Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biochem J ; 480(17): 1379-1395, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37492947

RESUMO

Gain-of-function missense variants in the cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT), whereas RyR2 loss-of-function missense variants cause Ca2+ release deficiency syndrome (CRDS). Recently, truncating variants in RyR2 have also been associated with ventricular arrhythmias (VAs) and sudden cardiac death. However, there are limited insights into the potential clinical relevance and in vitro functional impact of RyR2 truncating variants. We performed genetic screening of patients presenting with syncope, VAs, or unexplained sudden death and in vitro characterization of the expression and function of RyR2 truncating variants in HEK293 cells. We identified two previously unknown RyR2 truncating variants (Y4591Ter and R4663Ter) and one splice site variant predicted to result in a frameshift and premature termination (N4717 + 15Ter). These 3 new RyR2 truncating variants and a recently reported RyR2 truncating variant, R4790Ter, were generated and functionally characterized in vitro. Immunoprecipitation and immunoblotting analyses showed that all 4 RyR2 truncating variants formed heteromers with the RyR2-wildtype (WT) protein. Each of these C-terminal RyR2 truncations was non-functional and suppressed [3H]ryanodine binding to RyR2-WT and RyR2-WT mediated store overload induced spontaneous Ca2+ release activity in HEK293 cells. The expression of these RyR2 truncating variants in HEK293 cells was markedly reduced compared with that of the full-length RyR2 WT protein. Our data indicate that C-terminal RyR2 truncating variants are non-functional and can exert a dominant negative impact on the function of the RyR2 WT protein through formation of heteromeric WT/truncation complex.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Humanos , Arritmias Cardíacas/genética , Cálcio/metabolismo , Células HEK293 , Mutação , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
2.
Int Heart J ; 65(3): 580-585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825499

RESUMO

Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Conversely, RyR2 loss-of-function mutations cause a new disease entity, termed calcium release deficiency syndrome (CRDS), which may include RYR2-related long QT syndrome (LQTS). Importantly, unlike CPVT, patients with CRDS do not always exhibit exercise- or epinephrine-induced ventricular arrhythmias, which precludes a diagnosis of CRDS. Here we report a boy and his father, who both experienced exercise-induced cardiac events and harbor the same RYR2 E4107A variant. In the boy, an exercise stress test (EST) and epinephrine provocation test (EPT) did not induce any ventricular arrhythmias. QTc was slightly prolonged (QTc: 474 ms), and an EPT induced QTc prolongation (QTc-baseline: 466 ms, peak: 532 ms, steady-state: 527 ms). In contrast, in his father, QTc was not prolonged (QTc: 417 ms), and neither an EST nor EPT induced QTc prolongation. However, an EST induced multifocal premature ventricular contraction (PVC) bigeminy and bidirectional PVC couplets. Thus, they exhibited distinct clinical phenotypes: the boy exhibited LQTS (or CRDS) phenotype, whereas his father exhibited CPVT phenotype. These findings suggest that, in addition to the altered RyR2 function, other unidentified factors, such as other genetic, epigenetic, and environmental factors, and aging, may be involved in the diverse phenotypic manifestations. Considering that a single RYR2 variant can cause both CPVT and LQTS (or CRDS) phenotypes, in cascade screening of patients with CPVT and CRDS, an EST and EPT are not sufficient and genetic analysis is required to identify individuals who are at increased risk for life-threatening arrhythmias.


Assuntos
Síndrome do QT Longo , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Masculino , Síndrome do QT Longo/genética , Síndrome do QT Longo/diagnóstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/diagnóstico , Eletrocardiografia , Linhagem , Adulto , Teste de Esforço , Mutação
3.
J Mol Cell Cardiol ; 180: 1-9, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080450

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of stroke and morbidity. The strongest genetic risk factors for AF in humans are variants on chromosome 4q25, near the paired-like homeobox transcription factor 2 gene PITX2. Although mice deficient in Pitx2 (Pitx2+/-) have increased AF susceptibility, the mechanism remains controversial. Recent evidence has implicated hyperactivation of the cardiac ryanodine receptor (RyR2) in Pitx2 deficiency, which may be associated with AF susceptibility. We investigated pacing-induced AF susceptibility and spontaneous Ca2+ release events in Pitx2 haploinsufficient (+/-) mice and isolated atrial myocytes to test the hypothesis that hyperactivity of RyR2 increases susceptibility to AF, which can be prevented by a potent and selective RyR2 channel inhibitor, ent-verticilide. Compared with littermate wild-type Pitx2+/+, the frequency of Ca2+ sparks and spontaneous Ca2+ release events increased in permeabilized and intact atrial myocytes from Pitx2+/- mice. Atrial burst pacing consistently increased the incidence and duration of AF in Pitx2+/- mice. The RyR2 inhibitor ent-verticilide significantly reduced the frequency of spontaneous Ca2+ release in intact atrial myocytes and attenuated AF susceptibility with reduced AF incidence and duration. Our data demonstrate that RyR2 hyperactivity enhances SR Ca2+ leak and AF inducibility in Pitx2+/- mice via abnormal Ca2+ handling. Therapeutic targeting of hyperactive RyR2 in AF using ent-verticilide may be a viable mechanism-based approach to treat atrial arrhythmias caused by Pitx2 deficiency.


Assuntos
Fibrilação Atrial , Depsipeptídeos , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Camundongos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
Int Heart J ; 63(2): 398-403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35354758

RESUMO

Mutant cardiac ryanodine receptor channels (RyR2) are "leaky," and spontaneous Ca2+ release through these channels causes delayed afterdepolarizations that can deteriorate into ventricular fibrillation. Some patients carrying RYR2 mutations in type 1 catecholaminergic polymorphic ventricular tachycardia exhibit QT prolongation and are initially diagnosed with long QT syndrome. However, none have been reported to cause drug-induced ventricular fibrillation in patients with RYR2 variants. We describe the first case of an elderly woman with drug-induced QT prolongation and ventricular fibrillation who carried a novel RYR2 variant but no other mutations related to long QT syndrome. Oral adrenergic agents might induce QT prolongation and subsequent ventricular fibrillation in patients carrying an RYR2 variant. Screening for RYR2 could be valuable in patients with suspected drug-induced long QT syndrome.


Assuntos
Síndrome do QT Longo , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Adrenérgicos , Idoso , Feminino , Humanos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/induzido quimicamente , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética , Fibrilação Ventricular/induzido quimicamente , Fibrilação Ventricular/diagnóstico
5.
Biochem Biophys Res Commun ; 524(2): 431-438, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32007269

RESUMO

AIMS: Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been shown to induce aberrant Ca2+ release from the cardiac ryanodine receptor (RyR2) in various diseased hearts. However, the precise pathogenic mechanism remains to be elucidated. Here, we investigated the effect of dantrolene (DAN): a RyR2 stabilizer on local Ca2+ release, cardiac function, and lethal arrhythmia in CaMKIIδc transgenic (TG) mice. METHODS AND RESULTS: The TG mice showed an increase in left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) with a reduction in LV fractional shortening (LVFS). The phosphorylation levels of Ser2814 in RyR2 and Thr287 in CaMKII increased in TG mice. In TG cardiomyocytes, peak cell shortening (CS) decreased, and the frequency of spontaneous Ca2+ transients (sCaTs) increased. Endogenous RyR2-associated calmodulin (CaM) markedly decreased in TG cardiomyocytes. After chronic DAN treatment for 1 month, LVESD (but not LVEDD) decreased with an increase in LVFS. In the chronic DAN-treated cardiomyocytes, CS increased, sCaTs decreased, and the endogenous CaM binding to RyR2 normally restored. The phosphorylation levels of Ser2814 in RyR2 and Thr287 in CaMKII remained elevated even after DAN treatment. Moreover, in TG mice, chronic DAN treatment prevented sustained ventricular tachycardia induced by epinephrine. CONCLUSIONS: Defective association of CaM with RyR2 is most likely to be involved in the pathogenesis of CaMKII-mediated cardiac dysfunction and lethal arrhythmia.


Assuntos
Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Coração/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Dantroleno/uso terapêutico , Técnicas de Introdução de Genes , Coração/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Relaxantes Musculares Centrais/uso terapêutico , Fosforilação/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Regulação para Cima/efeitos dos fármacos
6.
Biochem J ; 475(1): 169-183, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29170159

RESUMO

Reduced protein expression of the cardiac ryanodine receptor type 2 (RyR2) is thought to affect the susceptibility to stress-induced ventricular tachyarrhythmia (VT) and cardiac alternans, but direct evidence for the role of RyR2 protein expression in VT and cardiac alternans is lacking. Here, we used a mouse model (crrm1) that expresses a reduced level of the RyR2 protein to determine the impact of reduced RyR2 protein expression on the susceptibility to VT, cardiac alternans, cardiac hypertrophy, and sudden death. Electrocardiographic analysis revealed that after the injection of relatively high doses of caffeine and epinephrine (agents commonly used for stress test), wild-type (WT) mice displayed long-lasting VTs, whereas the crrm1 mutant mice exhibited no VTs at all, indicating that the crrm1 mutant mice are resistant to stress-induced VTs. Intact heart Ca2+ imaging and action potential (AP) recordings showed that the crrm1 mutant mice are more susceptible to fast-pacing induced Ca2+ alternans and AP duration alternans compared with WT mice. The crrm1 mutant mice also showed an increased heart-to-body-weight ratio and incidence of sudden death at young ages. Furthermore, the crrm1 mutant hearts displayed altered Ca2+ transients with increased time-to-peak and decay time (T50), increased ventricular wall thickness and ventricular cell area compared with WT hearts. These results indicate that reduced RyR2 protein expression suppresses stress-induced VTs, but enhances the susceptibility to cardiac alternans, hypertrophy, and sudden death.


Assuntos
Cálcio/metabolismo , Cardiomegalia/genética , Ventrículos do Coração/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Potenciais de Ação/efeitos dos fármacos , Animais , Cafeína/farmacologia , Sinalização do Cálcio , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Morte Súbita Cardíaca/patologia , Modelos Animais de Doenças , Epinefrina/farmacologia , Expressão Gênica , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Camundongos , Camundongos Transgênicos , Contração Muscular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Técnicas de Cultura de Órgãos , Periodicidade , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Estresse Fisiológico/efeitos dos fármacos , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia
7.
J Biol Chem ; 292(4): 1385-1395, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27927985

RESUMO

A number of point mutations in the intracellular Ca2+-sensing protein calmodulin (CaM) are arrhythmogenic, yet their underlying mechanisms are not clear. These mutations generally decrease Ca2+ binding to CaM and impair inhibition of CaM-regulated Ca2+ channels like the cardiac Ca2+ release channel (ryanodine receptor, RyR2), and it appears that attenuated CaM Ca2+ binding correlates with impaired CaM-dependent RyR2 inhibition. Here, we investigated the RyR2 inhibitory action of the CaM p.Phe142Leu mutation (F142L; numbered including the start-Met), which markedly reduces CaM Ca2+ binding. Surprisingly, CaM-F142L had little to no aberrant effect on RyR2-mediated store overload-induced Ca2+ release in HEK293 cells compared with CaM-WT. Furthermore, CaM-F142L enhanced CaM-dependent RyR2 inhibition at the single channel level compared with CaM-WT. This is in stark contrast to the actions of arrhythmogenic CaM mutations N54I, D96V, N98S, and D130G, which all diminish CaM-dependent RyR2 inhibition. Thermodynamic analysis showed that apoCaM-F142L converts an endothermal interaction between CaM and the CaM-binding domain (CaMBD) of RyR2 into an exothermal one. Moreover, NMR spectra revealed that the CaM-F142L-CaMBD interaction is structurally different from that of CaM-WT at low Ca2+ These data indicate a distinct interaction between CaM-F142L and the RyR2 CaMBD, which may explain the stronger CaM-dependent RyR2 inhibition by CaM-F142L, despite its reduced Ca2+ binding. Collectively, these results add to our understanding of CaM-dependent regulation of RyR2 as well as the mechanistic effects of arrhythmogenic CaM mutations. The unique properties of the CaM-F142L mutation may provide novel clues on how to suppress excessive RyR2 Ca2+ release by manipulating the CaM-RyR2 interaction.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Calmodulina/metabolismo , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Arritmias Cardíacas/genética , Calmodulina/genética , Células HEK293 , Humanos , Domínios Proteicos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
8.
J Biol Chem ; 291(47): 24528-24537, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27733687

RESUMO

Recent three-dimensional structural studies reveal that the central domain of ryanodine receptor (RyR) serves as a transducer that converts long-range conformational changes into the gating of the channel pore. Interestingly, the central domain encompasses one of the mutation hotspots (corresponding to amino acid residues 3778-4201) that contains a number of cardiac RyR (RyR2) mutations associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) and atrial fibrillation (AF). However, the functional consequences of these central domain RyR2 mutations are not well understood. To gain insights into the impact of the mutation and the role of the central domain in channel function, we generated and characterized eight disease-associated RyR2 mutations in the central domain. We found that all eight central domain RyR2 mutations enhanced the Ca2+-dependent activation of [3H]ryanodine binding, increased cytosolic Ca2+-induced fractional Ca2+ release, and reduced the activation and termination thresholds for spontaneous Ca2+ release in HEK293 cells. We also showed that racemic carvedilol and the non-beta-blocking carvedilol enantiomer, (R)-carvedilol, suppressed spontaneous Ca2+ oscillations in HEK293 cells expressing the central domain RyR2 mutations associated with CPVT and AF. These data indicate that the central domain is an important determinant of cytosolic Ca2+ activation of RyR2. These results also suggest that altered cytosolic Ca2+ activation of RyR2 represents a common defect of RyR2 mutations associated with CPVT and AF, which could potentially be suppressed by carvedilol or (R)-carvedilol.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Arritmias Cardíacas/genética , Citosol/metabolismo , Células HEK293 , Humanos , Domínios Proteicos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
9.
J Cell Sci ; 127(Pt 20): 4531-41, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25146393

RESUMO

Here, we report the impact of redox potential on isolated cardiac ryanodine receptor (RyR2) channel activity and its response to physiological changes in luminal [Ca(2+)]. Basal leak from the sarcoplasmic reticulum is required for normal Ca(2+) handling, but excess diastolic Ca(2+) leak attributed to oxidative stress is thought to lower the threshold of RyR2 for spontaneous sarcoplasmic reticulum Ca(2+) release, thus inducing arrhythmia in pathological situations. Therefore, we examined the RyR2 response to luminal [Ca(2+)] under reducing or oxidising cytoplasmic redox conditions. Unexpectedly, as luminal [Ca(2+)] increased from 0.1 to 1.5 mM, RyR2 activity declined when pretreated with cytoplasmic 1 mM DTT or buffered with GSH∶GSSG to a normal reduced cytoplasmic redox potential (-220 mV). Conversely, with 20 µM cytoplasmic 4,4'-DTDP or buffering of the redox potential to an oxidising value (-180 mV), RyR2 activity increased with increasing luminal [Ca(2+)]. The luminal redox potential was constant at -180 mV in each case. These responses to luminal [Ca(2+)] were maintained with cytoplasmic 2 mM Na2ATP or 5 mM MgATP (1 mM free Mg(2+)). Overall, the results suggest that the redox potential in the RyR2 junctional microdomain is normally more oxidised than that of the bulk cytoplasm.


Assuntos
Arritmias Cardíacas/metabolismo , Citoplasma/metabolismo , Microdomínios da Membrana/metabolismo , Miócitos Cardíacos/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Microambiente Celular , Cães , Potenciais da Membrana , Oxirredução , Estresse Oxidativo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Ovinos
10.
J Cell Sci ; 126(Pt 21): 5042-51, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23943880

RESUMO

The ryanodine receptor (RyR) is an ion channel composed of four identical subunits mediating calcium efflux from the endo/sarcoplasmic reticulum of excitable and non-excitable cells. We present several lines of evidence indicating that the RyR2 N-terminus is capable of self-association. A combination of yeast two-hybrid screens, co-immunoprecipitation analysis, chemical crosslinking and gel filtration assays collectively demonstrate that a RyR2 N-terminal fragment possesses the intrinsic ability to oligomerize, enabling apparent tetramer formation. Interestingly, N-terminus tetramerization mediated by endogenous disulfide bond formation occurs in native RyR2, but notably not in RyR1. Disruption of N-terminal inter-subunit interactions within RyR2 results in dysregulation of channel activation at diastolic Ca(2+) concentrations from ryanodine binding and single channel measurements. Our findings suggest that the N-terminus interactions mediating tetramer assembly are involved in RyR channel closure, identifying a crucial role for this structural association in the dynamic regulation of intracellular Ca(2+) release.


Assuntos
Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Motivos de Aminoácidos , Animais , Cálcio/metabolismo , Humanos , Miócitos Cardíacos/química , Multimerização Proteica , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Suínos
11.
Heart Vessels ; 30(6): 835-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25092222

RESUMO

Sudden cardiac death (SCD) in athletes <35 years of age are mostly due to congenital or acquired cardiac malformations or hypertrophic cardiomyopathy. However, ion channelopathies such as catecholaminergic polymorphic ventricular tachycardia (CPVT) or long-QT syndromes, which are less frequently observed, are also potential pathogenesis of SCD in young athletes. CPVT is an inherited arrhythmia that is induced by physical or emotional stress and may lead to ventricular fibrillation syncope or SCD. Here, we report a case of athlete woman with adult-onset CPVT and aborted SCD who has a novel missense mutation (K4392R) in the cardiac RyR2 gene.


Assuntos
Morte Súbita Cardíaca/etiologia , Coração/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Adulto , Atletas , Desfibriladores Implantáveis , Eletrocardiografia , Feminino , Humanos , Mutação de Sentido Incorreto
12.
J Mol Cell Cardiol ; 74: 22-31, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24805197

RESUMO

The Ser96Ala (S96A) mutation within the histidine rich Ca(2+) binding protein (HRC) has recently been linked to cardiac arrhythmias in idiopathic dilated cardiomyopathy patients, potentially attributable to an increase in spontaneous Ca(2+) release events. However, the molecular mechanism connecting the S96A mutation of HRC to increased Ca(2+) release events remains unclear. Previous findings by our group indicate that these spontaneous Ca(2+) release events may be linked to store overload induced Ca(2+) release (SOICR) via the cardiac ryanodine receptor (RyR2). Therefore, in the present study we sought to determine whether HRC wild type (HRC WT) and S96A mutant (HRC S96A) expression has a direct effect on SOICR. Using both cytosolic and intra-Ca(2+) store measurements in human embryonic kidney cells expressing RyR2, we found that HRC WT significantly inhibited the propensity for SOICR by buffering store free Ca(2+) and inhibiting store Ca(2+) uptake. In contrast, HRC S96A exhibited a markedly suppressed inhibitory effect on SOICR, which was attributed to an impaired ability to buffer store Ca(2+) and reduce store Ca(2+) uptake. In addition to impairing the ability of HRC to regulate bulk store Ca(2+), a proximity ligation assay demonstrated that the S96A mutation also disrupts the Ca(2+) microdomain around the RyR2, as it alters the Ca(2+) dependent association of RyR2 and HRC. Importantly, in contrast to previous reports, the absence of triadin in our experimental model illustrates that the S96A mutation in HRC can alter the propensity for SOICR without any interaction with triadin. Collectively, our results demonstrate that the human HRC mutation S96A leads to an increase in spontaneous Ca(2+) release and ultimately arrhythmias by disrupting the regulation of intra-store free Ca(2+). This is primarily due to an impaired ability to act as an effective bulk and local microdomain store Ca(2+) buffer.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Mutação Puntual , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Transporte de Íons , Camundongos , Miócitos Cardíacos/citologia , Cultura Primária de Células , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Transgenes
13.
Biochim Biophys Acta ; 1830(10): 4426-32, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23747301

RESUMO

BACKGROUND: This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6). METHODS: Wild-type (WT) RyR2 central domain constructs (G(2236)to G(2491)) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation. RESULTS: The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~200-400µM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found. CONCLUSIONS: The RyR2 central domain, expressed as a 'correctly' folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP. GENERAL SIGNIFICANCE: Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.


Assuntos
Trifosfato de Adenosina/metabolismo , Mutação , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Dicroísmo Circular , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Espectrofotometria Ultravioleta , Proteínas de Ligação a Tacrolimo/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 305(1): H86-94, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23666671

RESUMO

The cardiac ryanodine receptor (RyR2) is inhibited by calmodulin (CaM) and S100A1. Simultaneous substitution of three amino acid residues (W3587A, L3591D, F3603A; RyR2ADA) in the CaM binding domain of RyR2 results in loss of CaM inhibition at submicromolar (diastolic) and micromolar (systolic) Ca²âº, cardiac hypertrophy, and heart failure in Ryr2ADA/ADA mice. To address whether cardiac hypertrophy results from the elimination of CaM and S100A1 inhibition at diastolic or systolic Ca²âº, a mutant mouse was generated with a single RyR2 amino acid substitution (L3591D; RyR2D). Here we report that in single-channel measurements RyR2-L3591D isolated from Ryr2D/D hearts lost CaM inhibition at diastolic Ca²âº only, whereas S100A1 regulation was eliminated at both diastolic and systolic Ca²âº. In contrast to the ~2-wk life span of Ryr2ADA/ADA mice, Ryr2D/D mice lived longer than 1 yr. Six-month-old Ryr2D/D mice showed a 9% increase in heart weight-to-body weight ratio, modest changes in cardiac morphology, and a twofold increase in atrial natriuretic peptide mRNA levels compared with wild type. After 4-wk pressure overload with transverse aortic constriction, heart weight-to-body weight ratio and atrial natriuretic peptide mRNA levels increased and echocardiography showed changes in heart morphology of Ryr2D/D mice compared with sham-operated mice. Collectively, the findings indicate that the single RyR2-L3591D mutation, which distinguishes the effects of diastolic and systolic Ca²âº, alters heart size and cardiac function to a lesser extent in Ryr2D/D mice than the triple mutation in Ryr2ADA/ADA mice. They further suggest that CaM inhibition of RyR2 at systolic Ca²âº is important for maintaining normal cardiac function.


Assuntos
Calmodulina/metabolismo , Cardiomegalia/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/metabolismo , Potenciais de Ação , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomegalia/patologia , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação de Sentido Incorreto , Contração Miocárdica , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Transcrição Gênica
15.
Stem Cell Res Ther ; 14(1): 266, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740238

RESUMO

BACKGROUND: Polymorphic ventricular tachycardia (PMVT) is a rare genetic disease associated with structurally normal hearts which in 8% of cases can lead to sudden cardiac death, typically exercise-induced. We previously showed a link between the RyR2-H29D mutation and a clinical phenotype of short-coupled PMVT at rest using patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs). In the present study, we evaluated the effects of clinical and experimental anti-arrhythmic drugs on the intracellular Ca2+ handling, contractile and molecular properties in PMVT hiPSC-CMs in order to model a personalized medicine approach in vitro. METHODS: Previously, a blood sample from a patient carrying the RyR2-H29D mutation was collected and reprogrammed into several clones of RyR2-H29D hiPSCs, and in addition we generated an isogenic control by reverting the RyR2-H29D mutation using CRIPSR/Cas9 technology. Here, we tested 4 drugs with anti-arrhythmic properties: propranolol, verapamil, flecainide, and the Rycal S107. We performed fluorescence confocal microscopy, video-image-based analyses and biochemical analyses to investigate the impact of these drugs on the functional and molecular features of the PMVT RyR2-H29D hiPSC-CMs. RESULTS: The voltage-dependent Ca2+ channel inhibitor verapamil did not prevent the aberrant release of sarcoplasmic reticulum (SR) Ca2+ in the RyR2-H29D hiPSC-CMs, whereas it was prevented by S107, flecainide or propranolol. Cardiac tissue comprised of RyR2-H29D hiPSC-CMs exhibited aberrant contractile properties that were largely prevented by S107, flecainide and propranolol. These 3 drugs also recovered synchronous contraction in RyR2-H29D cardiac tissue, while verapamil did not. At the biochemical level, S107 was the only drug able to restore calstabin2 binding to RyR2 as observed in the isogenic control. CONCLUSIONS: By testing 4 drugs on patient-specific PMVT hiPSC-CMs, we concluded that S107 and flecainide are the most potent molecules in terms of preventing the abnormal SR Ca2+ release and contractile properties in RyR2-H29D hiPSC-CMs, whereas the effect of propranolol is partial, and verapamil appears ineffective. In contrast with the 3 other drugs, S107 was able to prevent a major post-translational modification of RyR2-H29D mutant channels, the loss of calstabin2 binding to RyR2. Using patient-specific hiPSC and CRISPR/Cas9 technologies, we showed that S107 is the most efficient in vitro candidate for treating the short-coupled PMVT at rest.


Assuntos
Cálcio , Taquicardia Ventricular , Humanos , Miócitos Cardíacos , Flecainida/farmacologia , Propranolol/farmacologia , Propranolol/uso terapêutico , Antiarrítmicos , Medicina de Precisão , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/genética , Verapamil/farmacologia , Verapamil/uso terapêutico
16.
JACC Basic Transl Sci ; 8(1): 1-15, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36777175

RESUMO

Analysis of the spatio-temporal distribution of calcium sparks showed a preferential increase in sparks near the sarcolemma in atrial myocytes from patients with atrial fibrillation (AF), linked to higher ryanodine receptor (RyR2) phosphorylation at s2808 and lower calsequestrin-2 levels. Mathematical modeling, incorporating modulation of RyR2 gating, showed that only the observed combinations of RyR2 phosphorylation and calsequestrin-2 levels can account for the spatio-temporal distribution of sparks in patients with and without AF. Furthermore, we demonstrate that preferential calcium release near the sarcolemma is key to a higher incidence and amplitude of afterdepolarizations in atrial myocytes from patients with AF.

17.
Front Physiol ; 13: 830367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222090

RESUMO

The cardiac ryanodine receptor Ca2+ release channel (RyR2) is inserted into the membrane of intracellular sarcoplasmic reticulum (SR) myocyte Ca2+ stores, where it releases the Ca2+ essential for contraction. Mutations in proteins involved in Ca2+ signaling can lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). The most common cellular phenotype in CPVT is higher than normal cytoplasmic Ca2+ concentrations during diastole due to Ca2+ leak from the SR through mutant RyR2. Arrhythmias are triggered when the surface membrane sodium calcium exchanger (NCX) lowers cytoplasmic Ca2+ by importing 3 Na+ ions to extrude one Ca2+ ion. The Na+ influx leads to delayed after depolarizations (DADs) which trigger arrhythmia when reaching action potential threshold. Present therapies use drugs developed for different purposes that serendipitously reduce RyR2 Ca2+ leak, but can adversely effect systolic Ca2+ release and other target processes. Ideal drugs would specifically reverse the effect of individual mutations, without altering normal channel function. Such drugs will depend on the location of the mutation in the 4967-residue monomer and the effect of the mutation on local structure, and downstream effects on structures along the conformational pathway to the pore. Such atomic resolution information is only now becoming available. This perspective provides a summary of known or predicted structural changes associated with a handful of CPVT mutations. Known molecular changes associated with RyR opening are discussed, as well one study where minute molecular changes with a particular mutation have been tracked from the N-terminal mutation site to gating residues in the channel pore.

18.
Curr Res Physiol ; 5: 171-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356048

RESUMO

Background: The cGMP-dependent protein kinase G (PKG) phosphorylates the cardiac ryanodine receptor (RyR2) in vitro. We aimed to determine whether modulation of endogenous PKG alters RyR2-mediated spontaneous Ca2+ release and whether this effect is linked to a change in RyR2 phosphorylation. Methods: & Results: Human embryonic kidney (HEK293) cells with inducible RyR2 expression were treated with the cGMP analogue 8-Br-cGMP (100 µM) to activate endogenous PKG. In cells transfected with luminal Ca2+ sensor, D1ER, PKG activation significantly reduced the threshold for RyR2-mediated spontaneous Ca2+ release (93.9 ± 0.4% of store size with vehicle vs. 91.7 ± 0.8% with 8-Br-cGMP, P = 0.04). Mutation of the proposed PKG phosphorylation sites, S2808 and S2030, either individually or as a combination, prevented the decrease in Ca2+ release threshold induced by endogenous PKG activation. Interestingly, despite a functional dependence on expression of RyR2 phosphorylation sites, 8-Br-cGMP activation of PKG did not promote a detectable change in S2808 phosphorylation (P = 0.9). Paradoxically, pharmacological inhibition of PKG with KT 5823 (1 µM) also reduced the threshold for spontaneous Ca2+ release through RyR2 without affecting S2808 phosphorylation. Silencing RNA knockdown of endogenous PKG expression also had no quantifiable effect on RyR2 S2808 phosphorylation (P = 0.9). However, unlike PKG inhibition with KT 5823, PKG knockdown did not alter spontaneous Ca2+ release propensity or luminal Ca2+ handling. Conclusion: In an intact cell model, activation of endogenous PKG reduces the threshold for RyR2-mediated spontaneous Ca2+ release in a manner dependent on the RyR2 phosphorylation sites S2808 and S2030. This study clarifies the regulation of RyR2 Ca2+ release by endogenous PKG and functionally implicates the role of RyR2 phosphorylation.

19.
Front Cardiovasc Med ; 9: 925692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845057

RESUMO

Cardiac sympathetic activation, mediated by ß-adrenergic receptors (ß-ARs), normally increases cardiac contraction and relaxation. Accomplishing this task requires a physiological, concerted Ca2+ signaling, being able to increase Ca2+ release from sarcoplasmic reticulum (SR) in systole and speed up Ca2+ re-uptake in diastole. In heart failure (HF) myocardial ß-ARs undergo desensitization/down-regulation due to sustained sympathetic adrenergic activation. ß-AR desensitization/down-regulation diminishes adrenergic signaling and cardiac contractile reserve, and is conventionally considered to be detrimental in HF progression. Abnormal Ca2+ handling, manifested as cardiac ryanodine receptor (RyR2) dysfunction and diastolic Ca2+ leak (due to sustained adrenergic activation) also occur in HF. RyR2 dysfunction and Ca2+ leak deplete SR Ca2+ store, diminish Ca2+ release in systole and elevate Ca2+ levels in diastole, impairing both systolic and diastolic ventricular function. Moreover, elevated Ca2+ levels in diastole promote triggered activity and arrhythmogenesis. In the presence of RyR2 dysfunction and Ca2+ leak, further activation of the ß-AR signaling in HF would worsen the existing abnormal Ca2+ handling, exacerbating not only cardiac dysfunction, but also ventricular arrhythmogenesis and sudden cardiac death. Thus, we conclude that ß-AR desensitization/down-regulation may be a self-preserving, adaptive process (acting like an intrinsic ß-AR blocker) protecting the failing heart from developing lethal ventricular arrhythmias under conditions of elevated sympathetic drive and catecholamine levels in HF, rather than a conventionally considered detrimental process. This also implies that medications simply enhancing ß-AR signaling (like ß-AR agonists) may not be so beneficial unless they can also correct dysfunctional Ca2+ handling in HF.

20.
Front Cardiovasc Med ; 7: 623922, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33569394

RESUMO

Aim: Dysfunction of the cardiac ryanodine receptor (RyR2) is an almost ubiquitous finding in animal models of heart failure (HF) and results in abnormal Ca2+ release in cardiomyocytes that contributes to contractile impairment and arrhythmias. We tested whether exercise training (ET), as recommended by current guidelines, had the potential to stabilize RyR2-dependent Ca2+ release in rats with post-myocardial infarction HF. Materials and Methods: We subjected male Wistar rats to left coronary artery ligation or sham operations. After 1 week, animals were characterized by echocardiography and randomized to high-intensity interval ET on treadmills or to sedentary behavior (SED). Running speed was adjusted based on a weekly VO2max test. We repeated echocardiography after 5 weeks of ET and harvested left ventricular cardiomyocytes for analysis of RyR2-dependent systolic and spontaneous Ca2+ release. Phosphoproteins were analyzed by Western blotting, and beta-adrenoceptor density was quantified by radioligand binding. Results: ET increased VO2max in HF-ET rats to 127% of HF-SED (P < 0.05). This coincided with attenuated spontaneous SR Ca2+ release in left ventricular cardiomyocytes from HF-ET but also reduced Ca2+ transient amplitude and slowed Ca2+ reuptake during adrenoceptor activation. However, ventricular diameter and fractional shortening were unaffected by ET. Analysis of Ca2+ homeostasis and major proteins involved in the regulation of SR Ca2+ release and reuptake could not explain the attenuated spontaneous SR Ca2+ release or reduced Ca2+ transient amplitude. Importantly, measurements of beta-adrenoceptors showed a normalization of beta1-adrenoceptor density and beta1:beta2-adrenoceptor ratio in HF-ET. Conclusion: ET increased aerobic capacity in post-myocardial infarction HF rats and stabilized RyR2-dependent Ca2+ release. Our data show that these effects of ET can be gained without major alterations in SR Ca2+ regulatory proteins and indicate that future studies should include upstream parts of the sympathetic signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA