Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2320859121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412130

RESUMO

Well-controlled repair mechanisms are involved in the maintenance of genomic stability, and their failure can precipitate DNA abnormalities and elevate tumor risk. In addition, the tumor microenvironment, enriched with factors inducing oxidative stress and affecting cell cycle checkpoints, intensifies DNA damage when repair pathways falter. Recent research has unveiled associations between certain bacteria, including Mycoplasmas, and various cancers, and the causative mechanism(s) are under active investigation. We previously showed that Mycoplasma fermentans DnaK, an HSP70 family chaperone protein, hampers the activity of proteins like PARP1 and p53, crucial for genomic integrity. Moreover, our analysis of its interactome in human cancer cell lines revealed DnaK's engagement with several components of DNA-repair machinery. Finally, in vivo experiments performed in our laboratory using a DnaK knock-in mouse model generated by our group demonstrated that DnaK exposure led to increased DNA copy number variants, indicative of genomic instability. We present here evidence that expression of DnaK is linked to increased i) incidence of tumors in vivo upon exposure to urethane, a DNA damaging agent; ii) spontaneous DNA damage ex vivo; and iii) expression of proinflammatory cytokines ex vivo, variations in reactive oxygen species levels, and increased ß-galactosidase activity across tissues. Moreover, DnaK was associated with increased centromeric instability. Overall, these findings highlight the significance of Mycoplasma DnaK in the etiology of cancer and other genetic disorders providing a promising target for prevention, diagnostics, and therapeutics.


Assuntos
Proteínas de Bactérias , Proteínas de Choque Térmico HSP70 , Mycoplasma , Neoplasias , Animais , Humanos , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA , Dano ao DNA , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mycoplasma/fisiologia , Neoplasias/metabolismo , Neoplasias/microbiologia , Neoplasias/patologia , Microambiente Tumoral
2.
Mol Cell ; 72(3): 525-540.e13, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318443

RESUMO

Functions of many long noncoding RNAs (lncRNAs) depend on their ability to interact with multiple copies of specific RNA-binding proteins (RBPs). Here, we devised a workflow combining bioinformatics and experimental validation steps to systematically identify RNAs capable of multivalent RBP recruitment. This uncovered a number of previously unknown transcripts encoding high-density RBP recognition arrays within genetically normal short tandem repeats. We show that a top-scoring hit in this screen, lncRNA PNCTR, contains hundreds of pyrimidine tract-binding protein (PTBP1)-specific motifs allowing it to sequester a substantial fraction of PTBP1 in a nuclear body called perinucleolar compartment. Importantly, PNCTR is markedly overexpressed in a variety of cancer cells and its downregulation is sufficient to induce programmed cell death at least in part by stimulating PTBP1 splicing regulation activity. This work expands our understanding of the repeat-containing fraction of the human genome and illuminates a novel mechanism driving malignant transformation of cancer cells.


Assuntos
Processamento Alternativo/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Processamento Alternativo/genética , Linhagem Celular , Movimento Celular , Núcleo Celular , Proliferação de Células , Sobrevivência Celular , Biologia Computacional/métodos , Éxons , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Repetições de Microssatélites/genética , Repetições de Microssatélites/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Pirimidinas , Splicing de RNA , RNA Longo não Codificante/fisiologia
3.
J Pathol ; 263(3): 275-287, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734880

RESUMO

The hyperplasia-carcinoma sequence is a stepwise tumourigenic programme towards endometrial cancer in which normal endometrial epithelium becomes neoplastic through non-atypical endometrial hyperplasia (NAEH) and atypical endometrial hyperplasia (AEH), under the influence of unopposed oestrogen. NAEH and AEH are known to exhibit polyclonal and monoclonal cell growth, respectively; yet, aside from focal PTEN protein loss, the genetic and epigenetic alterations that occur during the cellular transition remain largely unknown. We sought to explore the potential molecular mechanisms that promote the NAEH-AEH transition and identify molecular markers that could help to differentiate between these two states. We conducted target-panel sequencing on the coding exons of 596 genes, including 96 endometrial cancer driver genes, and DNA methylome microarrays for 48 NAEH and 44 AEH lesions that were separately collected via macro- or micro-dissection from the endometrial tissues of 30 cases. Sequencing analyses revealed acquisition of the PTEN mutation and the clonal expansion of tumour cells in AEH samples. Further, across the transition, alterations to the DNA methylome were characterised by hypermethylation of promoter/enhancer regions and CpG islands, as well as hypo- and hyper-methylation of DNA-binding regions for transcription factors relevant to endometrial cell differentiation and/or tumourigenesis, including FOXA2, SOX17, and HAND2. The identified DNA methylation signature distinguishing NAEH and AEH lesions was reproducible in a validation cohort with modest discriminative capability. These findings not only support the concept that the transition from NAEH to AEH is an essential step within neoplastic cell transformation of endometrial epithelium but also provide deep insight into the molecular mechanism of the tumourigenic programme. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Endometrioide , Metilação de DNA , Hiperplasia Endometrial , Neoplasias do Endométrio , Epigênese Genética , PTEN Fosfo-Hidrolase , Feminino , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , PTEN Fosfo-Hidrolase/genética , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patologia , Hiperplasia Endometrial/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Mutação , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ilhas de CpG/genética , Idoso
4.
Mol Carcinog ; 63(5): 977-990, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376344

RESUMO

Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIß. Notably, artificially increasing RhoGDIß levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIß contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c-Jun activity, which in turn promoted miR-200c transcription. High levels of miR-200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR-137, SP-1 protein translation, and the suppression of RhoGDIß mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co-regulation of RhoGDIß expression by long noncoding RNA MEG3, multiple microRNAs (miR-200c and miR-137), and RNA-regulated transcription factors (c-Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIß pathway.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação para Baixo , Células Epiteliais/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Níquel , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/antagonistas & inibidores , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/genética , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro , Fatores de Transcrição SOXB1/genética , Ribonucleoproteína Nuclear Heterogênea D0/genética , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo
5.
Arch Biochem Biophys ; 758: 110047, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844154

RESUMO

Antioxidants exert a paradoxical influence on cancer prevention. The latest explanation for this paradox is the different target sites of antioxidants. However, it remains unclear how mitochondria-targeted antioxidants trigger specific p53-dependent pathways in malignant transformation models. Our study revealed that overexpression of mitochondria-targeted catalase (mCAT) instigated such malignant transformation via mouse double minute 2 homolog (MDM2) -mediated p53 degradation. In mouse epithelial JB6 Cl41 cells, the stable expression of mCAT resulted in MDM2-mediated p53 degradation, unlike in catalase-overexpressed Cl41 cells. Further, we demonstrated that mCAT overexpression upregulated ubiquitin-specific protease 28 (USP28) expression, which in turn stabilized c-Jun protein levels. This alteration initiated the activation of the miR-200b promoter transcription activity and a subsequent increase in miR-200b expression. Furthermore, elevated miR-200b levels then promoted its binding to the 3'-untranslated region of protein phosphatase 2A catalytic subunit (PP2A-C) α-isoform mRNA, consequently resulting in PP2A-C protein downregulation. This cascade of events ultimately contributed to increased MDM2 phosphorylation and p53 protein degradation. Thus, the mCAT overexpression triggers MDM2/p53-dependent malignant transformation through USP28/miR-200b/PP2A-Cα pathway, which may provide a new information for understanding mitochondria-targeted antioxidants facilitate the progression to the tumorigenic state.


Assuntos
Catalase , Transformação Celular Neoplásica , Regulação para Baixo , MicroRNAs , Mitocôndrias , Proteína Fosfatase 2 , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Camundongos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Catalase/metabolismo , Catalase/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Humanos , Linhagem Celular , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica
6.
Cell Commun Signal ; 22(1): 45, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233864

RESUMO

OBJECTIVES: Histological transformation to small cell lung cancer (SCLC) has been identified as a mechanism of TKIs resistance in EGFR-mutant non-small cell lung cancer (NSCLC). We aim to explore the prevalence of transformation in EGFR-wildtype NSCLC and the mechanism of SCLC transformation, which are rarely understood. METHODS: We reviewed 1474 NSCLC patients to investigate the NSCLC-to-SCLC transformed cases and the basic clinical characteristics, driver gene status and disease course of them. To explore the potential functional genes in SCLC transformation, we obtained pre- and post-transformation specimens and subjected them to a multigene NGS panel involving 416 cancer-related genes. To validate the putative gene function, we established knocked-out models by CRISPR-Cas 9 in HCC827 and A549-TP53-/- cells and investigated the effects on tumor growth, drug sensitivity and neuroendocrine phenotype in vitro and in vivo. We also detected the expression level of protein and mRNA to explore the molecular mechanism involved. RESULTS: We firstly reported an incidence rate of 9.73% (11/113) of SCLC transformation in EGFR-wildtype NSCLC and demonstrated that SCLC transformation is irrespective of EGFR mutation status (P = 0.16). We sequenced 8 paired tumors and identified a series of mutant genes specially in transformed SCLC such as SMAD4, RICTOR and RET. We firstly demonstrated that SMAD4 deficiency can accelerate SCLC transition by inducing neuroendocrine phenotype regardless of RB1 status in TP53-deficient NSCLC cells. Further mechanical experiments identified the SMAD4 can regulate ASCL1 transcription competitively with Myc in NSCLC cells and Myc inhibitor acts as a potential subsequent treatment agent. CONCLUSIONS: Transformation to SCLC is irrespective of EFGR status and can be accelerated by SMAD4 in non-small cell lung cancer. Myc inhibitor acts as a potential therapeutic drug for SMAD4-mediated resistant lung cancer. Video Abstract.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação a Retinoblastoma/genética , Proteína Smad4/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Ubiquitina-Proteína Ligases/genética
7.
Microb Cell Fact ; 23(1): 129, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711040

RESUMO

BACKGROUND: Sesterterpenoids are rare species among the terpenoids family. Ophiobolins are sesterterpenes with a 5-8-5 tricyclic skeleton. The oxidized ophiobolins exhibit significant cytotoxic activity and potential medicinal value. There is an urgent need for large amounts of ophiobolins supplication for drug development. The synthetic biology approach has been successfully employed in lots of terpene compound production and inspired us to develop a cell factory for ophiobolin biosynthesis. RESULTS: We developed a systematic metabolic engineering strategy to construct an ophiobolin biosynthesis chassis based on Saccharomyces cerevisiae. The whole-cell biotransformation methods were further combined with metabolic engineering to enhance the expression of key ophiobolin biosynthetic genes and improve the supply of precursors and cofactors. A high yield of 5.1 g/L of ophiobolin F was reached using ethanol and fatty acids as substrates. To accumulate oxidized ophiobolins, we optimized the sources and expression conditions for P450-CPR and alleviated the toxicity of bioactive compounds to cells through PDR engineering. We unexpectedly obtained a novel ophiobolin intermediate with potent cytotoxicity, 5-hydroxy-21-formyl-ophiobolin F, and the known bioactive compound ophiobolin U. Finally, we achieved the ophiobolin U titer of 128.9 mg/L. CONCLUSIONS: We established efficient cell factories based on S. cerevisiae, enabling de novo biosynthesis of the ophiobolin skeleton ophiobolin F and oxidized ophiobolins derivatives. This work has filled the gap in the heterologous biosynthesis of sesterterpenoids in S. cerevisiae and provided valuable solutions for new drug development based on sesterterpenoids.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Sesterterpenos , Sesterterpenos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
8.
Arch Toxicol ; 98(6): 1937-1951, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563870

RESUMO

The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.


Assuntos
Testes de Carcinogenicidade , Transformação Celular Neoplásica , Neoplasias Colorretais , Poluentes Ambientais , Organoides , Animais , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/efeitos dos fármacos , Testes de Carcinogenicidade/métodos , Organoides/efeitos dos fármacos , Organoides/patologia , Camundongos , Poluentes Ambientais/toxicidade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/induzido quimicamente , Humanos , Carcinógenos/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/patologia , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/patologia , Relação Dose-Resposta a Droga
9.
Biotechnol Lett ; 46(2): 223-233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310624

RESUMO

Bilirubin, a key active ingredient of bezoars with extensive clinical applications in China, is produced through a chemical process. However, this method suffers from inefficiency and adverse environmental impacts. To address this challenge, we present a novel and efficient approach for bilirubin production via whole-cell transformation. In this study, we employed Corynebacterium glutamicum ATCC13032 to express a ß-glucuronidase (StGUS), an enzyme from Staphylococcus sp. RLH1 that effectively hydrolyzes conjugated bilirubin to bilirubin. Following the optimization of the biotransformation conditions, a remarkable conversion rate of 79.7% in the generation of bilirubin was obtained at temperate 40 °C, pH 7.0, 1 mM Mg2+ and 6 mM antioxidant NaHSO3 after 12 h. These findings hold significant potential for establishing an industrially viable platform for large-scale bilirubin production.


Assuntos
Bilirrubina , Corynebacterium glutamicum , Glucuronidase/genética , Glucuronidase/metabolismo , Corynebacterium glutamicum/metabolismo , Staphylococcus , China
10.
Ecotoxicol Environ Saf ; 283: 116803, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094460

RESUMO

Arsenic is a widespread carcinogen and an important etiological factor for lung cancer. Dysregulated miRNAs have been implicated in arsenic carcinogenesis and the mechanisms of arsenic-induced dysregulated miRNAs have not been fully elucidated. N6-methyladenosine (m6A) modification is known to modulate pri-miRNA processing. However, whether m6A-mediated pri-miRNA processing is involved in arsenic carcinogenesis is poorly understood. Here, we found that m6A modification was significantly increased in arsenite-transformed human bronchial epithelial BEAS-2B cells (0.5 µM arsenite, 16 weeks). Meanwhile, METTL3 was significantly upregulated at week 12 and 16 during cell transformation. The proliferation, migration, invasion, and anchorage-independent growth of arsenite-transformed cells were inhibited by the reduction of m6A levels through METTL3 knockdown. Further experiments suggest that the oncogene miR-106b-5p is a potentially essential m6A target mediating arsenic-induced lung cancer. miR-106b-5p was observed to be upregulated after exposure to arsenite for 12 and 16 weeks, and the reduction of m6A levels caused by METTL3 knockdown inhibited miR-106b-5p maturation in arsenite-transformed cells. What's more, miR-106b-5p overexpression successfully rescued METTL3 knockdown-induced inhibition of the neoplastic phenotypes of transformed cells. Additionally, Basonuclin 2 (BNC2) was uncovered as a potential target of miR-106b-5p and downregulated by METTL3 via enhancing miR-106b-5p maturation. Additionally, the METTL3 inhibitor STM2457 suppressed neoplastic phenotypes of arsenite-transformed BEAS-2B cells by blocking pri-miR-106b methylation. These results demonstrate that m6A modification promotes the neoplastic phenotypes of arsenite-transformed BEAS-2B cells through METTL3/miR-106b-5p/BNC2 pathway, providing a new prospective for understanding arsenic carcinogenesis.

11.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339129

RESUMO

Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.


Assuntos
Cádmio , Neoplasias , Feminino , Humanos , Animais , Camundongos , Cádmio/toxicidade , Cádmio/metabolismo , Carcinogênese , Zinco , Transformação Celular Neoplásica , Ferro , Neoplasias/induzido quimicamente
12.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339104

RESUMO

One of the extracellular matrix proteins, tenascin-C (TN-C), is known to be upregulated in age-related inflammatory diseases such as cancer and cardiovascular diseases. Expression of this molecule is frequently detected, especially in the macrophage-rich areas of atherosclerotic lesions; however, the role of TN-C in mechanisms underlying the progression of atherosclerosis remains obscure. Previously, we found a hidden bioactive sequence termed TNIIIA2 in the TN-C molecule and reported that the exposure of this sequence would be carried out through limited digestion of TN-C by inflammatory proteases. Thus, we hypothesized that some pro-atherosclerotic phenotypes might be elicited from macrophages when they were stimulated by TNIIIA2. In this study, TNIIIA2 showed the ability to accelerate intracellular lipid accumulation in macrophages. In this experimental condition, an elevation of phagocytic activity was observed, accompanied by a decrease in the expression of transporters responsible for lipid efflux. All these observations were mediated through the induction of excessive ß1-integrin activation, which is a characteristic property of the TNIIIA2 sequence. Finally, we demonstrated that the injection of a drug that targets TNIIIA2's bioactivity could rescue mice from atherosclerotic plaque expansion. From these observations, it was shown that TN-C works as a pro-atherosclerotic molecule through an internal TNIIIA2 sequence. The possible advantages of clinical strategies targeting TNIIIA2 are also indicated.


Assuntos
Aterosclerose , Células Espumosas , Placa Aterosclerótica , Animais , Camundongos , Proteínas da Matriz Extracelular , Fibronectinas/metabolismo , Células Espumosas/metabolismo , Lipídeos , Peptídeos/química , Tenascina/metabolismo
13.
Actas Dermosifiliogr ; 2024 Jul 06.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38972577

RESUMO

BACKGROUND AND OBJECTIVE: Cutaneous T-cell lymphomas (CTCL) such as mycosis fungoides (MF) and Sézary syndrome (SS) are rare lymphomas with varying prognoses. The aim of the study was to describe the survival of a cohort of patients with MF/SS and evaluate the prognostic factors impacting disease survival. MATERIALS AND METHODS: All cases of MF/SS diagnosed from 2008 through 2022 were retrospectively analyzed. The demographic variables, histological parameters, and analytical data were analyzed too. Progression-free survival (PFS) and disease-specific survival (DSS) were calculated. RESULTS: A total of 148 cases were included. A total of 121 (82%) and 27 cases were diagnosed with MF, and SS, respectively. A total of 37 patients (25%) experienced progression at some point disease progression. The median PFS and median DSS were 127 and 135 months, respectively. Age >60 years, diagnosis of SS, the presence of large cell transformation (LCT) at diagnosis, folliculotropism in early stages, high Ki-67 expression, the presence of the clonal T-cell receptor (TCR) in blood, elevated LDH and B2M levels, and advanced stages (IIB, IVA, T3, T4, N3/Nx) were associated with worse prognosis across the entire cohort. CONCLUSIONS: Stage IVA and the presence of LCT at diagnosis stood out as independent factors of unfavorable prognosis. LCT was the variable that most significantly impacted the patients' survival and was closely associated with tumor skin involvement and stage IIB.

14.
J Cell Physiol ; 238(10): 2468-2480, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566647

RESUMO

Autophagy plays a dual role in tumorigenesis by functioning as both a tumor suppressor and promoter, depending on the stage of tumorigenesis. However, it is still unclear at what stage the role of autophagy changes during tumorigenesis. Herein, we investigated the differences in the basal levels and roles of autophagy in five cell lines at different stages of cell transformation. We found that cell lines at higher transformation stages were more sensitive to the autophagy inhibitors, suggesting that autophagy plays a more important role as the transformation progresses. Our ptfLC3 imaging analysis to measure Atg5/LC3-dependent autophagy showed increased autophagic flux in transformed cells compared to untransformed cells. However, the Cyto-ID analysis, which measures Atg5-dependent and -independent autophagic flux, showed high levels of autophagosome formation not only in the transformed cells but also in the initiated cell and Atg5 KO cell line. These results indicate that Atg5-independent autophagy may be more critical in initiated and transformed cell lines than in untransformed cells. Specially, we observed that transformed cells maintained relatively high basal autophagy levels under rapidly proliferating conditions but exhibited much lower basal autophagy levels at high confluency; however, autophagic flux was not significantly reduced in untransformed cells, even at high confluency. In addition, when continuously cultured for 3 weeks without passage, senescent cells were significantly less sensitive to autophagy inhibition than their actively proliferating counterparts. These results imply that once a cell has switched from a proliferative state to a senescent state, the inhibition of autophagy has only a minimal effect. Taken together, our results suggest that autophagy can be differentially regulated in cells at different stages of tumorigenesis under stressful conditions.

15.
Cell Mol Life Sci ; 79(12): 590, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376593

RESUMO

Epstein-Barr virus (EBV), a human oncogenic herpesvirus with a typical life cycle consisting of latent phase and lytic phase, is associated with many human diseases. EBV can express a variety of proteins that enable the virus to affect host cell processes and evade host immunity. Additionally, these proteins provide a basis for the maintenance of viral infection, contribute to the formation of tumors, and influence the occurrence and development of related diseases. Posttranslational modifications (PTMs) are chemical modifications of proteins after translation and are very important to guarantee the proper biological functions of these proteins. Studies in the past have intensely investigated PTMs of EBV-encoded proteins. EBV regulates the progression of the latent phase and lytic phase by affecting the PTMs of its encoded proteins, which are critical for the development of EBV-associated human diseases. In this review, we summarize the PTMs of EBV-encoded proteins that have been discovered and studied thus far with focus on their effects on the viral life cycle.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Latência Viral/fisiologia , Replicação Viral/fisiologia , Processamento de Proteína Pós-Traducional
16.
BMC Pulm Med ; 23(1): 492, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057798

RESUMO

Small cell transformation was one mechanism by which EGFR-mutation NSCLC acquired resistance after tyrosine kinase inhibitors (TKIs) treatment. A few reports of small cell transformation occurred in other oncogene-driven lung cancers. We found the first case of transformation of a RET-rearranged lung adenocarcinoma to SCLC after selpercatinib, a novel highly selective RET TKIs. Whole-exome sequencing (WES) was used to explore alteration in gene expression in tumor tissue at initial diagnosis and after transformation into small cell carcinoma. We found that transformed into SCLC tumor tissue had inactivation of RB1 and TP53, with RET fusion was still present. In addition, the APOBEC family of cytidine deaminases appeared amplification. Although RET rearrangement still existed, using another RET TKIs was ineffective, and etoposide plus platinum might be an effective rescue treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Sequenciamento do Exoma , Receptores ErbB/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Mutação , Proteínas Proto-Oncogênicas c-ret/genética
17.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175558

RESUMO

One important environmental/health challenge is to determine, in a feasible way, the potential carcinogenic risk associated with environmental agents/exposures. Since a significant proportion of tumors have an environmental origin, detecting the potential carcinogenic risk of environmental agents is mandatory, as regulated by national and international agencies. The challenge mainly implies finding a way of how to overcome the inefficiencies of long-term trials with rodents when thousands of agents/exposures need to be tested. To such an end, the use of in vitro cell transformation assays (CTAs) was proposed, but the existing prevalidated CTAs do not cover the complexity associated with carcinogenesis processes and present serious limitations. To overcome such limitations, we propose to use a battery of assays covering most of the hallmarks of the carcinogenesis process. For the first time, we grouped such assays as early, intermediate, or advanced biomarkers which allow for the identification of the cells in the initiation, promotion or aggressive stages of tumorigenesis. Our proposal, as a novelty, points out that using a battery containing assays from all three groups can identify if a certain agent/exposure can pose a carcinogenic risk; furthermore, it can gather mechanistic insights into the mode of the action of a specific carcinogen. This structured battery could be very useful for any type of in vitro study, containing human cell lines aiming to detect the potential carcinogenic risks of environmental agents/exposures. In fact, here, we include examples in which these approaches were successfully applied. Finally, we provide a series of advantages that, we believe, contribute to the suitability of our proposed approach for the evaluation of exposure-induced carcinogenic effects and for the development of an alternative strategy for conducting an exposure risk assessment.


Assuntos
Poluentes Ambientais , Neoplasias , Humanos , Carcinógenos/toxicidade , Poluentes Ambientais/toxicidade , Neoplasias/induzido quimicamente , Exposição Ambiental/efeitos adversos , Transformação Celular Neoplásica/induzido quimicamente
18.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175926

RESUMO

This review explores the application of in vitro cell transformation assays (CTAs) as a screening platform to assess the carcinogenic potential of nanomaterials (NMs) resulting from continuously growing industrial production and use. The widespread application of NMs in various fields has raised concerns about their potential adverse effects, necessitating safety evaluations, particularly in long-term continuous exposure scenarios. CTAs present a realistic screening platform for known and emerging NMs by examining their resemblance to the hallmark of malignancy, including high proliferation rates, loss of contact inhibition, the gain of anchorage-independent growth, cellular invasion, dysregulation of the cell cycle, apoptosis resistance, and ability to form tumors in experimental animals. Through the deliberate transformation of cells via chronic NM exposure, researchers can investigate the tumorigenic properties of NMs and the underlying mechanisms of cancer development. This article examines NM-induced cell transformation studies, focusing on identifying existing knowledge gaps. Specifically, it explores the physicochemical properties of NMs, experimental models, assays, dose and time requirements for cell transformation, and the underlying mechanisms of malignancy. Our review aims to advance understanding in this field and identify areas for further investigation.


Assuntos
Nanoestruturas , Neoplasias , Animais , Carcinógenos/toxicidade , Carcinogênese/induzido quimicamente , Transformação Celular Neoplásica/induzido quimicamente , Nanoestruturas/toxicidade , Nanoestruturas/química
19.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982734

RESUMO

The history of the development of the cell transformation assays (CTAs) is described, providing an overview of in vitro cell transformation from its origin to the new transcriptomic-based CTAs. Application of this knowledge is utilized to address how the different types of CTAs, variously addressing initiation and promotion, can be included on a mechanistic basis within the integrated approach to testing and assessment (IATA) for non-genotoxic carcinogens. Building upon assay assessments targeting the key events in the IATA, we identify how the different CTA models can appropriately fit, following preceding steps in the IATA. The preceding steps are the prescreening transcriptomic approaches, and assessment within the earlier key events of inflammation, immune disruption, mitotic signaling and cell injury. The CTA models address the later key events of (sustained) proliferation and change in morphology leading to tumor formation. The complementary key biomarkers with respect to the precursor key events and respective CTAs are mapped, providing a structured mechanistic approach to represent the complexity of the (non-genotoxic) carcinogenesis process, and specifically their capacity to identify non-genotoxic carcinogenic chemicals in a human relevant IATA.


Assuntos
Carcinógenos , Neoplasias , Humanos , Carcinógenos/toxicidade , Testes de Carcinogenicidade/métodos , Transformação Celular Neoplásica/genética , Carcinogênese/genética
20.
Actas Dermosifiliogr ; 2023 Dec 28.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38159841

RESUMO

BACKGROUND AND OBJECTIVE: Cutaneous T-cell lymphomas (CTCL) such as mycosis fungoides (MF) and Sézary syndrome (SS) are rare lymphomas with varying prognoses. The aim of the study was to describe the survival of a cohort of patients with MF/SS and evaluate the prognostic factors impacting disease survival. MATERIALS AND METHODS: All cases of MF/SS diagnosed from 2008 through 2022 were retrospectively analyzed. The demographic variables, histological parameters, and analytical data were analyzed too. Progression-free survival (PFS) and disease-specific survival (DSS) were calculated. RESULTS: A total of 148 cases were included. A total of 121 (82%) and 27 cases were diagnosed with MF, and SS, respectively. A total of 37 patients (25%) experienced progression at some point disease progression. The median PFS and median DSS were 127 and 135 months, respectively. Age >60 years, diagnosis of SS, the presence of large cell transformation (LCT) at diagnosis, folliculotropism in early stages, high Ki-67 expression, the presence of the clonal T-cell receptor (TCR) in blood, elevated LDH and B2M levels, and advanced stages (IIB, IVA, T3, T4, N3/Nx) were associated with worse prognosis across the entire cohort. CONCLUSIONS: Stage IVA and the presence of LCT at diagnosis stood out as independent factors of unfavorable prognosis. LCT was the variable that most significantly impacted the patients' survival and was closely associated with tumor skin involvement and stage IIB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA