Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Drug Dev Res ; 85(3): e22192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678552

RESUMO

Non-small cell lung cancer (NSCLC) is a malignant tumor with low overall cure and survival rates. Uncovering abnormally expressed genes is significantly important for developing novel targeted therapies in NSCLC. This study aimed to discover new differentially expressed genes (DEGs) of NSCLC. The DEGs of NSCLC were identified in eight data sets from Gene Expression Omnibus (GEO) database. The expression profiles and the prognostic significance of SCN4B in LUAD and LUSC were analyzed using GEPIA database. LinkedOmics was used to identify co-expressed genes with SCN4B, which were further subjected to KEGG pathway enrichment analysis. SCN4B-overexpressing plasmid (pcDNA/SCN4B) was transfected into A549 and NCI-H2170 cells to elevate the expression of SCN4B. MTT and TUNEL assays were performed to evaluate cell viability and apoptosis. Relying on the screened DEGs from GEO database, we identified that SCN4B was significantly downregulated in LUAD and LUSC. We confirmed the downregulation of SCN4B in NSCLC tissues using GEPIA database. SCN4B has a prognostic value in LUAD, but not LUSC. KEGG pathway enrichment analysis of SCN4B-related genes showed that cGMP-PKG signaling pathway might be involved in the role of SCN4B in NSCLC. Overexpression of SCN4B in A549 and NCI-H2170 cells inhibited the cell viability. Besides, SCN4B overexpression induced apoptosis of A549 and NCI-H2170 cells. SCN4B inhibited the expression of PKG1 and p-CREB in NSCLC cells. Moreover, the inhibitory effects of SCN4B on tumor malignancy were attenuated by the activator of PKG. In conclusion, integrated bioinformatical analysis proved that SCN4B was downregulated and had a prognostic significance in NSCLC. In vitro experimental studies demonstrated that SCN4B regulated NSCLC cells viability and apoptosis via inhibiting cGMP-PKG signaling pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Biologia Computacional , GMP Cíclico , Neoplasias Pulmonares , Humanos , Células A549 , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais
2.
Small ; 19(14): e2205185, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635040

RESUMO

Nitric oxide (NO) plays a significant role in controlling the physiology and pathophysiology of the body, including the endothelial antiplatelet function and therefore, antithrombogenic property of the blood vessels. This property of NO can be exploited to prevent thrombus formation on artificial surfaces like extracorporeal membrane oxygenators, which when come into contact with blood lead to protein adsorption and thereby platelet activation causing thrombus formation. However, NO is extremely reactive and has a very short biological half-life in blood, so only endogenous generation of NO from the blood contacting material can result into a stable and kinetically controllable local delivery of NO. In this regards, highly hydrophilic bioactive nanogels are presented which can endogenously generate NO in blood plasma from endogenous NO-donors thereby maintaining a physiological NO flux. It is shown that NO releasing nanogels could initiate cGMP-dependent protein kinase signaling followed by phosphorylation of vasodilator-stimulated phosphoprotein in platelets. This prevents platelet activation and aggregation even in presence of highly potent platelet activators like thrombin, adenosine 5'-diphosphate, and U46619 (thromboxane A2 mimetic).


Assuntos
Óxido Nítrico , Trombose , Humanos , Óxido Nítrico/metabolismo , Nanogéis , GMP Cíclico/metabolismo , Plaquetas/metabolismo , Endotélio/metabolismo
3.
BMC Cancer ; 23(1): 1120, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978473

RESUMO

BACKGROUND: Ferroptosis is a newly classified form of regulated cell death with implications in various tumor progression pathways. However, the roles and mechanisms of ferroptosis-related genes in glioma remain unclear. METHODS: Bioinformatics analysis was employed to identify differentially expressed ferroptosis-related genes in glioma. The expression levels of hub genes were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). To explore the role of SLC39A14 in glioma, a series of in vitro assays were conducted, including cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and Transwell assays. Enzyme-linked immunosorbent assay (ELISA) was utilized to measure the levels of indicators associated with ferroptosis. Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining were performed to illustrate the clinicopathological features of the mouse transplantation tumor model. Additionally, Western blot analysis was used to assess the expression of the cGMP-PKG pathway-related proteins. RESULTS: Seven ferroptosis-related hub genes, namely SLC39A14, WWTR1, STEAP3, NOTCH2, IREB2, HIF1A, and FANCD2, were identified, all of which were highly expressed in glioma. Knockdown of SLC39A14 inhibited glioma cell proliferation, migration, and invasion, while promoting apoptosis. Moreover, SLC39A14 knockdown also facilitated erastin-induced ferroptosis, leading to the suppression of mouse transplantation tumor growth. Mechanistically, SLC39A14 knockdown inhibited the cGMP-PKG signaling pathway activation. CONCLUSION: Silencing SLC39A14 inhibits ferroptosis and tumor progression, potentially involving the regulation of the cGMP-PKG signaling pathway.


Assuntos
Proteínas de Transporte de Cátions , Ferroptose , Glioma , Animais , Camundongos , Ferroptose/genética , Glioma/patologia , Piperazinas , Apoptose/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteínas de Transporte de Cátions/genética
4.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240188

RESUMO

Usher syndrome (USH) is characterised by degenerative vision loss known as retinitis pigmentosa (RP), sensorineural hearing loss, and vestibular dysfunction. RP can cause degeneration and the loss of rod and cone photoreceptors, leading to structural and functional changes in the retina. Cep250 is a candidate gene for atypical Usher syndrome, and this study describes the development of a Cep250 KO mouse model to investigate its pathogenesis. OCT and ERG were applied in Cep250 and WT mice at P90 and P180 to access the general structure and function of the retina. After recording the ERG responses and OCT images at P90 and P180, the cone and rod photoreceptors were visualised using an immunofluorescent stain. TUNEL assays were applied to observe the apoptosis in Cep250 and WT mice retinas. The total RNA was extracted from the retinas and executed for RNA sequencing at P90. Compared with WT mice, the thickness of the ONL, IS/OS, and whole retina of Cep250 mice was significantly reduced. The a-wave and b-wave amplitude of Cep250 mice in scotopic and photopic ERG were lower, especially the a-wave. According to the immunostaining and TUNEL stain results, the photoreceptors in the Cep250 retinas were also reduced. An RNA-seq analysis showed that 149 genes were upregulated and another 149 genes were downregulated in Cep250 KO retinas compared with WT mice retinas. A KEGG enrichment analysis indicated that cGMP-PKG signalling pathways, MAPK signalling pathways, edn2-fgf2 axis pathways, and thyroid hormone synthesis were upregulated, whereas protein processing in the endoplasmic reticulum was downregulated in Cep250 KO eyes. Cep250 KO mice experience a late-stage retinal degeneration that manifests as the atypical USH phenotype. The dysregulation of the cGMP-PKG-MAPK pathways may contribute to the pathogenesis of cilia-related retinal degeneration.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Síndromes de Usher , Camundongos , Animais , Degeneração Retiniana/genética , Síndromes de Usher/genética , Retinose Pigmentar/genética , Retina/metabolismo , Análise de Sequência de RNA , Modelos Animais de Doenças
5.
Pharm Biol ; 61(1): 683-695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37096968

RESUMO

CONTEXT: Hawthorn leaves are a kind of widely used medicinal plant in China. The major ingredient, hawthorn leaves flavonoids (HLF), have cardiotonic, cardioprotective, and vascular protective effects. OBJECTIVE: The study evaluated the protective role of HLF in cardiac remodelling and the underlying mechanisms under simulated microgravity by hindlimb unloading rats. MATERIALS AND METHODS: Adult male Sprague-Dawley rats were divided into control, HLF, HU (hindlimb unloading) and HU + HLF groups (n = 8). After HU and daily intragastric administration at the dose of 100 mg/kg/d for 8 weeks, cardiac function and structure were evaluated by biochemical indices and histopathology. We identified the main active compounds and mechanisms involved in the cardioprotective effects of HLF via bioinformatics and molecular docking analysis, and relative signalling pathway activity was verified by Western blot. RESULTS: HLF treatment could reverse the HU-induced decline in LV-EF (HU, 55.13% ± 0.98% vs. HU + HLF, 71.16% ± 5.08%), LV-FS (HU, 29.44% ± 0.67% vs. HU + HLF, 41.62% ± 4.34%) and LV mass (HU, 667.99 ± 65.69 mg vs. HU + HLF, 840.02 ± 73.00 mg). Furthermore, HLF treatment significantly increased NPRA expression by 135.39%, PKG by 51.27%, decreased PDE5A by 20.03%, NFATc1 by 41.68% and Rcan1.4 by 54.22%. CONCLUSIONS: HLF plays a protective effect on HU-induced cardiac remodelling by enhancing NPRA-cGMP-PKG pathway and suppressing the calcineurin-NFAT pathway, which provides a theoretical basis for use in clinical therapies.


Assuntos
Crataegus , Ausência de Peso , Ratos , Animais , Ratos Sprague-Dawley , Crataegus/química , Remodelação Ventricular , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Fatores de Transcrição , Elevação dos Membros Posteriores , Folhas de Planta
6.
Neurobiol Dis ; 172: 105816, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820646

RESUMO

Early cognitive impairment in Alzheimer's disease may result in part from synaptic dysfunction caused by the accumulation oligomeric assemblies of amyloid ß-protein (Aß). Changes in hippocampal function seem critical for cognitive impairment in early Alzheimer's disease (AD). Diffusible oligomers of Aß (oAß) have been shown to block canonical long-term potentiation (LTP) in the CA1 area of hippocampus, but whether there is also a direct effect of oAß on synaptic transmission and plasticity at synapses between mossy fibers (axons) from the dentate gyrus granule cells and CA3 pyramidal neurons (mf-CA3 synapses) is unknown. Studies in APP transgenic mice have suggested an age-dependent impairment of mossy fiber LTP. Here we report that although endogenous AD brain-derived soluble oAß had no effect on mossy-fiber basal transmission, it strongly impaired paired-pulse facilitation in the mossy fiber pathway and presynaptic mossy fiber LTP (mf-LTP). Selective activation of both ß1 and ß2 adrenergic receptors and their downstream cAMP/PKA signaling pathway prevented oAß-mediated inhibition of mf-LTP. Unexpectedly, activation of the cGMP/PKG signaling pathway also prevented oAß-impaired mf-LTP. Our results reveal certain specific pharmacological targets to ameliorate human oAß-mediated impairment at the mf-CA3 synapse.


Assuntos
Doença de Alzheimer , Potenciação de Longa Duração , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/fisiologia , Camundongos , Fibras Musgosas Hipocampais/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
7.
Biochem Biophys Res Commun ; 547: 9-14, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33588236

RESUMO

Lactic acid in tumor microenvironment inhibits iNKT cell functions and thus dampens their anti-tumor efficacy. The underlying mechanisms remain unclear. Here, we show that phosphodiesterase-5 inhibitors, sildenafil and tadalafil, promote IFN-γ and IL-4 production in iNKT cells in a cGMP-PKG pathway dependent manner. To favor their cytokine production, iNKT cells reduce Pde5a mRNA lever after activation. In line with the reduction of cytokines caused by lactic acid, lactic acid elevates Pde5a mRNA lever in activated iNKT cells. As a result, phosphodiesterase-5 inhibitor partially restores the cytokine production in lactic acid-treated cells. Our results demonstrate that phosphodiesterase-5 inhibits cytokine production in iNKT cells, and that contributes to the lactic acid-caused dysfunction of iNKT cells.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Ácido Láctico/farmacologia , Células T Matadoras Naturais/efeitos dos fármacos , Neoplasias/imunologia , Inibidores da Fosfodiesterase 5/farmacologia , Animais , Proliferação de Células , Citocinas/imunologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Citrato de Sildenafila/farmacologia , Tadalafila/farmacologia
8.
Exp Eye Res ; 212: 108752, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478738

RESUMO

Retinitis Pigmentosa represents a group of genetic disorders that cause progressive vision loss via degeneration of photoreceptors, but there is in principle no treatment available. For any therapy development, a deeper comprehension of the disease-leading mechanism(s) at the molecular level is needed. Here we focused on the cGMP-PKG system, which has been suggested to be a driver in several models of the disease. To gain insights in its downstream signaling we manipulated the cGMP-PKG system with the aid of organotypic retinal explant cultures from either a mouse-based disease model, i.e. the rd1 mouse, or its healthy wild-type counterpart (wt), by adding different types of cGMP analogues to either inhibit or activate PKG in retinal explants from rd1 and wt, respectively. An RNA sequencing was then performed to study the cGMP-PKG dependent transcriptome. Expression changes of gene sets related to specific pathways or functions, that fulfilled criteria involving that the changes should match PKG activation and inhibition, were determined via bioinformatics. The analyses highlighted that several gene sets linked to oxidative phosphorylation and mitochondrial pathways were regulated by this enzyme system. Specifically, the expression of such pathway components was upregulated in the rd1 treated with PKG inhibitor and downregulated in the wt with PKG activator treatment, suggesting that cGMP-PKG act as a negative regulator in this context. Downregulation of energy production pathways may thus play an integral part in the mechanism behind the degeneration for at least several RP mutations.


Assuntos
GMP Cíclico/genética , DNA/genética , Mutação , Proteínas Quinases/genética , Retina/metabolismo , Retinose Pigmentar/genética , Transcriptoma/genética , Animais , Células Cultivadas , GMP Cíclico/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C3H , Proteínas Quinases/metabolismo , Retina/patologia , Degeneração Retiniana , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Transdução de Sinais
9.
FASEB J ; 34(5): 6335-6350, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173907

RESUMO

Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca2+ influx in rod and cone photoreceptors. Mutations in cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. Mice lacking functional cone CNG channel show endoplasmic reticulum (ER) stress-associated cone degeneration. The elevated cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) signaling and upregulation of the ER Ca2+ channel ryanodine receptor 2 (RyR2) have been implicated in cone degeneration. This work investigates the potential contribution of RyR2 to cGMP/PKG signaling-induced ER stress and cone degeneration. We demonstrated that the expression and activity of RyR2 were highly regulated by cGMP/PKG signaling. Depletion of cGMP by deleting retinal guanylate cyclase 1 or inhibition of PKG using chemical inhibitors suppressed the upregulation of RyR2 in CNG channel deficiency. Depletion of cGMP or deletion of Ryr2 equivalently inhibited unfolded protein response/ER stress, activation of the CCAAT-enhancer-binding protein homologous protein, and activation of the cyclic adenosine monophosphate response element-binding protein, leading to early-onset cone protection. In addition, treatment with cGMP significantly enhanced Ryr2 expression in cultured photoreceptor-derived Weri-Rb1 cells. Findings from this work demonstrate the regulation of cGMP/PKG signaling on RyR2 in the retina and support the role of RyR2 upregulation in cGMP/PKG signaling-induced ER stress and photoreceptor degeneration.


Assuntos
GMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Proteínas do Olho/fisiologia , Guanilato Ciclase/fisiologia , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas
10.
J Biochem Mol Toxicol ; 35(6): 1-11, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33634536

RESUMO

This paper investigates the function of lncRNA DARS-AS1 in cervical cancer (CC) as well as its in-depth mechanism. The differential expression of DARS-AS1 and ATP1B2 were analyzed based on The Cancer Genome Atlas and the Genotype-Tissue Expression databases, and the survival rate was measured using Kaplan-Meier survival analysis. Biological function experiments were performed to detect cell proliferation, invasion, and migration. Quantitative real-time polymerase chain reaction was carried out to detect the expression of DARS-AS1 and ATP1B2. Western blot analysis was utilized to assess the protein levels of ATP1B2 and cGMP-PKG pathway-related proteins. DARS-AS1 was expressed at high levels in CC tissues and cell lines, and high expression of DARS-AS1 indicated a lower survival rate. CCK-8 and colony formation assays revealed that the overexpression of DARS-AS1 promoted the proliferation of CC cells. Furthermore, bioinformatics analysis suggested that the cGMP-PKG pathway ranks as the first pathway enriched by the differential genes that correlated with DARS-AS1 (|r| > 0.4). ATP1B2, as a cGMP-PKG pathway-related gene, was significantly correlated with the overall survival of CC patients. We further confirmed that ATP1B2 was lowly expressed in CC and negatively correlated with the DARS-AS1 expression. Then, biological function experiments exhibited that the promotion of cell proliferation, invasion, and migration resulted due to the upregulation of DARS-AS1 could be canceled by ATP1B2 overexpression. Finally, Western blot revealed that upregulation of DARS-AS1 could activate the cGMP-PKG pathway, while overexpression of ATP1B2 reversed this activation. Our study revealed that DARS-AS1/ATP1B2 contributes to regulating the progression of CC at least partially by modulating the cGMP-PKG pathway.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Sistemas do Segundo Mensageiro , Neoplasias do Colo do Útero/metabolismo , GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
11.
J Cell Physiol ; 235(11): 7757-7768, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31742692

RESUMO

Long noncoding RNAs (lncRNAs) play a crucial role in several malignances, involving nasopharyngeal carcinoma (NPC), a heterogeneous disease. This study investigated mechanism of serine/arginine repetitive matrix protein 2-alternative splicing (SRRM2-AS) in NPC cell proliferation, differentiation, and angiogenesis. Initially, differentially expressed lncRNAs were screened out via microarray analysis. Vascular endothelial growth factor (VEGF) protein positive rate and microvessel density (MVD) were determined in NPC and adjacent tissues. NPC CNE-2 cells were treated with a series of vector and small interfering RNA to explore the effect of SRRM2-AS in NPC. The target relationship between myosin light chain kinase (MYLK) and SRRM2-AS was verified. Levels of SRRM2-AS, MYLK, cGMP, PKG, VEGF, PCNA, Ki-67, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase 3 were determined after transfection. Finally, the effect of SRRM2-AS on cell proliferation, colony formation, angiogenesis, cell cycle, and apoptosis in NPC was evaluated. SRRM2-AS was highly expressed and MYLK was poorly expressed in NPC tissues. VEGF protein positive rate and MVD were elevated in NPC tissues. MYLK was confirmed to be a target gene of SRRM2-AS. Silencing of SRRM2-AS elevated levels of MYLK, cGMP, PKG, Bax, and Caspase 3, but decreased levels of VEGF, PCNA, Ki-67, and Bcl-2. Especially, silencing of SRRM2-AS suppressed cell proliferation, colony formation and angiogenesis, blocked cell cycle, and enhanced cell apoptosis in NPC. Our results suggested that silencing of SRRM2-AS protected against angiogenesis of NPC cells by upregulating MYLK and activating the cGMP-PKG signaling pathway, which provides a new target for NPC treatment.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neovascularização Patológica/genética , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Proteínas de Ligação ao Cálcio/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Quinase de Cadeia Leve de Miosina/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
12.
J Cell Physiol ; 234(6): 9019-9032, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30378115

RESUMO

Extensive investigations into long noncoding RNAs (lncRNAs) in various diseases and cancers, including acute myocardial infarction (AMI) have been conducted. The current study aimed to investigate the role of lncRNA solute carrier family 8 member A1 antisense RNA 1 (SLC8A1-AS1) in myocardial damage by targeting solute carrier family 8 member A1 (SLC8A1) via cyclic guanosine 3',5'-monophosphate-protein kinase G (cGMP-PKG) signaling pathway in AMI mouse models. Differentially expressed lncRNA in AMI were initially screened and target relationship between lncRNA SLC8A1-AS1 and SLC8A1 was then verified. Infarct size, levels of inflammatory factors, biochemical indicators, and the positive expression of the SLC8A1 protein in AMI were subsequently determined. The expression of SLC8A1-AS1, SLC8A1, PKG1, PKG2, atrial natriuretic peptide, and brain natriuretic peptide was detected to assess the effect of SLC8A1-AS1 on SLC8A1 and cGMP-PKG. The respective contents of superoxide dismutase, lactate dehydrogenase (LDH), and malondialdehyde (MDA) were detected accordingly. Microarray data GSE66360 provided evidence indicating that SLC8A1-AS1 was poorly expressed in AMI. SLC8A1 was verified to be a target gene of lncRNA SLC8A1-AS1. SLC8A1-AS1 upregulation decreased levels of left ventricular end-systolic diameter, -dp/ dt max , interleukin 1ß (IL-1ß), IL-6, transforming growth factor α, nitric oxide, inducible nitric-oxide synthase, endothelial nitric-oxide synthase, infarct size, LDH activity and MDA content, and increased IL-10, left ventricular end-diastolic pressure and + dp/ dt max . Furthermore, the overexpression of SLC8A1-AS1 was noted to elicit an inhibitory effect on the cGMP-PKG signaling pathway via SLC8A1. In conclusion, lncRNA SLC8A1-AS1, by downregulating SLC8A1 and activating the cGMP-PKG signaling pathway, was observed to alleviate myocardial damage, inhibit the release of proinflammatory factors and reduce infarct size, ultimately protecting against myocardial damage.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/enzimologia , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de GMP Cíclico/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Hemodinâmica , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , RNA Antissenso/genética , RNA Longo não Codificante/genética , Sistemas do Segundo Mensageiro , Trocador de Sódio e Cálcio/genética , Função Ventricular Esquerda
13.
Cardiovasc Diabetol ; 18(1): 107, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429767

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a difficult disease with high morbidity and mortality rates and lacks an effective treatment. Here, we report the therapeutic effect of dapagliflozin, a sodium-glucose cotransporter 2 inhibitor (SGLT2i), on hypertension + hyperlipidemia-induced HFpEF in a pig model. METHODS: HFpEF pigs were established by infusing a combination of deoxycorticosterone acetate (DOCA) and angiotensin II (Ang II), and Western diet (WD) feeding for 18 weeks. In the 9th week, half of the HFpEF pigs were randomly assigned to receive additional dapagliflozin treatment (10 mg/day) by oral gavage daily for the next 9 weeks. Blood pressure, lipid levels, echocardiography and cardiac hemodynamics for cardiac structural and functional changes, as well as epinephrine and norepinephrine concentrations in the plasma and tissues were measured. After sacrifice, cardiac fibrosis, the distribution of tyrosine hydroxylase (TH), inflammatory factors (IL-6 and TNF-α) and NO-cGMP-PKG pathway activity in the cardiovascular system were also determined. RESULTS: Blood pressure, total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) were markedly increased in HFpEF pigs, but only blood pressure was significantly decreased after 9 weeks of dapagliflozin treatment. By echocardiographic and hemodynamic assessment, dapagliflozin significantly attenuated heart concentric remodeling in HFpEF pigs, but failed to improve diastolic function and compliance with the left ventricle (LV). In the dapagliflozin treatment group, TH expression and norepinephrine concentration in the aorta were strongly mitigated compared to that in the HFpEF group. Moreover, inflammatory cytokines such as IL-6 and TNF-α in aortic tissue were markedly elevated in HFpEF pigs and inhibited by dapagliflozin. Furthermore, the reduced expression of eNOS and the PKG-1 protein and the cGMP content in the aortas of HFpEF pigs were significantly restored after 9 weeks of dapagliflozin treatment. CONCLUSION: 9 weeks of dapagliflozin treatment decreases hypertension and reverses LV concentric remodeling in HFpEF pigs partly by restraining sympathetic tone in the aorta, leading to inhibition of the inflammatory response and NO-cGMP-PKG pathway activation.


Assuntos
Aorta/inervação , Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Hipertensão/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Biomarcadores/sangue , Pressão Sanguínea/efeitos dos fármacos , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Hipertensão/sangue , Hipertensão/diagnóstico , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Lipídeos/sangue , Óxido Nítrico/metabolismo , Norepinefrina/metabolismo , Sus scrofa , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia
14.
Nitric Oxide ; 88: 1-9, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30880106

RESUMO

Enhanced vasoconstriction and decreased vasodilatation due to endothelial dysfunction contribute to the progression of hypertension. Angiotensin (Ang)-(1-7) plays important roles in regulating the cardiovascular activity. The current study aimed to investigate the roles of Ang-(1-7) in modulating blood pressure, vascular tension and its signal pathway in spontaneously hypertensive rats (SHR). The effects of intravenous injection of drugs were determined in rats with anesthesia in vivo. Mesenteric artery (MA), coronary artery (CA) and pulmonary artery (PA) were isolated from rats and isometric tension measurements in arteries were performed. Compared with Wistar-Kyoto rats (WKY), the high K+ induced vasoconstriction was enhanced and acetylcholine-induced vasodilatation were attenuated in the MA, CA and PA in SHR. Intravenous injection of Ang-(1-7) decreased, while A-779 increased mean arterial pressure and abolished the hypotensive effect of Ang-(1-7) in SHR. Ang-(1-7) caused dose-dependent relaxation in MA, CA and PA in SHR, which was inhibited by pretreatment with Mas receptor antagonist A-779, nitric oxide (NO) synthase inhibitor l-NAME, guanylate cyclase inhibitor ODQ and protein kinase G (PKG) inhibitor DT-2. The Mas receptor expression, NO, cGMP and PKG levels of the three above arteries of SHR were lower than that of WKY. Ang-(1-7) increased the NO, cGMP and PKG levels in arteries from SHR, which was blocked by A-779. Activation of the Mas receptor by Ang-(1-7) relaxes the MA, CA, and PA through the NO-cGMP-PKG pathway, which contributes to the decrease of arterial pressure in SHR.


Assuntos
Angiotensina I/farmacologia , Fragmentos de Peptídeos/farmacologia , Vasodilatação/efeitos dos fármacos , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Óxido Nítrico/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Nitric Oxide ; 86: 12-20, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772501

RESUMO

PURPOSE: This study investigated the intracellular mechanisms involved in the vasodilatation induced by the classic NO donor SNP and the non-classic NO donor cis-[Ru(bpy)2(py)(NO2)](PF6) (or RuBPY) in mesenteric resistance arteries obtained from renal hypertensive (2K-1C) and normotensive (2K) rats. METHODS: On the basis of fluorimetric assays in cultured vascular smooth muscle cells (VSMCs) isolated from 2K-1C and 2K rats, we measured NO release from SNP and RuBPY, cytosolic Ca2+ concentration ([Ca2+]c), and reactive oxygen species (ROS) with the selective probes DAF-2DA, Fluo-3AM and the more selective probe for peroxynitrite (7-CBA), respectively. We determined isometric tension in mesenteric arteries to assess SNP- and RuBPY-induced relaxation. RESULTS: SNP and RuBPY released NO in comparable amounts in cultured aortic VSMCs from hypertensive 2K-1C and normotensive 2K rats. The NO0 scavenger hydroxocobalamin blunted NO release. Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibition with thapsigargin reduced [Ca2+]c in normotensive 2K rat VSMCs only. ROS amounts were greater in hypertensive 2K-1C than in normotensive 2K rat VSMCs, but neither SNP nor RuBPY altered ROS concentrations in any of the groups. SNP and RuBPY induced similar relaxation in hypertensive 2K-1C and normotensive 2K rat mesenteric resistance arteries. The SNP and RuBPY-induced relaxation involves sGC and PKG activation. On the other hand, SNP but not RuBPY activates K+ channels. Interestingly, SERCA inhibition reduces SNP induced relaxation only in normotensive 2K rat mesenteric arteries whereas RuBPY-induced relaxation does not involve SERCA activation in both normotensive and hypertensive arteries. CONCLUSION: Our results indicate that SNP and RuBPY-induced mesenteric resistance artery relaxation involves NO/sGC/cGMP/PKG pathway activation. K+ channels and SERCA activation is required to SNP but not for RuBPY-induced relaxation. Moreover, SERCA seems to be impaired in hypertensive 2K-1C rat mesenteric resistance arteries although it does not impact SNP- or RuBPY-induced relaxation.


Assuntos
Complexos de Coordenação/farmacologia , Hipertensão Renal/fisiopatologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Óxido Nítrico/metabolismo , Canais de Potássio/metabolismo , Ratos Wistar , Rutênio/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Guanilil Ciclase Solúvel/metabolismo
16.
Reprod Biomed Online ; 38(3): 289-299, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30655075

RESUMO

RESEARCH QUESTION: What is the effect of C-type natriuretic peptide (CNP) on human sperm capacitation in vitro and what is the mechanism of this effect? DESIGN: CNP/NPR-B expression in the female rat genital tract was examined by immunohistochemistry and western blot assay, and then the role of CNP in human sperm capacitation was determined. The signal transduction pathway of CNP in the process was determined to elucidate the regulation mechanism of CNP by enzyme-linked immunosorbent assay and flow cytometry. RESULTS: Both CNP and NPR-B were expressed in the genital tract of female rats, especially in the mucosa epithelium cell of the oviduct; the CNP level in the rat oviduct was higher than that in the cervix. Both CNP and NPR-B level in the rat oviduct varied during the oestrus cycle, maximal expression being observed at proestrus. Furthermore, intracellular cGMP level in spermatozoa was significantly enhanced by CNP (P < 0.01). PKG activity was detected in the spermatozoa, and it can be activated by the CNP and 8-Br-cGMP (cGMP analogue). The PKG inhibitor KT5823 inhibited the effect of CNP on sperm hyperactivation and the acrosome reaction. Finally, Ca2+ and tyrosine phosphorylation levels in spermatozoa were markedly improved by CNP and 8-Br-cGMP but significantly inhibited by the addition of KT5823 (P < 0.05). CONCLUSIONS: CNP secreted by the female genital tract might bind to NPR-B on the spermatozoa. It successively stimulated intracellular cGMP/PKG signalling, increased Ca2+ and tyrosine-phosphorylated proteins, promoted hyperactivation and induced the acrosome reaction, which ultimately facilitated sperm capacitation.


Assuntos
Cálcio/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Transdução de Sinais/fisiologia , Capacitação Espermática/fisiologia , Animais , Colo do Útero/metabolismo , Feminino , Humanos , Masculino , Oviductos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores do Fator Natriurético Atrial/metabolismo , Espermatozoides/metabolismo , Tirosina/metabolismo
17.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795439

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the pork industry worldwide each year. Our previous research demonstrated that heme oxygenase-1 (HO-1) can suppress PRRSV replication via an unknown molecular mechanism. In this study, inhibition of PRRSV replication was demonstrated to be mediated by carbon monoxide (CO), a downstream metabolite of HO-1. Using several approaches, we demonstrate that CO significantly inhibited PRRSV replication in both a PRRSV permissive cell line, MARC-145, and the predominant cell type targeted during in vivo PRRSV infection, porcine alveolar macrophages (PAMs). Our results showed that CO inhibited intercellular spread of PRRSV; however, it did not affect PRRSV entry into host cells. Furthermore, CO was found to suppress PRRSV replication via the activation of the cyclic GMP/protein kinase G (cGMP/PKG) signaling pathway. CO significantly inhibits PRRSV-induced NF-κB activation, a required step for PRRSV replication. Moreover, CO significantly reduced PRRSV-induced proinflammatory cytokine mRNA levels. In conclusion, the present study demonstrates that CO exerts its anti-PRRSV effect by activating the cellular cGMP/PKG signaling pathway and by negatively regulating cellular NF-κB signaling. These findings not only provide new insights into the molecular mechanism of HO-1 inhibition of PRRSV replication but also suggest potential new control measures for future PRRSV outbreaks. IMPORTANCE: PRRSV causes great economic losses each year to the swine industry worldwide. Carbon monoxide (CO), a metabolite of HO-1, has been shown to have antimicrobial and antiviral activities in infected cells. Our previous research demonstrated that HO-1 can suppress PRRSV replication. Here we show that endogenous CO produced through HO-1 catalysis mediates the antiviral effect of HO-1. CO inhibits PRRSV replication by activating the cellular cGMP/PKG signaling pathway and by negatively regulating cellular NF-κB signaling. These findings not only provide new insights into the molecular mechanism of HO-1 inhibition of PRRSV replication but also suggest potential new control measures for future PRRSV outbreaks.


Assuntos
Antivirais/farmacologia , Monóxido de Carbono/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/genética , Heme Oxigenase-1/genética , Macrófagos Alveolares/efeitos dos fármacos , NF-kappa B/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Animais , Antivirais/metabolismo , Monóxido de Carbono/metabolismo , Linhagem Celular , Chlorocebus aethiops , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Heme Oxigenase-1/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , NF-kappa B/metabolismo , Compostos Organometálicos/metabolismo , Compostos Organometálicos/farmacologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Pirazinas/farmacologia , Pirróis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Suínos , Internalização do Vírus , Replicação Viral/efeitos dos fármacos
18.
Heart Vessels ; 33(8): 948-957, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29546540

RESUMO

Implantation of left ventricular assist devices (LVADs) as bridge to transplant in end-stage heart failure allows for analyzing reverse remodeling processes of the supported heart. Whether this therapy influences the cGMP-PKG signaling pathway, which is currently under thorough investigation for developing new heart failure therapeutics, is unknown. In fourteen end-stage heart failure patients (8 with dilated cardiomyopathy, DCM; 6 with ischemic cardiomyopathy, ICM) tissue specimens of left ventricles were collected at LVAD implantation and afterwards at receiver heart explantation, respectively. Then the expressions of key components of the cGMP-PKG signaling pathway were determined by polymerase chain reaction (ANP; BNP; natriuretic peptide receptor A, NPR-A; natriuretic peptide receptor C, NPR-C; neprilysin; NOS3; soluble guanylyl cyclase, sGC; PDE5; cGMP-dependent protein kinase G, PKG) and enzyme-linked immunosorbent assay (cGMP), respectively. Patients were predominantly male, 52 ± 10 years old, were receiving recommended heart failure therapy, and had their donor organ implanted after 351 ± 317 days of LVAD support. Except for more DCM patients with ICD therapy, no significant differences were detected between ICM and DCM, which also applies to the expression of cGMP-PKG pathway components at baseline. After LVAD support, ANP, NPR-C, and cGMP were significantly down-regulated and neprilysin, PDE5, and PKG I expressions were reduced with borderline significance in DCM, but not in ICM patients. Multiple significant correlations were found for expression differences (i.e., expression at LVAD implantation minus expression at heart transplantation) both in DCM and ICM, even though there was a closer connection between the NO and NP side of the cGMP-PKG pathway in DCM patients. Furthermore, duration of LVAD support negatively correlated with expression differences of PKG I, PDE5, and sGC in ICM, but not in DCM. Originating from the same activation level at LVAD implantation, cardiac unloading significantly alters key components of the cGMP-PKG pathway in DCM, but not in ICM patients. This etiology-specific regulation should be considered when analyzing therapeutic interventions with effects on this signaling pathway.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , GMP Cíclico/genética , Regulação da Expressão Gênica , Coração Auxiliar , Isquemia Miocárdica/terapia , RNA/genética , Remodelação Ventricular , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/terapia , GMP Cíclico/biossíntese , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/genética , Isquemia Miocárdica/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
19.
Environ Toxicol ; 32(8): 2004-2020, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27774770

RESUMO

Arsenite has been shown to induce a variety of oxidative damage in mammalian cells. However, the mechanisms underlying cellular responses to its adverse effects remain unknown. We previously showed that the level of Nrf2, a nuclear transcription factor significantly increased in arsenite-treated human bronchial epithelial (HBE) cells suggesting that Nrf2 is involved in responding to arsenite-induced oxidative damage. To explore how Nrf2 can impact arsenite-induced oxidative damage, in this study, we examined Nrf2 activation and its regulation upon cellular arsenite exposure as well as its effects on arsenite-induced oxidative damage in HBE cells. We found that Nrf2 mRNA and protein levels were significantly increased by arsenite in a dose- and time-dependent manner. Furthermore, we showed that over-expression of Nrf2 significantly reduced the level of arsenite-induced oxidative damage in HBE cells including DNA damage, chromosomal breakage, lipid peroxidation and depletion of antioxidants. This indicates a protective role of Nrf2 against arsenite toxicity. This was further supported by the fact that activation of Nrf2 by its agonists, tertiary butylhydroquinone (t-BHQ) and sulforaphane (SFN) resulted in the same protective effects against arsenite toxicity. Moreover, we demonstrated that arsenite-induced activation of Nrf2 was mediated by the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling pathway. This is the first evidence showing that Nrf2 protects against arsenite-induced oxidative damage through the cGMP-PKG pathway. Our study suggests that activation of Nrf2 through the cGMP-PKG signaling pathway in HBE cells may be developed as a new strategy for prevention of arsenite toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2004-2020, 2017.


Assuntos
Arsenitos/toxicidade , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Linhagem Celular , Humanos , Hidroquinonas/farmacologia , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/agonistas , Transdução de Sinais , Sulfóxidos
20.
J Mol Cell Cardiol ; 91: 215-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773602

RESUMO

The balanced signaling between the two cyclic nucleotides (cNs) cAMP and cGMP plays a critical role in regulating cardiac contractility. Their degradation is controlled by distinctly regulated phosphodiesterase isoenzymes (PDEs), which in turn are also regulated by these cNs. As a result, PDEs facilitate communication between the ß-adrenergic and Nitric Oxide (NO)/cGMP/Protein Kinase G (PKG) signaling pathways, which regulate the synthesis of cAMP and cGMP respectively. The phenomena in which the cAMP and cGMP pathways influence the dynamics of each other are collectively referred to as cN cross-talk. However, the cross-talk response and the individual roles of each PDE isoenzyme in shaping this response remain to be fully characterized. We have developed a computational model of the cN cross-talk network that mechanistically integrates the ß-adrenergic and NO/cGMP/PKG pathways via regulation of PDEs by both cNs. The individual model components and the integrated network model replicate experimentally observed activation-response relationships and temporal dynamics. The model predicts that, due to compensatory interactions between PDEs, NO stimulation in the presence of sub-maximal ß-adrenergic stimulation results in an increase in cytosolic cAMP accumulation and corresponding increases in PKA-I and PKA-II activation; however, the potentiation is small in magnitude compared to that of NO activation of the NO/cGMP/PKG pathway. In a reciprocal manner, ß-adrenergic stimulation in the presence of sub-maximal NO stimulation results in modest cGMP elevation and corresponding increase in PKG activation. In addition, we demonstrate that PDE2 hydrolyzes increasing amounts of cAMP with increasing levels of ß-adrenergic stimulation, and hydrolyzes increasing amounts of cGMP with decreasing levels of NO stimulation. Finally, we show that PDE2 compensates for inhibition of PDE5 both in terms of cGMP and cAMP dynamics, leading to cGMP elevation and increased PKG activation, while maintaining whole-cell ß-adrenergic responses similar to that prior to PDE5 inhibition. By defining and quantifying reactions comprising cN cross-talk, the model characterizes the cross-talk response and reveals the underlying mechanisms of PDEs in this non-linear, tightly-coupled reaction system.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Redes Reguladoras de Genes , Modelos Cardiovasculares , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Diester Fosfórico Hidrolases/genética , Animais , Simulação por Computador , Proteína Quinase Tipo I Dependente de AMP Cíclico/genética , Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , Proteína Quinase Tipo II Dependente de AMP Cíclico/genética , Proteína Quinase Tipo II Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Regulação da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Contração Miocárdica , Miocárdio/citologia , Miócitos Cardíacos/citologia , Óxido Nítrico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA