This study revealed that toxigenic C. difficile was commonly encountered in WWTPs and being released into the environment. This raises concern about the possible spillover of C. difficile into animal and/or human populations via land receiving the treated waste. In Western Australia, stringent measures are in place to mitigate the health and environmental risk of recycling human waste; however, further studies are needed to elucidate the public health significance of C. difficile surviving the treatment processes at WWTPs. IMPORTANCE Clostridium difficile infection (CDI) is a leading cause of antimicrobial-associated diarrhea in health care facilities. Extended hospital stays and recurrences increase the cost of treatment and morbidity and mortality. Community-associated CDI (CA-CDI) cases, with no history of antimicrobial use or exposure to health care settings, are increasing. The isolation of clinically important C. difficile strains from animals, rivers, soil, meat, vegetables, compost, treated wastewater, and biosolids has been reported. The objective of this study was to characterize C. difficile in wastewater treatment plants (WWTPs) in Australia. We found that C. difficile can survive the treatment processes of WWTPs, and toxigenic C. difficile was being released into the environment, becoming a potential source/reservoir for CA-CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Purificação da Água , Animais , Humanos , Clostridioides difficile/genética , Clostridioides , Austrália Ocidental/epidemiologia , Biossólidos , Antibacterianos/farmacologia , Infecções por Clostridium/epidemiologia , Clostridium/genética , Esporos , Testes de Sensibilidade Microbiana
17.
J Microorg Control ; 28(1): 3-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37277956

RESUMO

This study aimed to clarify how the phenolic monoterpene carvacrol and its structural isomer thymol both as essential oil components (EOCs) inhibit the germination of Bacillus subtilis spore. Germination was evaluated by the OD600 reduction rate in a growth medium and phosphate buffer containing either l-alanine (l-Ala) system or l-asparagine, d-glucose, d-fructose plus KCl (AGFK) system. The germination of the wild-type spores in the Trypticase Soy broth (TSB) was found to be greatly inhibited by thymol than by carvacrol. Such a difference in the germination inhibition was confirmed by the dipicolinic acid (DPA) release from germinating spores in the AGFK buffer system, but not in the l-Ala system. Similar to the wild-type spores, no difference in the inhibitory activity between the EOCs was also indicated with the gerB, gerK-deletion mutant spores in the l-Ala buffer system and the above substantial difference was also done with the gerA-deleted mutant spores in the AGFK. Fructose was found to release spores from the EOC inhibition and inversely even stimulated. Increased concentrations of glucose and fructose partially suppressed the germination inhibition by carvacrol. The results obtained should contribute to the elucidation of the control effects of these EOCs on bacterial spores in foods.


Assuntos
Bacillus subtilis , Timol , Bacillus subtilis/genética , Timol/farmacologia , Esporos Bacterianos , Alanina/farmacologia , Frutose/farmacologia
18.
J Photochem Photobiol B ; 234: 112530, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35930949

RESUMO

In this study, we develop a characterization of bacterial spore resistance to NIR pulsed light under modalities traditionally used in multiphoton microscopy. Energy dose and laser power are both key parameters in spore and bacterial cell inactivation. Surprisingly, spores and vegetative cells seem to show a similar sensitivity to pulsed NIR, spores being only 2-fold more resistant than their vegetative counterparts. This work enables us to eliminate certain hypotheses concerning the main driver of spore inactivation processes. Our findings suggest that damage leading to inactivation is mainly caused by photochemical reactions characterized by multiple possible pathways, including DNA damage or oxidation processes.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Bacillus subtilis/fisiologia , Dano ao DNA , Raios Infravermelhos , Esporos Bacterianos/fisiologia
19.
Appl Biosaf ; 27(2): 92-99, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36035500

RESUMO

Background: Modern microbiology laboratories are designed to protect workers and the environment from microbial aerosols produced during microbiological procedures and accidents. However, there is only limited data available on the aerosols generated from common microbiology procedures. Methods: A series of common microbiological procedures were undertaken with high concentration spore suspensions while air samplers were operated to sample the aerosols generated. Surface contamination from droplets was visualized using sodium fluorescein within the suspension. A total of 36 procedures were studied using different sample volumes (0.1-10 mL) and two spore suspension titers (107 and 109 colony forming units [cfu]/mL). Results: The aerosol concentrations generated varied from 0 to 13,000 cfu/m3. There was evidence to suggest that titer, volume, and poor use of equipment were significant factors in increased aerosol generation from some of the procedures. A risk assessment undertaken using the data showed that any aerosol generated from these processes would be contained within a correctly operating biological safety cabinet. Therefore, with these procedures, the operator and the environment would not require any additional protective measures such as respiratory protective equipment or a negative pressure laboratory to prevent aerosol exposure or release. Conclusions: Aerosol generation from common laboratory processes can be minimized by reducing sample volumes and concentrations if possible. Training laboratory staff in good microbiological techniques would further mitigate aerosols generated from common laboratory processes.

20.
J Food Prot ; 85(7): 1053-1060, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512130

RESUMO

ABSTRACT: Pulsed electric field (PEF) treatment, an alternative to thermal processing in the food industry, is insufficient to inactivate bacterial spores. Although spores that have been treated in this manner remain alive, specific understanding of their physiological properties is limited. The purpose of this study is to describe the morphology, viability, and germination behavior of Bacillus atrophaeus spores treated with PEF. Our findings indicate that nonlethal PEF treatment results in spore deformation, dipicolinic acid (DPA) leakage, and a shorter and more uniform germination lag time (\(\def\upalpha{\unicode[Times]{x3B1}}\)\(\def\upbeta{\unicode[Times]{x3B2}}\)\(\def\upgamma{\unicode[Times]{x3B3}}\)\(\def\updelta{\unicode[Times]{x3B4}}\)\(\def\upvarepsilon{\unicode[Times]{x3B5}}\)\(\def\upzeta{\unicode[Times]{x3B6}}\)\(\def\upeta{\unicode[Times]{x3B7}}\)\(\def\uptheta{\unicode[Times]{x3B8}}\)\(\def\upiota{\unicode[Times]{x3B9}}\)\(\def\upkappa{\unicode[Times]{x3BA}}\)\(\def\uplambda{\unicode[Times]{x3BB}}\)\(\def\upmu{\unicode[Times]{x3BC}}\)\(\def\upnu{\unicode[Times]{x3BD}}\)\(\def\upxi{\unicode[Times]{x3BE}}\)\(\def\upomicron{\unicode[Times]{x3BF}}\)\(\def\uppi{\unicode[Times]{x3C0}}\)\(\def\uprho{\unicode[Times]{x3C1}}\)\(\def\upsigma{\unicode[Times]{x3C3}}\)\(\def\uptau{\unicode[Times]{x3C4}}\)\(\def\upupsilon{\unicode[Times]{x3C5}}\)\(\def\upphi{\unicode[Times]{x3C6}}\)\(\def\upchi{\unicode[Times]{x3C7}}\)\(\def\uppsy{\unicode[Times]{x3C8}}\)\(\def\upomega{\unicode[Times]{x3C9}}\)\(\def\bialpha{\boldsymbol{\alpha}}\)\(\def\bibeta{\boldsymbol{\beta}}\)\(\def\bigamma{\boldsymbol{\gamma}}\)\(\def\bidelta{\boldsymbol{\delta}}\)\(\def\bivarepsilon{\boldsymbol{\varepsilon}}\)\(\def\bizeta{\boldsymbol{\zeta}}\)\(\def\bieta{\boldsymbol{\eta}}\)\(\def\bitheta{\boldsymbol{\theta}}\)\(\def\biiota{\\boldsymbol{\iota}}\)\(\def\bikappa{\boldsymbol{\kappa}}\)\(\def\bilambda{\boldsymbol{\lambda}}\)\(\def\\bimu{\boldsymbol{\mu}}\)\(\def\binu{\boldsymbol{\nu}}\)\(\def\bixi{\boldsymbol{\xi}}\)\(\def\biomicron{\boldsymbol{\micron}}\)\(\def\bipi{\boldsymbol{\pi}}\)\(\def\birho{\boldsymbol{\rho}}\)\(\def\bisigma{\boldsymbol{\sigma}}\)\(\def\bitau{\boldsymbol{\\tau}}\)\(\def\biupsilon{\boldsymbol{\upsilon}}\)\(\def\biphi{\boldsymbol{\phi}}\)\(\def\bichi{\boldsymbol{\chi}}\)\(\def\bipsy{\boldsymbol{\psy}}\)\(\def\biomega{\boldsymbol{\omega}}\)\(\def\bupalpha{\bf{\alpha}}\)\(\def\bupbeta{\bf{\beta}}\)\(\def\bupgamma{\bf{\gamma}}\)\(\def\bupdelta{\bf{\delta}}\)\(\def\bupvarepsilon{\bf{\varepsilon}}\)\(\def\bupzeta{\bf{\zeta}}\)\(\def\bupeta{\bf{\eta}}\)\(\def\buptheta{\bf{\theta}}\)\(\def\bupiota{\bf{\iota}}\)\(\def\bupkappa{\bf{\kappa}}\)\(\def\\buplambda{\bf{\lambda}}\)\(\def\bupmu{\bf{\mu}}\)\(\def\bupnu{\bf{\nu}}\)\(\def\bupxi{\bf{\xi}}\)\(\def\bupomicron{\bf{\micron}}\)\(\def\buppi{\bf{\pi}}\)\(\def\buprho{\bf{\rho}}\)\(\def\bupsigma{\bf{\sigma}}\)\(\def\buptau{\bf{\tau}}\)\(\def\bupupsilon{\bf{\upsilon}}\)\(\def\bupphi{\bf{\phi}}\)\(\def\bupchi{\bf{\chi}}\)\(\def\buppsy{\bf{\psy}}\)\(\def\bupomega{\bf{\omega}}\)\(\def\bGamma{\bf{\Gamma}}\)\(\def\bDelta{\bf{\Delta}}\)\(\def\bTheta{\bf{\Theta}}\)\(\def\bLambda{\bf{\Lambda}}\)\(\def\bXi{\bf{\Xi}}\)\(\def\bPi{\bf{\Pi}}\)\(\def\bSigma{\bf{\Sigma}}\)\(\def\bPhi{\bf{\Phi}}\)\(\def\bPsi{\bf{\Psi}}\)\(\def\bOmega{\bf{\Omega}}\)\({T_{{\rm{lag}}}}\)), but that there is no change in release duration (\(\Delta {T_{{\rm{release}}}}\)), germination ratio, or viability. Based on our findings, we conclude that an intact morphologic state and DPA content are not prerequisites for germination and full viability and that, in contrast to nutrient-induced germination in which initially slowly released DPA triggers subsequent germination events, leaked DPA during PEF treatment does not. Spores that have been subjected to this procedure remain dormant and preserve their full germinability. We found that PEF-treated spores respond to germinants more quickly and with less heterogeneity, possibly because the tiny cracks formed on the spore surface facilitate the germinants' access to the germination receptors situated on the spore's inner membrane. The consensus view that nonlethal PEF has less impact on spores that are still capable of forming CFUs under proper conditions is one-sided. This research advances our understanding of how spores behave following nonlethal PEF treatment and gives information on the topics of nosocomial sterilization, food safety, and public health.


Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Bacillus subtilis , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA