Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2315990121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289960

RESUMO

Immune-mediated necrotizing myopathy (IMNM) is an autoimmune disorder associated with the presence of autoantibodies, characterized by severe clinical presentation with rapidly progressive muscular weakness and elevated levels of creatine kinase, while traditional pharmacological approaches possess varying and often limited effects. Considering the pathogenic role of autoantibodies, chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA) have emerged as a promising therapeutic strategy. We reported here a patient with anti-signal recognition particle IMNM refractory to multiple available therapies, who was treated with BCMA-targeting CAR-T cells, exhibited favorable safety profiles, sustained reduction in pathogenic autoantibodies, and persistent clinical improvements over 18 mo. Longitudinal single-cell RNA, B cell receptor, T cell receptor sequencing analysis presented the normalization of immune microenvironment after CAR-T cell infusion, including reconstitution of B cell lineages, replacement of T cell subclusters, and suppression of overactivated immune cells. Analysis on characteristics of CAR-T cells in IMNM demonstrated a more active expansion of CD8+ CAR-T cells, with a dynamic phenotype shifting pattern similar in CD4+ and CD8+ CAR-T cells. A comparison of CD8+ CAR-T cells in patients with IMNM and those with malignancies collected at different timepoints revealed a more NK-like phenotype with enhanced tendency of cell death and neuroinflammation and inhibited proliferating ability of CD8+ CAR-T cells in IMNM while neuroinflammation might be the distinct characteristics. Further studies are warranted to define the molecular features of CAR-T cells in autoimmunity and to seek higher efficiency and longer persistence of CAR-T cells in treating autoimmune disorders.


Assuntos
Doenças Autoimunes , Mieloma Múltiplo , Doenças Musculares , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antígeno de Maturação de Linfócitos B , Doenças Neuroinflamatórias , Imunoterapia Adotiva , Doenças Autoimunes/terapia , Autoanticorpos , Doenças Musculares/terapia , Análise de Célula Única , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
2.
J Cell Mol Med ; 28(11): e18362, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837666

RESUMO

Chimeric antigen receptor- (CAR-)modified T cells have been successfully used to treat blood cancer. With the improved research on anti-tumour adoptive cell therapy, researchers have focused on immune cells other than T lymphocytes. Natural killer (NK) cells have received widespread attention as barriers to natural immunity. Compared to T lymphocyte-related adoptive cell therapy, the use of NK cells to treat tumours does not cause graft-versus-host disease, significantly improving immunity. Moreover, NK cells have more sources than T cells, and the related modified cells are less expensive. NK cells function through several pathways in anti-tumour mechanisms. Currently, many anti-tumour clinical trials have used NK cell-related adoptive cell therapies. In this review, we have summarized the recent progress in NK cell-related adoptive cellular immunotherapy for tumour treatment and propose the current challenges faced by CAR-NK cell therapy.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais
3.
Br J Haematol ; 205(2): 420-428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887101

RESUMO

Chimeric antigen receptor (CAR)-T-cell therapy has demonstrated considerable efficacy and safety in the treatment of patients with relapsed/refractory haematological malignancies. Owing to significant advances, CAR-T-cell therapeutic modality has undergone substantial shifts in its clinical application. Coagulation abnormalities, which are prevalent complications in CAR-T-cell therapy, can range in severity from simple abnormalities in coagulation parameters to serious haemorrhage or disseminated intravascular coagulation associated with life-threatening multiorgan dysfunction. Nonetheless, there is a lack of a comprehensive overview concerning the coagulation abnormalities associated with CAR-T-cell therapy. With an aim to attract heightened clinical focus and to enhance the safety of CAR-T-cell therapy, this review presents the characteristics of the coagulation abnormalities associated with CAR-T-cell therapy, including clinical manifestations, coagulation parameters, pathogenesis, risk factors and their influence on treatment efficacy in patients receiving CAR-T-cell infusion. Due to limited data, these conclusions may undergo changes as more experience accumulates.


Assuntos
Transtornos da Coagulação Sanguínea , Neoplasias Hematológicas , Imunoterapia Adotiva , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias Hematológicas/terapia , Transtornos da Coagulação Sanguínea/terapia , Transtornos da Coagulação Sanguínea/etiologia , Receptores de Antígenos Quiméricos/uso terapêutico
4.
Br J Haematol ; 204(5): 1590-1592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38563345

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy for the treatment of multiple myeloma (MM) has fundamentally changed the relapsed and refractory therapeutic landscape, but the disease remains incurable. Two CAR-T products, idecabtagene vicleucel (ide-cel; Abecma) and ciltacabtagene autoleucel (cilta-cel, Carvykti), have been FDA- and EMA-approved for the treatment of relapsed/refractory MM (RRMM); both target B-cell maturation antigen (BCMA), a surface glycoprotein highly expressed on MM cells. Despite deep and durable responses following CAR-T therapy, most patients will need subsequent treatment, and the optimal next-line therapy is presently unclear. Commentary on: Liu et al. Outcomes in patients with multiple myeloma receiving salvage treatment after BCMA-specific CAR-T therapy: A retrospective analysis of LEGEND-2. Br J Haematol 2024;204:1780-1789.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Terapia de Salvação , Humanos , Mieloma Múltiplo/terapia , Imunoterapia Adotiva/métodos , Terapia de Salvação/métodos , Antígeno de Maturação de Linfócitos B , Receptores de Antígenos Quiméricos/uso terapêutico
5.
Support Care Cancer ; 32(9): 591, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150486

RESUMO

BACKGROUND: CAR-T therapy has emerged as a potentially effective treatment for individuals diagnosed with hematologic malignancies. Understanding patients' unique experiences with this therapeutic approach is essential. This knowledge will enable the development of tailored nursing interventions that align with the increasing importance of patient-centered care. OBJECTIVE: To examine and synthesize qualitative data on patients and their family caregivers' experiences during the treatment journey. DESIGN: We conducted a systematic review and qualitative meta-synthesis. Eligible studies contained adult patient or family caregiver quotes about experiences of CAR-T therapy, published in English or Chinese in a peer-reviewed journal since 2015. Data sources included MEDLINE, CINAHL, Embase, PsycINFO, Web of Science, Scopus, Cochrane Library, CNKI, and WanFang. METHODS: Systematic search yielded 6373 identified articles. Of these, 12 reports were included in the analysis, which covered 11 separate studies. Two reviewers independently extracted data into NVIVO 12.0. Qualitative meta-synthesis was performed through line-by-line coding of full text, organization of codes into descriptive themes, and development themes. RESULTS: The qualitative meta-synthesis yielded eight primary themes. Noteworthy revelations from patients and their family caregivers regarding the CAR-T therapy journey encompassed various aspects. Prior to CAR-T therapy, patients experienced a lack of actual choice, struggled with expectations for treatment outcomes, and encountered intricate emotional experiences. During or immediately after CAR-T therapy, patients reported both comfortable and uncomfortable experiences. Additionally, patients emphasized that concerns regarding treatment efficacy and adverse reactions intensified treatment-related distress. After CAR-T therapy, significant changes were observed, and the burden of home-based rehabilitation. Additionally, we found factors contributed to the high CAR-T therapy cost. CONCLUSIONS: To ensure the safety and sustainability of CAR-T therapy, it is crucial to address the physical and psychological aspects of the patient's experience. Effective communication and comprehensive management are highly valued by patients and their caregivers. Further research should investigate ways to reduce burdens and develop self-management education programs for patients and their families.


Assuntos
Cuidadores , Neoplasias Hematológicas , Assistência Centrada no Paciente , Pesquisa Qualitativa , Humanos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/psicologia , Cuidadores/psicologia , Imunoterapia Adotiva/métodos
6.
Mol Ther ; 31(7): 2089-2104, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36945773

RESUMO

CAR T cells recognizing CD19 effectively treat relapsed and refractory B-ALL and DLBCL. However, CD19 loss is a frequent cause of relapse. Simultaneously targeting a second antigen, CD22, may decrease antigen escape, but is challenging: its density is approximately 10-fold less than CD19, and its large structure may hamper immune synapse formation. The characteristics of the optimal CD22 CAR are underexplored. We generated 12 distinct CD22 antibodies and tested CARs derived from them to identify a CAR based on the novel 9A8 antibody, which was sensitive to low CD22 density and lacked tonic signaling. We found no correlation between affinity or membrane proximity of recognition epitope within Ig domains 3-6 of CD22 with CART function. The optimal strategy for CD19/CD22 CART co-targeting is undetermined. Co-administration of CD19 and CD22 CARs is costly; single CARs targeting CD19 and CD22 are challenging to construct. The co-expression of two CARs has previously been achieved using bicistronic vectors. Here, we generated a dual CART product by co-transduction with 9A8-41BBζ and CAT-41BBζ (obe-cel), the previously described CD19 CAR. CAT/9A8 CART eliminated single- and double-positive target cells in vitro and eliminated CD19- tumors in vivo. CAT/9A8 CART is being tested in a phase I clinical study (NCT02443831).


Assuntos
Linfoma de Burkitt , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Recidiva Local de Neoplasia , Imunoterapia Adotiva , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Anticorpos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
7.
Rinsho Ketsueki ; 65(6): 536-546, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38960654

RESUMO

Advances in understanding of the pathogenesis of B-cell lymphoma have led to development of various novel targeted therapies. Among them, CD19-targeted chimeric antigen receptor (CAR) T-cell therapies for relapsed and refractory B-cell lymphomas have shown remarkable efficacy in clinical trials, and three CAR T-cell products are now available in Japan. Real-world evidence (RWE) has shown that these products can provide comparable efficacy to clinical trials in clinical practice, where CAR T-cells were administered in patients with wider range of backgrounds. This finding will certainly broaden the role of CAR T-cell therapies in the treatment of B-cell lymphoma. However, since about half of the patients treated with CAR T-cell therapy progress thereafter, there is an urgent need for risk stratification and optimized management of refractory cases. Here, we review the results of clinical trials and RWE of CAR T-cell therapy in B-cell lymphoma.


Assuntos
Imunoterapia Adotiva , Humanos , Linfoma/terapia , Linfoma/imunologia , Receptores de Antígenos Quiméricos/imunologia , Ensaios Clínicos como Assunto , Linfoma de Células B/terapia , Linfoma de Células B/imunologia
8.
Cancer Immunol Immunother ; 72(4): 917-928, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36166071

RESUMO

Ovarian cancer is a major cause of death among all gynaecological cancers. Although surgery, chemotherapy and targeted therapy have yielded successful outcomes, the 5-year survival rate remains < 30%. Adoptive immunotherapy, particularly chimeric antigen receptor (CAR) T-cell therapy, has demonstrated improved survival in acute lymphoblastic leukaemia with manageable toxicity. We explored CAR T-cell therapy in a preclinical mouse model of ovarian cancer. Second-generation CAR T cells were developed targeting mesothelin (MSLN), which is abundantly expressed in ovarian cancer. Cytotoxicity experiments were performed to verify the lethality of CAR T cells on target cells via flow cytometry. The in vivo antitumour activity of MSLN CAR T cells was also verified using a patient-derived xenograft (PDX) mouse model with human tumour-derived cells. We also evaluated the potency of CAR T cells directed to MSLN following co-expression of a dominant-negative transforming growth factor-ß receptor type II (dnTGFßRII). Our data demonstrate that anti-MSLN CAR T cells specifically eliminate MSLN-expressing target cells in an MSLN density-dependent manner. This preclinical research promises an effective treatment strategy to improve outcomes for ovarian cancer, with the potential for prolonging survival while minimizing risk of on-target off-tumour toxicity.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Feminino , Mesotelina , Receptores de Fatores de Crescimento Transformadores beta , Proteínas Ligadas por GPI , Imunoterapia Adotiva , Modelos Animais de Doenças , Linfócitos T , Fatores de Crescimento Transformadores , Linhagem Celular Tumoral
9.
BMC Cancer ; 23(1): 1055, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919691

RESUMO

BACKGROUND & AIMS: This study aims to assess the nutritional status of patients during the different phases of the Chimeric Antigen Receptor (CAR)-T cell therapy and to identify prominent risk factors of hypoalbuminemia in patients after CAR-T treatment. The clinical consequences of malnutrition in cancer patients have been highlighted by growing evidence from previous clinical studies. Given CAR-T cell therapy's treatment intensity and possible side effects, it is important to provide patients with sufficient medical attention and support for their nutritional well-being. METHODS: This study was conducted from May 2021 to December 2021 among patients undergoing CAR-T cell therapy at the Bone Marrow Transplantation Center in The First Affiliated Hospital of Zhejiang University School of Medicine. Logistic regression analysis was performed to investigate the risk factors associated with hypoalbuminemia. Participants were divided into the cytokine release syndrome (CRS) group (n = 60) and the non-CRS group (n = 11) to further analyze the relationship between hypoalbuminemia and CRS. RESULTS: CRS (OR = 13.618; 95% CI = 1.499-123.709; P = 0.013) and baseline albumin (ALB) (OR = 0.854; 95% CI = 0.754-0.967; P = 0.020) were identified as the independent clinical factors associated with post-CAR-T hypoalbuminemia. According to the nadir of serum albumin, hypoalbuminemia occurred most frequently in patients with severe CRS (78.57%). The nadir of serum albumin (r = - 0.587, P < 0.001) and serum albumin at discharge (r = - 0.315, P = 0.01) were negatively correlated for the duration of CRS. Furthermore, patients with hypoalbuminemia deserved longer hospitalization (P = 0.04). CONCLUSIONS: CRS was identified as a significant risk factor associated with post-CAR-T hypoalbuminemia. An obvious decline in serum albumin was observed as the grade and duration of CRS increase. However, further research is still needed to elucidate the mechanisms of CRS-associated hypoalbuminemia.


Assuntos
Neoplasias Hematológicas , Hipoalbuminemia , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Hipoalbuminemia/complicações , Imunoterapia Adotiva/efeitos adversos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/tratamento farmacológico , Fatores de Risco , Albumina Sérica , Terapia Baseada em Transplante de Células e Tecidos
10.
Hematol Oncol ; 41 Suppl 1: 112-118, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37294963

RESUMO

CD19-targeted chimeric antigen receptor (CAR) T-cells have revolutionized the treatment of lymphoid malignancies, including large B cell lymphoma (LBCL). Following seminal early phase multicenter clinical trials published between 2017 and 2020, three CD19-CAR T-cell products received FDA and EMA approval designations in lymphoma in the third-line setting, paving the way for follow-up studies in the second-line. Meanwhile, investigations into the applications of CAR T-cell therapy have further broadened to treating high-risk patients even prior to completion of first-line conventional chemo-immunotherapy. Furthermore, as early trials excluded patients with central nervous system involvement with lymphoma, several studies have recently shown promising efficacy of CD19-CAR T-cells in primary and secondary CNS lymphoma. Here we provide a detailed overview on clinical data supporting the use of CAR T-cells in patients with LBCL.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma Difuso de Grandes Células B , Humanos , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico , Linfoma Difuso de Grandes Células B/patologia , Linfócitos T , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Antígenos CD19 , Estudos Multicêntricos como Assunto
11.
J Biomed Sci ; 30(1): 89, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864230

RESUMO

Chimeric antigen receptor (CAR)-T cell therapies have been approved by FDA to treat relapsed or refractory hematological malignancies. However, the adverse effects of CAR-T cell therapies are complex and can be challenging to diagnose and treat. In this review, we summarize the major adverse events, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and CAR T-cell associated HLH (carHLH), and discuss their pathophysiology, symptoms, grading, and diagnosis systems, as well as management. In a future outlook, we also provide an overview of measures and modifications to CAR-T cells that are currently being explored to limit toxicity.


Assuntos
Neoplasias Hematológicas , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/terapia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia
12.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176053

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has greatly transformed the treatment and prognosis of B-cell hematological malignancies. As CAR T-cell therapy continues to be more readily adopted and indications increase, the field's recognition of emerging toxicities will continue to grow. Among the adverse events associated with CAR T-cell therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) are the most common toxicities, while thrombotic events represent an under-reported, life-endangering complication. To determine thrombosis incidence post CAR T-cell therapy, we performed a multi-center, retrospective study on CAR T-cell therapy adult patients (N = 140) from Indiana University Simon Cancer Center and the University of North Carolina Medical Center treated from 2017 to 2022 for relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL, N = 3), diffuse large B-cell lymphoma (DLBCL, N = 92), follicular lymphoma (FL, N = 9), mantle cell lymphoma (MCL, N = 2), and multiple myeloma (MM, N = 34). We report 10 (7.14%) thrombotic events related to CAR T-cell therapy (DLBCL: N = 8, FL: N = 1, MM: N = 1) including 9 primary venous events and 1 arterial event that occurred with median time of 23.5 days post CAR T-cell infusion. In search of parameters associated with such events, we performed multivariate analyses of coagulation parameters (i.e., PT, PTT, and D-Dimer), scoring for adverse events (Padua Score and ISTH DIC Score) and grading for CAR T-cell toxicity severity (CRS grade and ICANS grade) and found that D-Dimer peak elevation and ICANS grade were significantly associated with post-CAR T-cell infusion thrombosis. While the pathophysiology of CAR T-cell associated coagulopathy remains unknown, our study serves to develop awareness of these emerging and unusual complications.


Assuntos
Receptores de Antígenos Quiméricos , Trombose , Humanos , Adulto , Imunoterapia Adotiva/efeitos adversos , Estudos Retrospectivos , Linfócitos T , Trombose/etiologia , Receptores de Antígenos de Linfócitos T/genética
13.
Br J Haematol ; 197(1): 28-40, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34671973

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapy in haematological malignancies. However, the currently approved products are generated from autologous T cells that require orchestration of several logistically complex steps, which include patient eligibility, apheresis capability, complex manufacturing processes and shipping logistics. Use of third-party donor-derived (allogeneic) effector cells that allows the generation of 'off-the-shelf" CAR T cells (allo-CAR) could circumvent many of the problems associated with autologous CAR T-cell therapy. Several allogeneic products are entering clinical trials, and though early, the results look promising. The recognised potential benefits of allo-CAR do not come without significant challenges, that must be overcome for their widespread use. Alloreactivity, i.e. graft-versus-host disease (GVHD), and rejection of donor T cells is one of the major barriers, while other potential barriers include immunogenicity, unknown in vivo persistence, and CAR T-cell yield. In the present review, we provide a comprehensive review of the challenges associated with autologous CAR, the benefits and potential challenges associated with allo-CAR. Finally, we review the available platforms for allo-CAR for B-cell and plasma cell malignancies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Plasmócitos , Linfócitos T
14.
Eur J Immunol ; 51(9): 2151-2163, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34196410

RESUMO

Spearheaded by the therapeutic use of chimeric antigen receptors (CARs) targeting CD19, synthetic immunology has entered the clinical arena. CARs are recombinant receptors for antigen that engage cell surface molecules through the variable region of an antibody and signal through arrayed T-cell activating and costimulatory domains. CARs allow redirection of T-cell cytotoxicity against any antigen of choice, independent of MHC expression. Patient T cells engineered to express CARs specific for CD19 have yielded remarkable outcomes in subjects with relapsed/refractory B- cell malignancies, setting off unprecedented interest in T-cell engineering and cell-based cancer immunotherapy. In this review, we present the challenges to extend the use of CAR T cells to solid tumors and other pathologies. We further highlight progress in CAR design, cell manufacturing, and genome editing, which in aggregate hold the promise of generating safer and more effective genetically instructed immunity. Novel engineered cell types, including innate T-cell types, natural killer (NK) cells, macrophages, and induced pluripotent stem cell-derived immune cells, are on the horizon, as are applications of CAR T cells to treat autoimmunity, severe infections, and senescence-associated pathologies.


Assuntos
Antígenos CD19/imunologia , Engenharia Genética/métodos , Imunoterapia Adotiva/métodos , Leucemia de Células B/terapia , Receptores de Antígenos Quiméricos/imunologia , Doenças Autoimunes/terapia , Engenharia Celular/métodos , Edição de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante
15.
Cancer Cell Int ; 22(1): 168, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488303

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy is a promising and rapidly expanding therapeutic option for a wide range of human malignancies. Despite the ongoing progress of CAR T-cell therapy in hematologic malignancies, the application of this therapeutic strategy in solid tumors has encountered several challenges due to antigen heterogeneity, suboptimal CAR T-cell trafficking, and the immunosuppressive features of the tumor microenvironment (TME). Oncolytic virotherapy is a novel cancer therapy that employs competent or genetically modified oncolytic viruses (OVs) to preferentially proliferate in tumor cells. OVs in combination with CAR T-cells are promising candidates for overcoming the current drawbacks of CAR T-cell application in tumors through triggering immunogenic cell death (ICD) in cancer cells. ICD is a type of cellular death in which danger-associated molecular patterns (DAMPs) and tumor-specific antigens are released, leading to the stimulation of potent anti-cancer immunity. In the present review, we discuss the biological causes of ICD, different types of ICD, and the synergistic combination of OVs and CAR T-cells to reach potent tumor-specific immunity.

16.
Heart Fail Clin ; 18(3): 443-454, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35718418

RESUMO

Chimeric antigen receptor (CAR) T-cell and bispecific T-cell engager (BiTE) therapies have revolutionized the treatment of refractory or relapsed leukemia and lymphoma. Increased use of these therapies has revealed signals of significant cardiotoxicity, including cardiomyopathy/heart failure, arrhythmia, myocardial injury, hemodynamic instability, and cardiovascular death mainly in the context of a profound inflammatory response to CAR T-cell antitumor effects known as cytokine release syndrome (CRS). Preexisting cardiovascular risk factors and disease may increase the risk of such cardiotoxicity. High index of suspicion and close monitoring is required for prompt recognition. Supportive hemodynamic care and targeted anti-IL-6 therapy, as well as possibly broader immunosuppression with corticosteroids, are the cornerstones of the management.


Assuntos
Doenças Cardiovasculares , Receptores de Antígenos Quiméricos , Cardiotoxicidade , Doenças Cardiovasculares/terapia , Humanos , Imunoterapia , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T
17.
Breast Cancer Res Treat ; 186(1): 25-36, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389403

RESUMO

PURPOSE: Treatment of breast cancer (BC) by standard methods is effective in the early stage, but ineffective in the advanced stage of disease. To develop an adoptive T cell therapy for advanced and severe BC, we generated fourth-generation chimeric antigen receptor (CAR) T cells targeting folate receptor alpha antigen (FRα) expressed on BC cells, and preclinically evaluated their anti-BC activities. METHODS: The fourth-generation FRα-CAR T cells containing extracellular FRα-specific single-chain variable fragment (scFv) and three intracellular costimulatory domains (CD28, 4-1BB, and CD27) linked to CD3ζ were generated using a lentiviral system, and then were evaluated for their anti-BC activities in two-dimensional and three-dimensional (spheroid) cultures. RESULTS: When our fourth-generation FRα-CAR T cells were cocultured with FRα-expressing MDA-MB-231 BC cell line at an effector to target ratio of 20:1, these CAR T cells specifically lysed 88.7 ± 10.6% of the target cells. Interestingly, the cytotoxic lysis of FRα-CAR T cells was more pronounced in target cells with higher surface FRα expression. This specific cytotoxicity of the CAR T cells was not observed when cocultured with FRα-negative MCF10A normal breast-like cell line at the same ratio (34.3 ± 4.7%). When they were cocultured with MDA-MD-231 spheroid, the FRα-CAR T cells exhibited antitumor activity marked with spheroid size reduction and breakage. CONCLUSION: This proof-of-concept study thus shows the feasibility of using these fourth-generation FRα-CAR T cells for adoptive T cell therapy in BC.


Assuntos
Neoplasias da Mama , Receptores de Antígenos Quiméricos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Receptor 1 de Folato/genética , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Gynecol Oncol ; 160(2): 520-529, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33342620

RESUMO

OBJECTIVE: Chimeric antigen receptor (CAR)-T cell strategies ideally target a surface antigen that is exclusively and uniformly expressed by tumors; however, no such antigen is known for high-grade serous ovarian carcinoma (HGSC). A potential solution involves combinatorial antigen targeting with AND or OR logic-gating. Therefore, we investigated co-expression of CA125, Mesothelin (MSLN) and Folate Receptor alpha (FOLRA) on individual tumor cells in HGSC. METHODS: RNA expression of CA125, MSLN, and FOLR1 was assessed using TCGA (HGSC) and GTEx (healthy tissues) databases. Antigen expression profiles and CD3+, CD8+ and CD20+ tumor-infiltrating lymphocyte (TIL) patterns were assessed in primary and recurrent HGSC by multiplex immunofluorescence and immunohistochemistry. RESULTS: At the transcriptional level, each antigen was overexpressed in >90% of cases; however, MSLN and FOLR1 showed substantial expression in healthy tissues. At the protein level, CA125 was expressed by the highest proportion of cases and tumor cells per case, followed by MSLN and FOLRA. The most promising pairwise combination was CA125 and/or MSLN (OR gate), with 51.9% of cases containing ≥90% of tumor cells expressing one or both antigens. In contrast, only 5.8% of cases contained ≥90% of tumor cells co-expressing CA125 and MSLN (AND gate). Antigen expression patterns showed modest correlations with TIL. Recurrent tumors retained expression of all three antigens and showed increased TIL densities. CONCLUSIONS: An OR-gated CAR-T cell strategy against CA125 and MSLN would target the majority of tumor cells in most cases. Antigen expression and T-cell infiltration patterns are favorable for this strategy in primary and recurrent disease.


Assuntos
Antígenos de Neoplasias/metabolismo , Carcinoma Epitelial do Ovário/imunologia , Imunoterapia Adotiva/métodos , Recidiva Local de Neoplasia/imunologia , Neoplasias Ovarianas/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Antígenos de Neoplasias/imunologia , Antígeno Ca-125/imunologia , Antígeno Ca-125/metabolismo , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/terapia , Feminino , Receptor 1 de Folato/imunologia , Receptor 1 de Folato/metabolismo , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Mesotelina , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Ovário/imunologia , Ovário/patologia , Receptores de Antígenos Quiméricos/imunologia
19.
Adv Exp Med Biol ; 1342: 297-317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972970

RESUMO

In 1891, Dr. William B. Coley, an American surgeon, made a compelling observation that immune system can be triggered to shrink tumors. The quest to exploit the power of immunotherapy however was forestalled by an era of chemotherapy that ensued. During World War II, the accidental sinking of a US naval ship led to a group of sailors developing pancytopenia due to poisoning from mustard gas (nitrogen mustard). The observation prompted wide-scale screening of these chemical compounds with cytotoxic potential; further clinical trials led to the first Food and Drug Administration (FDA) approval of a chemotherapy drug, nitrogen mustard. Immunotherapy field took further impetus, not until the last two decades, due to our deeper understanding of the immune system and the cellular and molecular pathways leading to tumor development. Two groundbreaking therapies which have shown great promise in this field involve "taking the breaks off" and "pushing the pedal" of the immune system. These therapies, namely, immune checkpoint inhibitors and adoptive cell therapy, respectively, have been successful in a variety of malignancies, while the former mostly in solid tumors and the latter in hematological malignancies.


Assuntos
Imunoterapia Adotiva , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Linfócitos T
20.
J Gene Med ; 22(4): e3157, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901177

RESUMO

BACKGROUND: Use of chimeric antigen receptor (CAR) T cells has become a promising strategy in cancer immunotherapy. However, safety in clinical application is also one of the most controversial issues. METHODS: In the present study, we investigated the application of a non-viral site-directed vector (CELiD [closed-ended linear duplex DNA]) dependent on adeno-associated virus (AAV) genomes for the purpose of safe CAR-T engineering. We co-electroporated CD19-CAR encoding "CELiD" vectors with plasmid pCMV-Rep into human T cells and ensured stably transfected CAR-T cells by G418 selection. The efficiency of AAVS1 site-specific integration was analyzed by a real-time polymerase chain reaction. RESULTS: CAR-T cells engineered by CELiD vectors could be established within 20 days with up to 22.8% AAVS1 site-specific integration efficiency. CAR expression and cytokine secretion of CAR modified T cells were evaluated in vitro. Abundant effector cytokines were produced by the CAR-T cells engineered by CELiD vectors compared to control T cells and the killing efficiency of target cells was estimated to as high as 75% in vitro. CONCLUSIONS: With the help of the AAV-derived CELiD vector, CAR genes were preferentially integrated into the AAVS1 site. This technology could be utilized in human T cell modification and remove the safety constraints of CAR-T therapy.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T/metabolismo , Transdução Genética , Transgenes , Integração Viral , Antígenos CD19/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular , Citotoxicidade Imunológica , Expressão Gênica , Ordem dos Genes , Engenharia Genética , Humanos , Imunofenotipagem , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA