Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
J Fluoresc ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949753

RESUMO

Cellulose nanofiber (CNFs) obtained through TEMPO oxidation was structurally characterized using FT-IR (Fourier Transformed Infrared) and SEM (Scanning Electron Microscopy) spectroscopy. The molecular aggregation and spectroscopic properties of Rhodamine B (Rh-B) in CNFs suspension were investigated using molecular absorption and steady-state fluorescence spectroscopy techniques. The interaction between CNFs particles in the aqueous suspension and the cationic dye compound was examined in comparison to its behavior in deionized water. This interaction led to significant changes in the spectral features of Rh-B, resulting in an increase in the presence of H-dimer and H-aggregate in CNFs suspension. The H-type aggregates of Rh-B in CNFs suspensions were defined by the observation of a blue-shifted absorption band compared to that of the monomer. Even at diluted dye concentrations, the formation of Rh-B's H-aggregate was observed in CNFs suspension. The pronounced aggregation in suspensions originated from the strong interaction between negatively charged carboxylate ions and the dye. The aggregation behavior was discussed with deconvoluted absorption spectra. Fluorescence spectroscopy studies revealed a significant reduction in the fluorescence intensity of the dye in CNFs suspension due to H-aggregates. Furthermore, the presence of H-aggregates in the suspensions caused a decrease in the quantum yield of Rh-B compared to that in deionized water.

2.
Sci Technol Adv Mater ; 25(1): 2351356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817247

RESUMO

Lignocellulosic materials have inherent complexities and natural nanoarchitectures, such as various chemical constituents in wood cell walls, structural factors such as fillers, surface properties, and variations in production. Recently, the development of lignocellulosic filler-reinforced polymer composites has attracted increasing attention due to their potential in various industries, which are recognized for environmental sustainability and impressive mechanical properties. The growing demand for these composites comes with increased complexity regarding their specifications. Conventional trial-and-error methods to achieve desired properties are time-intensive and costly, posing challenges to efficient production. Addressing these issues, our research employs a data-driven approach to streamline the development of lignocellulosic composites. In this study, we developed a machine learning (ML)-assisted prediction model for the impact energy of the lignocellulosic filler-reinforced polypropylene (PP) composites. Firstly, we focused on the influence of natural supramolecular structures in biomass fillers, where the Fourier transform infrared spectra and the specific surface area are used, on the mechanical properties of the PP composites. Subsequently, the effectiveness of the ML model was verified by selecting and preparing promising composites. This model demonstrated sufficient accuracy for predicting the impact energy of the PP composites. In essence, this approach streamlines selecting wood species, saving valuable time.


This paper introduces a data-driven method to efficiently design lignocellulosic polymer composites with high-impact energy, optimizing components and surface areas using infrared spectroscopic data.

3.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791401

RESUMO

Porous ß-tricalcium phosphate (Ca3(PO4)2; ß-TCP) was prepared via freeze-drying and the effects of this process on pore shapes and sizes were investigated. Various samples were prepared by freezing ß-TCP slurries above a liquid nitrogen surface at -180 °C with subsequent immersion in liquid nitrogen at -196 °C. These materials were then dried under reduced pressure in a freeze-dryer, after which they were sintered with heating. Compared with conventional heat-based drying, the resulting pores were more spherical, which increased both the mechanical strength and porosity of the ß-TCP. These materials had a wide range of pore sizes from 50 to 200 µm, with the mean and median values both approximately 100 µm regardless of the freeze-drying conditions. Mercury porosimetry data showed that the samples contained small, interconnected pores with sizes of 1.24 ± 0.25 µm and macroscopic, interconnected pores of 25.8 ± 4.7 µm in size. The effects of nonionic surfactants having different hydrophilic/lipophilic balance (HLB) values on foaming and pore size were also investigated. Materials made with surfactants having lower HLB values exhibited smaller pores and lower porosity, whereas higher HLB surfactants gave higher porosity and slightly larger macropores. Even so, the pore diameter could not be readily controlled solely by adjusting the HLB value. The findings of this work indicated that high porosity (>75%) and good compressive strength (>2 MPa) can both be obtained in the same porous material and that foaming agents with HLB values between 12.0 and 13.5 were optimal.


Assuntos
Fosfatos de Cálcio , Cerâmica , Liofilização , Liofilização/métodos , Fosfatos de Cálcio/química , Porosidade , Cerâmica/química , Tensoativos/química , Teste de Materiais , Difração de Raios X
4.
Anal Biochem ; 681: 115329, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722523

RESUMO

The phenol-sulfuric acid (PSA) method is a widely used colorimetric method for determining the total saccharides. Microplate-based PSA methods have been developed to handle a large number of samples and reduce the use of hazardous chemicals. However, the optimal procedures and measurement conditions for this method have not yet been fully established. To address this gap, we investigated the optimal procedure for microplate-based PSA. In addition to glucose (Glc), two types of cellulose nanofibers (CNFs) were also evaluated as they are a new type of nanomaterial, and a technique to quantify the concentration of CNFs is required in their safety assessment. The results showed that the thermal reaction with sulfuric acid before the addition of phenol resulted in a higher coloration than was shown after the addition of phenol. Furthermore, the longer the resting time after shaking with phenol, the greater the coloration and smaller the variation, with a resting time of 60 min or longer being optimal. This research provides valuable insights into improving the reliability and efficiency of the PSA method, which can facilitate the analysis of saccharides and other substances in a range of applications.


Assuntos
Nanofibras , Fenol , Celulose/química , Reprodutibilidade dos Testes , Fenóis , Carboidratos/análise
5.
Environ Sci Technol ; 57(48): 19137-19147, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37967377

RESUMO

Cellulose nanocrystals (CNC) and nanofibers (CNF) have been broadly studied as renewable nanomaterials for various applications, including additives in cement and plastics composites. Herein, life cycle inventories for 18 previously examined processes are harmonized, and the impacts of CNC and CNF production are compared with a particular focus on GHG emissions. Findings show wide variations in GHG emissions between process designs, from 1.8-1100 kg CO2-eq/kg nanocellulose. Mechanical and enzymatic processes are identified as the lowest GHG emission methods to produce CNCs and CNFs. For most processes, energy consumption and chemical use are the primary sources of emissions. However, on a mass basis, for all examined production methods and impact categories (except CO emissions), CNC and CNF production emissions are higher than Portland cement and, in most cases, are higher than polylactic acid. This work highlights the need to carefully consider process design to prevent potential high emissions from CNCs and CNF production despite their renewable feedstock, and results show the magnitude of conventional material that must be offset through improved performance for these materials to be environmentally favorable.


Assuntos
Nanofibras , Nanopartículas , Nanoestruturas , Nanopartículas/química , Nanofibras/química , Celulose/química
6.
Chem Pharm Bull (Tokyo) ; 71(12): 887-896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044141

RESUMO

Direct compression is a tableting technique that involves a few steps in non-demanding manufacturing conditions. High strength and rapid disintegration of tablet formulations were previously achieved through the addition of cellulose nanofibers (CNFs), which have recently attracted attention as a high-performance biomass material. However, CNF addition results in greater variation in tablet weight and drug content, potentially due to differences in particle size between CNF and other additives. Herein, we used pulverized CNF to evaluate the effect of CNF particle size on the variation in tablet weight and drug content. Tablet formulations consisted of CNF with different particle sizes (approximately 100 µm [CNF100] and 300 µm [CNF300], at 0, 10, 30, or 50%), lactose hydrate, acetaminophen, and magnesium stearate. Ten powder formulations with different particle sizes and CNF concentrations were prepared; thereafter, the tablets were produced using a rotary tableting press with a compression force of 10 kN. The variation in weight and drug content as well as the tensile strength, friability, disintegration time, and drug dissolution of tablets were evaluated. CNF100 addition to the tablets reduced the weight and drug content variation to a greater extent than CNF300 addition. Using CNF300, we produced tablets of sufficient strength and short disintegration time. These properties were also achieved with CNF100 addition. Our findings suggest that adding CNF of small particle size to the tablet formulation can reduce the variation in weight and drug content while maintaining high strength and short disintegration time.


Assuntos
Nanofibras , Tamanho da Partícula , Composição de Medicamentos/métodos , Celulose , Resistência à Tração , Comprimidos
7.
Mikrochim Acta ; 190(7): 254, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294367

RESUMO

A novel S-CNF-based nanocomposite was created using sulfonated cellulose nanofiber (S-CNF) to enable the detection of NADH in serum by surface-enhanced Raman spectroscopy (SERS). The numerous hydroxyl and sulfonic acid groups on the S-CNF surface absorbed silver ions and converted them to silver seeds, which formed the load fulcrum. After adding a reducing agent, silver nanoparticles (Ag NPs) were firmly adhered to the S-CNF surface to form stable 1D "hot spots." The S-CNF-Ag NP substrate demonstrated outstanding SERS performance, including good uniformity with an RSD of 6.88% and an enhancement factor (EF) of 1.23 × 107. Owing to the anionic charge repulsion effect, the S-CNF-Ag NP substrate still maintains remarkable dispersion stability after 12 months of preservation. Finally, S-CNF-Ag NPs' surface was modified with 4-mercaptophenol (4-MP), a special redox Raman signal molecule, to detect reduced nicotinamide adenine dinucleotide (NADH). The results showed that the detection limit (LOD) of NADH was 0.75 µM; a good linear relationship (R2 = 0.993) was established in the concentration range 10-6 - 10-2 M. The SERS nanoprobe enabled rapid detection of NADH in human serum without any complicated sample pretreatment and provides a new potential to detect biomarkers.


Assuntos
Nanopartículas Metálicas , Nanofibras , Humanos , NAD , Nanopartículas Metálicas/química , Nanofibras/química , Prata/química , Celulose , Alcanossulfonatos
8.
Sci Technol Adv Mater ; 24(1): 2153622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36620091

RESUMO

Nanopapers fabricated from cellulose nanofibers (CNFs) drastically swell to form hydrogels when they are in contact with water. This gelation makes contrast with conventional papers that simply deform without drastic volume increase. While the volume increase is qualitatively obvious from the macroscopic visual inspection, its quantitative understanding is nontrivial because of the difficulty in the detection of the boundary between the nanopaper hydrogel and the residual or extra water. In this study, we use single particle tracking (SPT) to reveal the swelling-based gelation phenomenon of cellulose nanopapers. The diffusive dynamics of probe particles uncovers the transient process of swelling, and equilibrium analysis reveals the dependence of volume increase fundamentally dependent on the amount of water to be in contact with the nanopapers. Comparison with the aqueous CNF dispersion without drying reveals the difference in the texture of the nanopaper hydrogels from them.

9.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175657

RESUMO

Visual disabilities affect more than 250 million people, with 43 million suffering from irreversible blindness. The eyes are an extension of the central nervous system which cannot regenerate. Neural tissue engineering is a potential method to cure the disease. Injectability is a desirable property for tissue engineering scaffolds which can eliminate some surgical procedures and reduce possible complications and health risks. We report the development of the anisotropic structured hydrogel scaffold created by a co-injection of cellulose nanofiber (CNF) solution and co-polypeptide solution. The positively charged poly (L-lysine)-r-poly(L-glutamic acid) with 20 mol% of glutamic acid (PLLGA) is crosslinked with negatively charged CNF while promoting cellular activity from the acid nerve stimulate. We found that CNF easily aligns under shear forces from injection and is able to form hydrogel with an ordered structure. Hydrogel is mechanically strong and able to support, guide, and stimulate neurite growth. The anisotropy of our hydrogel was quantitatively determined in situ by 2D optical microscopy and 3D X-ray tomography. The effects of PLLGA:CNF blend ratios on cell viability, neurite growth, and neuronal signaling are systematically investigated in this study. We determined the optimal blend composition for stimulating directional neurite growth yielded a 16% increase in length compared with control, reaching anisotropy of 30.30% at 10°/57.58% at 30°. Using measurements of calcium signaling in vitro, we found a 2.45-fold increase vs. control. Based on our results, we conclude this novel material and unique injection method has a high potential for application in neural tissue engineering.


Assuntos
Hidrogéis , Alicerces Teciduais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Neurônios
10.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770969

RESUMO

Nanocellulose-reinforced ionic conductive hydrogels were prepared using cellulose nanofiber (CNF) and polyvinyl alcohol (PVA) as raw materials, and the hydrogels were prepared in a dimethyl sulfoxide (DMSO)/water binary solvent by a one-pot method. The prepared hydrogels were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties, electrical conductivity, and sensing properties of the hydrogels were studied by means of a universal material testing machine and LCR digital bridge. The results show that the ionic conductive hydrogel exhibits high stretchability (elongation at break, 206%) and firmness (up to 335 KPa). The tensile fracture test shows that the hydrogel has good properties in terms of tensile strength, toughness, and elasticity. The hydrogel as a conductor medium is assembled into a self-powered strain sensor and the open-circuit voltage can reach 0.830 V. It shows good sensitivity in the bend sensing testing, indicating that the hydrogel has good sensing performance. The water retention and anti-freezing performance experiments show that the addition of dimethyl sulfoxide solvents can effectively improve the anti-freezing and water retention properties of hydrogels.

11.
Nanotechnology ; 33(47)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35944420

RESUMO

Crystallographically anisotropic two-dimensional (2D) molybdenum disulfide (MoS2) with vertically aligned (VA) layers is attractive for electrochemical sensing owing to its surface-enriched dangling bonds coupled with extremely large mechanical deformability. In this study, we explored VA-2D MoS2layers integrated on cellulose nanofibers (CNFs) for detecting various volatile organic compound gases. Sensor devices employing VA-2D MoS2/CNFs exhibited excellent sensitivities for the tested gases of ethanol, methanol, ammonia, and acetone; e.g. a high response rate up to 83.39% for 100 ppm ethanol, significantly outperforming previously reported sensors employing horizontally aligned 2D MoS2layers. Furthermore, VA-2D MoS2/CNFs were identified to be completely dissolvable in buffer solutions such as phosphate-buffered saline solution and baking soda buffer solution without releasing toxic chemicals. This unusual combination of high sensitivity and excellent biodegradability inherent to VA-2D MoS2/CNFs offers unprecedented opportunities for exploring mechanically reconfigurable sensor technologies with bio-compatible transient characteristics.

12.
Chem Pharm Bull (Tokyo) ; 70(9): 628-636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047234

RESUMO

Mini-tablets (MTs) contain a small amount of active pharmaceutical ingredients in one small tablet. MTs are advantageous because they can be fine-tuned according to the age and weight of pediatric patients and they are easy for children and the elderly to swallow. However, there are manufacturing concerns such as the difficulty in achieving both hardness and disintegration of a small tablet and it is difficult to keep the tablet weight and drug content consistent in MTs because the mold used for its production is special. In this study, we aimed to determine if an additive such as cellulose nanofibers (CNF), which has been studied in various fields in recent years, could be used to manufacture MTs without difficulties. In this study, an MT was manufactured using a rotary tableting press with a compression force of 2, 5, and 8 kN, and the weight variation, drug content variation, tensile strength, friability, disintegration time, and drug dissolution were evaluated. Of note, the tensile strength of MTs produced with a compression force of ≥5 kN was ≥1.3 MPa, which was comparable to that of an ordinary tablet with an 8 mm diameter and a hardness of ≥30 N. The disintegration time of the MT which was 20-30% CNF was ≤30 s at any compression force. MTs with CNF showed similar disintegration to MTs with other common disintegrants. Therefore, we found that CNF is a functional additive capable of manufacturing MTs by direct powder compression which has both strength and disintegration.


Assuntos
Celulose , Nanofibras , Idoso , Criança , Composição de Medicamentos , Dureza , Humanos , Pós , Comprimidos , Resistência à Tração
13.
Sensors (Basel) ; 22(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36016041

RESUMO

Cellulose, the most abundant sustainable material on Earth, has excellent mechanical and physical properties, high optical transparency, biocompatibility, and piezoelectricity. So, it has many possibilities for future materials, and many researchers are interested in its application. In this paper, cellulose nanofiber (CNF) and CNF/polyvinyl alcohol (PVA) films are made, and their vibration energy harvesting is studied. CNF was isolated by chemical and physical methods, and the CNF suspension was cast on a flat substrate to make a film. A cast CNF wet film stayed in a 5 Tesla superconductor magnet for 7 days, which resulted in CNF alignment perpendicular to the magnetic field. To further improve the mechanical properties of the CNF film, mechanical stretching was applied. The CNF suspension was mixed with PVA, giving the film toughness. The cast CNF/PVA wet film was mechanically stretched and dried, which improved the CNF alignment. The fabricated CNF and CNF/PVA films were characterized using scanning electron microscopy and X-ray diffraction to verify the alignment. By stretching, the aligned CNF/PVA film exhibits the largest mechanical properties along the aligned direction. The maximum Young's modulus and tensile strength of the 50% stretched CNF/PVA film are 14.9 GPa and 170.6 MPa, respectively. Finally, a vibration energy harvesting experiment was performed by invoking the piezoelectric behavior of the pure CNF, and 50% stretched CNF/PVA films. The harvester structure was innovated by adopting a cymbal structure, which was beneficial to producing large in-plane strain on the films. The designed cymbal structure was analyzed using ANSYS, and its natural frequency was experimentally verified. The CNF/PVA film performs better vibration energy harvesting than the pure CNF film. The CNF/PVA film is applicable for biocompatible and flexible vibration energy harvesting.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Álcool de Polivinil/química , Suspensões , Resistência à Tração , Vibração
14.
Nano Lett ; 21(6): 2532-2537, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33683886

RESUMO

Electromagnetic interference (EMI) shielding materials with excellent EMI shielding efficiency (SE), lightweight property, and superb mechanical performance are vitally important for modern society, but it is still a challenge to realize these performances simultaneously on one material. Here, we report a sustainable bioinspired double-network structural material with excellent specific strength (146 MPa g-1 cm3) and remarkable EMI SE (100 dB) from cellulose nanofiber (CNF) and carbon nanotubes (CNTs), which demonstrates remarkable and outstanding performance to both typical metal materials and reported polymer composites. In particular, the bioinspired double-network structure design simultaneously achieves an extremely high electrical conductivity and mechanical strength, which makes it a lightweight, high shielding efficiency, and sustainable structural material for real-life electromagnetic wave shielding applications.

15.
Molecules ; 27(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235046

RESUMO

In this study, a green, highly efficient and low energy consumption preparation method of cellulose nanofiber (CNF) was developed by using agricultural and forestry waste durian rinds as raw materials. The power of ultrasonic treatment was successfully reduced to only 360 W with low molecular weight liquid DMSO. The obtained durian rind-based CNF had a diameter of 8-20 nm and a length of several micrometers. It had good dispersion and stability in water, and could spontaneously cross-link to form hydrogel at room temperature when the concentration was more than 0.5%. The microscopic morphology and compressive properties of CNF aerogels and composite cellulose aerogels prepared from durian rind-based CNF were evaluated. It was found that CNF could effectively prevent the volume shrinkage of aerogel, and the concentration of CNF had a significant effect on the microstructure and mechanical properties of aerogel. The CNF aerogel with 1% CNF exhibited a sheet structure braced by fibers, which had the strongest compression performance. The porosity of CNF aerogels was high to 99%. The compressive strength of the composite cellulose aerogel with durian rind-based CNF was effectively enhanced.


Assuntos
Bombacaceae , Nanofibras , Celulose/química , Dimetil Sulfóxido , Hidrogéis , Nanofibras/química , Água
16.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431806

RESUMO

The optimization of the production of thermoplastic starch (TPS) bionanocomposite films for their potential application in food packaging was carried out, according to the Box-Wilson Central Composite Design (CCD) with one center point, using Response Surface Methodology (RSM) and fillers based on lignin and nanofiber, which were derived from bamboo plant. The effects of the fillers on the moisture absorption (MAB), tensile strength (TS), percent elongation (PE) and Young's modulus (YM) of the produced films were statistically examined. The obtained results showed that the nanocomposite films were best fitted by a quadratic regression model with a high coefficient of determination (R2) value. The film identified to be optimum has a desirability of 76.80%, which is close to the objective function, and contained 4.81 wt. % lignin and 5.00 wt. % nanofiber. The MAB, TS, YM and PE of the identified film were 17.80%, 21.51 MPa, 25.76 MPa and 48.81%, respectively. The addition of lignin and cellulose nanofiber to starch composite was found to have reduced the moisture-absorption tendency significantly and increased the mechanical properties of the films due to the good filler/matrix interfacial adhesion. Overall, the results suggested that the produced films would be suitable for application as packaging materials for food preservation.


Assuntos
Celulose , Nanofibras , Lignina , Embalagem de Alimentos , Amido
17.
Coord Chem Rev ; 426: 213544, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32981945

RESUMO

Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.

18.
Cellulose (Lond) ; 28(5): 2791-2803, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382433

RESUMO

Peripheral neuropathy arising from physical trauma is estimated to afflict 20 million people in the United States alone. In one common surgical intervention, neural conduits are placed over the nerve stumps to bridge the gap and create a microenvironment conducive to regeneration. It has been proposed that a biocompatible material such as cellulose nanofiber may serve as a viable conduit material, providing a non-inflammatory and mechanically stable system. Preliminary studies have shown that cellulose nanofiber conduits successfully aid neural regeneration and further, that the dimensions of the conduit relative to the nerve gap have an impact on efficacy in murine models. It has been hypothesized that the reliance of regeneration upon the physical dimensions of the conduit may be related to modified modes of diffusion and/or distances of key cellular nutrients and waste metabolites to/from the injury site. The present work investigates the concentration profile of glucose within the conduit via finite element analysis as a function of the physical dimensions of the conduit. It was determined that the magnitude of glucose diffusion was greater through the conduit walls than through the luminal space between the nerve and the inner wall of the conduit, and that as such radial diffusion is dominant over axial diffusion.

19.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071337

RESUMO

Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.


Assuntos
Antibacterianos/química , Arecaceae/química , Celulose/química , Nanocompostos/química , Nanofibras/química , Óxido de Zinco/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Microscopia Eletrônica , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Tamanho da Partícula , Borracha/química , Salmonella/efeitos dos fármacos , Salmonella/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
20.
Molecules ; 26(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577010

RESUMO

Cellulose nanofibrils (CNF) with high thermal stability and excellent electrolyte wettability attracted tremendous attention as a promising separator for the emerging sodium-ion batteries. The pore structure of the separator plays a vital role in electrochemical performance. CNF separators are assembled using the bottom-up approach in this study, and the pore structure is carefully controlled through film-forming techniques. The acid-treated separators prepared from the solvent exchange and freeze-drying demonstrated an optimal pore structure with a high electrolyte uptake rate (978.8%) and Na+ transference number (0.88). Consequently, the obtained separator showed a reversible specific capacity of 320 mAh/g and enhanced cycling performance at high rates compared to the commercial glass fiber separator (290 mAh/g). The results highlight that CNF separators with an optimized pore structure are advisable for sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA