RESUMO
Dental implants, recognized for their enhanced functionality and aesthetic outcomes, are susceptible to peri-implant mucositis and subsequent peri-implantitis when oral hygiene is inadequate. Effective biofilm management is critical to prevent and manage these prevalent conditions and promote implant longevity. Materials with a two-dimensional (2D) structure have demonstrated robust antimicrobial properties. Among these, 2D magnesium phosphates have garnered significant attention due to their additional biocompatibility and osteoconductive properties. This case series explores the application of a thixotropic inorganic hydrogel, composed of 2D magnesium phosphate, in the surgical treatment of dental implant infections. The hydrogel was used for surgical dental implant decontamination in patients diagnosed with peri-implantitis characterized by inflammation in the peri-implant mucosa and subsequent progressive loss of supporting bone. The study encompassed eight cases with a history of peri-implantitis. Clinical measurements were recorded before and after treatment, including bleeding on probing, suppuration, and probing depth. Radiographic evaluations were conducted to assess the exposure of implant threads. The findings revealed a statistically significant decrease in probing depth, bleeding on probing, and the number of exposed implant threads following treatment with the magnesium phosphate hydrogel, though the exact role of the hydrogel in these improvements warrants further exploration.
RESUMO
The formation of biofilms on the surface of dental implants and abutment materials may lead to peri-implantitis and subsequent implant failure. Recently, innovative materials such as polyether-ether-ketone (PEEK) and its modifications have been used as abutment materials. However, there is limited knowledge on microbial adhesion to PEEK materials. The aim of this in vivo study was to investigate biofilm formation on the surface of conventional (titanium and zirconia) and PEEK implant abutment materials. Split specimens of titanium, zirconia, PEEK, and modified PEEK (PEEK-BioHPP) were manufactured, mounted in individual removable acrylic upper jaw splints, and worn by 20 healthy volunteers for 24 h. The surface roughness was determined using widefield confocal microscopy. Biofilm accumulation was investigated by fluorescence microscopy and quantified by imaging software. The surface roughness of the investigated materials was <0.2 µm and showed no significant differences between the materials. Zirconia showed the lowest biofilm formation, followed by titanium, PEEK, and PEEK-BioHPP. Differences were significant (p < 0.001) between the investigated materials, except for the polyether-ether-ketones. Generally, biofilm formation was significantly higher (p < 0.05) in the posterior region of the oral cavity than in the anterior region. The results of the present study show a material-dependent susceptibility to biofilm formation. The risk of developing peri-implantitis may be reduced by a specific choice of abutment material.
Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Titânio , Polietilenoglicóis , Cetonas , Biofilmes , Zircônio , Materiais Dentários , Teste de MateriaisRESUMO
BACKGROUND: All soft and solid surface structures in the oral cavity are covered by the acquired pellicle followed by bacterial colonization. This applies for natural structures as well as for restorative or prosthetic materials; the adherent bacterial biofilm is associated among others with the development of caries, periodontal diseases, peri-implantitis, or denture-associated stomatitis. Accordingly, there is a considerable demand for novel materials and coatings that limit and modulate bacterial attachment and/or propagation of microorganisms. OBJECTIVES AND FINDINGS: The present paper depicts the current knowledge on the impact of different physicochemical surface characteristics on bioadsorption in the oral cavity. Furthermore, it was carved out which strategies were developed in dental research and general surface science to inhibit bacterial colonization and to delay biofilm formation by low-fouling or "easy-to-clean" surfaces. These include the modulation of physicochemical properties such as periodic topographies, roughness, surface free energy, or hardness. In recent years, a large emphasis was laid on micro- and nanostructured surfaces and on liquid repellent superhydrophic as well as superhydrophilic interfaces. Materials incorporating mobile or bound nanoparticles promoting bacteriostatic or bacteriotoxic properties were also used. Recently, chemically textured interfaces gained increasing interest and could represent promising solutions for innovative antibioadhesion interfaces. Due to the unique conditions in the oral cavity, mainly in vivo or in situ studies were considered in the review. CONCLUSION: Despite many promising approaches for modulation of biofilm formation in the oral cavity, the ubiquitous phenomenon of bioadsorption and adhesion pellicle formation in the challenging oral milieu masks surface properties and therewith hampers low-fouling strategies. CLINICAL RELEVANCE: Improved dental materials and surface coatings with easy-to-clean properties have the potential to improve oral health, but extensive and systematic research is required in this field to develop biocompatible and effective substances.
Assuntos
Aderência Bacteriana , Biofilmes , Película Dentária , Boca , Propriedades de SuperfícieRESUMO
Lipophilic components are known to modulate the process of bioadhesion on the tooth surface. However, the presence of lipid droplets at the acquired pellicle under oral conditions has not been demonstrated, yet. The purpose of the present study was to establish a method for direct visualisation of lipids on the surface of hydrated, pellicle covered tooth samples by environmental scanning electron microscopy (ESEM), and to use this technique for studying the effects of rinsing with edible oils on the acquired pellicle under in vivo conditions. In situ pellicle formation was performed by 3 min exposure of enamel and dentin specimens in the oral cavity of volunteers. Subsequently, the volunteers rinsed in vivo with safflower oil or linseed oil for 30 s, and the specimens were further carried intraorally for periods from 0 min up to several hours. After intraoral exposure the specimens were treated by osmium tetroxide vapour, and were subsequently analysed by ESEM. This technique was capable to directly visualise the presence of lipid droplets at the pellicle's surface under hydrated conditions. ESEM analyses revealed that surface bound nano- and micro-sized lipid droplets were present at the acquired pellicle's surface even several hours after rinsing with edible oils indicating that these droplets had tightly adhered to the pellicle surface. Pellicle modification by edible oil rinsing as demonstrated in the present study might have the potential to be beneficial as an adjunct in dental prophylaxis.
Assuntos
Película Dentária/ultraestrutura , Gorduras Insaturadas na Dieta/administração & dosagem , Microscopia Eletrônica de Varredura/métodos , Adulto , Animais , Bactérias , Aderência Bacteriana , Biofilmes , Bovinos , Esmalte Dentário/microbiologia , Película Dentária/microbiologia , Dentina/microbiologia , Voluntários Saudáveis , Humanos , Propriedades de Superfície , Dente/microbiologia , Dente/ultraestruturaRESUMO
Aerobic methane oxidation coupled with denitrification (AME-D) has garnered significant attention as a promising technology for nitrogen removal from water. Effective biofilm management on the membrane surface is essential to enhance the efficiency of nitrate removal in AME-D systems. In this study, we introduce a novel and scalable layer-structured membrane (LSM) developed using a meticulously designed polyurethane sponge. The application of the LSM in advanced biofilm management for AME-D resulted in a substantial enhancement of denitrification performance. Our experimental results demonstrated remarkable improvements in nitrate-removal flux (92.8 mmol-N m-2 d-1) and methane-oxidation rate (325.6 mmol m-2 d-1) when using an LSM in a membrane biofilm reactor (L-MBfR) compared with a conventional membrane reactor (C-MBfR). The l-MBfR exhibited 12.4-, 6.8- and 3.4-fold increases in nitrate-removal rate, biomass-retention capacity, and methane-oxidation rate, respectively, relative to the control C-MBfR. Notably, the l-MBfR demonstrated a 3.5-fold higher abundance of denitrifying bacteria, including Xanthomonadaceae, Rhodocyclaceae, and Methylophilaceae. In addition, the denitrification-related enzyme activity was twice as high in the l-MBfR than in the C-MBfR. These findings underscore the LSM's ability to create anoxic/anaerobic microenvironments conducive to biofilm formation and denitrification. Furthermore, the LSM exhibited a unique advantage in shaping microbial community structures and facilitating cross-feeding interactions between denitrifying bacteria and aerobic methanotrophs. The results of this study hold great promise for advancing the application of MBfRs in achieving efficient and reliable nitrate removal through the AME-D pathway, facilitated by effective biofilm management.
Assuntos
Metano , Nitratos , Metano/metabolismo , Nitratos/metabolismo , Desnitrificação , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Oxirredução , Biofilmes , Nitrogênio/metabolismoRESUMO
Most oral diseases originate from biofilms whose formation is originated from the adhesion of salivary proteins and pioneer bacteria. Therefore, antimicrobial materials are mainly based on bactericidal methods, most of which have drug resistance and toxicity. Natural antifouling surfaces inspire new antibacterial strategies. The super wettable surfaces of lotus leaves and fish scales prompt design of biomimetic oral materials covered or mixed with super wettable materials to prevent adhesion. Bioinspired slippery surfaces come from pitcher plants, whose porous surfaces are infiltrated with lubricating liquid to form superhydrophobic surfaces to reduce the contact with liquids. It is believed that these new methods could provide promising directions for oral antimicrobial practice, improving antimicrobial efficacy.
RESUMO
BACKGROUND: Bioadhesion and surface interactions on enamel are of essential relevance for initiation, progression and prevention of caries and erosions. Salivary proteins on and within initial carious and erosive lesions can facilitate or aggravate de- and remineralization. This applies for the pellicle layer, the subsurface pellicle and for proteins within initial carious lesions. Little is known about these proteinaceous structures related to initial caries and erosion. Accordingly, there is a considerable demand for an understanding of the underlying processes occurring at the interface between the tooth surface and the oral cavity in order to develop novel agents that limit and modulate caries and erosion. Objectives and findings: The present paper depicts the current knowledge of the processes occurring at the interface of the tooth surface and the oral fluids. Proteinaceous layers on dental hard tissues can prevent or aggravate demineralization processes, whereas proteins within initial erosive or carious lesions might hinder remineralization considerably and restrict the entry of ions into lesions. CONCLUSIONS: Despite the fact that organic-inorganic surface interactions are of essential relevance for de- and remineralization processes at the tooth surface, there is limited knowledge on these clinically relevant phenomena. Accordingly, intensive research is necessary to develop new approaches in preventive dentistry.
RESUMO
The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air-liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed.