Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Annu Rev Cell Dev Biol ; 39: 277-305, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37540844

RESUMO

Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico
2.
Mol Cell ; 83(21): 3773-3786, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37734377

RESUMO

Histone variants provide versatility in the basic unit of chromatin, helping to define dynamic landscapes and cell fates. Maintaining genome integrity is paramount for the cell, and it is intimately linked with chromatin dynamics, assembly, and disassembly during DNA transactions such as replication, repair, recombination, and transcription. In this review, we focus on the family of H3 variants and their dynamics in space and time during the cell cycle. We review the distinct H3 variants' specific features along with their escort partners, the histone chaperones, compiled across different species to discuss their distinct importance considering evolution. We place H3 dynamics at different times during the cell cycle with the possible consequences for genome stability. Finally, we examine how their mutation and alteration impact disease. The emerging picture stresses key parameters in H3 dynamics to reflect on how when they are perturbed, they become a source of stress for genome integrity.


Assuntos
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Ciclo Celular/genética , DNA , Chaperonas de Histonas/genética
3.
Genes Dev ; 37(19-20): 863-864, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914350

RESUMO

Mutations in the methyl-DNA binding domain of MECP2 cause Rett syndrome; however, distinct mutations are associated with different severity of the disease. Live-cell imaging and single-molecule tracking are sensitive methods to quantify the DNA binding affinity and diffusion dynamics of nuclear proteins. In this issue of Genes & Development, Zhou and colleagues (pp. 883-900) used these imaging methods to quantitatively describe the partial loss of DNA binding resulting from a novel pathological MECP2 mutation with intermediate disease severity. These data demonstrate how single-molecule tracking can advance understanding of the molecular mechanisms connecting MECP2 mutations with Rett syndrome pathophysiology.


Assuntos
Síndrome de Rett , Humanos , Síndrome de Rett/genética , Proteína 2 de Ligação a Metil-CpG/genética , DNA/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Domínios Proteicos
4.
Genes Dev ; 37(19-20): 883-900, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890975

RESUMO

Loss-of-function mutations in MECP2 cause Rett syndrome (RTT), a severe neurological disorder that mainly affects girls. Mutations in MECP2 do occur in males occasionally and typically cause severe encephalopathy and premature lethality. Recently, we identified a missense mutation (c.353G>A, p.Gly118Glu [G118E]), which has never been seen before in MECP2, in a young boy who suffered from progressive motor dysfunction and developmental delay. To determine whether this variant caused the clinical symptoms and study its functional consequences, we established two disease models, including human neurons from patient-derived iPSCs and a knock-in mouse line. G118E mutation partially reduces MeCP2 abundance and its DNA binding, and G118E mice manifest RTT-like symptoms seen in the patient, affirming the pathogenicity of this mutation. Using live-cell and single-molecule imaging, we found that G118E mutation alters MeCP2's chromatin interaction properties in live neurons independently of its effect on protein levels. Here we report the generation and characterization of RTT models of a male hypomorphic variant and reveal new insight into the mechanism by which this pathological mutation affects MeCP2's chromatin dynamics. Our ability to quantify protein dynamics in disease models lays the foundation for harnessing high-resolution single-molecule imaging as the next frontier for developing innovative therapies for RTT and other diseases.


Assuntos
Cromatina , Síndrome de Rett , Feminino , Humanos , Masculino , Camundongos , Animais , Cromatina/metabolismo , Encéfalo/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Mutação , Neurônios/metabolismo
5.
Genes Dev ; 36(11-12): 684-698, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738677

RESUMO

The progeny of intestinal stem cells (ISCs) dedifferentiate in response to ISC attrition. The precise cell sources, transitional states, and chromatin remodeling behind this activity remain unclear. In the skin, stem cell recovery after injury preserves an epigenetic memory of the damage response; whether similar memories arise and persist in regenerated ISCs is not known. We addressed these questions by examining gene activity and open chromatin at the resolution of single Neurog3-labeled mouse intestinal crypt cells, hence deconstructing forward and reverse differentiation of the intestinal secretory (Sec) lineage. We show that goblet, Paneth, and enteroendocrine cells arise by multilineage priming in common precursors, followed by selective access at thousands of cell-restricted cis-elements. Selective ablation of the ISC compartment elicits speedy reversal of chromatin and transcriptional features in large fractions of precursor and mature crypt Sec cells without obligate cell cycle re-entry. ISC programs decay and reappear along a cellular continuum lacking discernible discrete interim states. In the absence of gross tissue damage, Sec cells simply reverse their forward trajectories, without invoking developmental or other extrinsic programs, and starting chromatin identities are effectively erased. These findings identify strikingly plastic molecular frameworks in assembly and regeneration of a self-renewing tissue.


Assuntos
Cromatina , Células-Tronco , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Proteínas do Tecido Nervoso/metabolismo
6.
Mol Cell ; 81(8): 1651-1665.e4, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705711

RESUMO

Enhancers harbor binding motifs that recruit transcription factors (TFs) for gene activation. While cooperative binding of TFs at enhancers is known to be critical for transcriptional activation of a handful of developmental enhancers, the extent of TF cooperativity genome-wide is unknown. Here, we couple high-resolution nuclease footprinting with single-molecule methylation profiling to characterize TF cooperativity at active enhancers in the Drosophila genome. Enrichment of short micrococcal nuclease (MNase)-protected DNA segments indicates that the majority of enhancers harbor two or more TF-binding sites, and we uncover protected fragments that correspond to co-bound sites in thousands of enhancers. From the analysis of co-binding, we find that cooperativity dominates TF binding in vivo at the majority of active enhancers. Cooperativity is highest between sites spaced 50 bp apart, indicating that cooperativity occurs without apparent protein-protein interactions. Our findings suggest nucleosomes promoting cooperativity because co-binding may effectively clear nucleosomes and promote enhancer function.


Assuntos
Elementos Facilitadores Genéticos/genética , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Drosophila/genética , Drosophila/metabolismo , Genoma/genética , Nuclease do Micrococo/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Mapas de Interação de Proteínas/genética , Ativação Transcricional/genética
7.
Trends Biochem Sci ; 49(6): 532-544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582689

RESUMO

Interactions of RNA with DNA are principles of gene expression control that have recently gained considerable attention. Among RNA-DNA interactions are R-loops and RNA-DNA hybrid G-quadruplexes, as well as RNA-DNA triplexes. It is proposed that RNA-DNA triplexes guide RNA-associated regulatory proteins to specific genomic locations, influencing transcription and epigenetic decision making. Although triplex formation initially was considered solely an in vitro event, recent progress in computational, biochemical, and biophysical methods support in vivo functionality with relevance for gene expression control. Here, we review the central methodology and biology of triplexes, outline paradigms required for triplex function, and provide examples of physiologically important triplex-forming long non-coding RNAs.


Assuntos
DNA , RNA , DNA/metabolismo , DNA/química , RNA/metabolismo , RNA/química , RNA/genética , Humanos , Animais , Conformação de Ácido Nucleico
8.
Mol Cell ; 77(3): 488-500.e9, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31761495

RESUMO

Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression.


Assuntos
Cromatina/metabolismo , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Nucleossomos/metabolismo , Nucleossomos/fisiologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
9.
Proc Natl Acad Sci U S A ; 121(12): e2307309121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489381

RESUMO

The organization of interphase chromosomes in a number of species is starting to emerge thanks to advances in a variety of experimental techniques. However, much less is known about the dynamics, especially in the functional states of chromatin. Some experiments have shown that the motility of individual loci in human interphase chromosome decreases during transcription and increases upon inhibiting transcription. This is a counterintuitive finding because it is thought that the active mechanical force (F) on the order of ten piconewtons, generated by RNA polymerase II (RNAPII) that is presumably transmitted to the gene-rich region of the chromatin, would render it more open, thus enhancing the mobility. We developed a minimal active copolymer model for interphase chromosomes to investigate how F affects the dynamical properties of chromatin. The movements of the loci in the gene-rich region are suppressed in an intermediate range of F and are enhanced at small F values, which has also been observed in experiments. In the intermediate F, the bond length between consecutive loci increases, becoming commensurate with the distance at the minimum of the attractive interaction between nonbonded loci. This results in a transient disorder-to-order transition, leading to a decreased mobility during transcription. Strikingly, the F-dependent change in the locus dynamics preserves the organization of the chromosome at [Formula: see text]. Transient ordering of the loci, which is not found in the polymers with random epigenetic profiles, in the gene-rich region might be a plausible mechanism for nucleating a dynamic network involving transcription factors, RNAPII, and chromatin.


Assuntos
Cromatina , Cromossomos Humanos , Humanos , Cromatina/genética , Fatores de Transcrição/genética , Interfase/genética , RNA Polimerase II/genética
10.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563209

RESUMO

Actin is well known for its cytoskeletal functions, where it helps to control and maintain cell shape and architecture, as well as regulating cell migration and intracellular cargo transport, among others. However, actin is also prevalent in the nucleus, where genome-regulating roles have been described, including it being part of chromatin-remodeling complexes. More recently, with the help of advances in microscopy techniques and specialized imaging probes, direct visualization of nuclear actin filament dynamics has helped elucidate new roles for nuclear actin, such as in cell cycle regulation, DNA replication and repair, chromatin organization and transcriptional condensate formation. In this Cell Science at a Glance article, we summarize the known signaling events driving the dynamic assembly of actin into filaments of various structures within the nuclear compartment for essential genome functions. Additionally, we highlight the physiological role of nuclear F-actin in meiosis and early embryonic development.


Assuntos
Actinas , Núcleo Celular , Actinas/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Ciclo Celular
11.
J Cell Sci ; 137(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738286

RESUMO

Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.


Assuntos
Cromatina , Entropia , Células-Tronco Pluripotentes Induzidas , Cromatina/metabolismo , Cromatina/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Protoplastos/metabolismo , Reprogramação Celular/genética , Histonas/metabolismo , Histonas/genética , Células Vegetais/metabolismo , Epigênese Genética
12.
Genes Dev ; 32(9-10): 682-694, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29759984

RESUMO

Our understanding of transcription by RNA polymerase II (Pol II) is limited by our knowledge of the factors that mediate this critically important process. Here we describe the identification of NDF, a nucleosome-destabilizing factor that facilitates Pol II transcription in chromatin. NDF has a PWWP motif, interacts with nucleosomes near the dyad, destabilizes nucleosomes in an ATP-independent manner, and facilitates transcription by Pol II through nucleosomes in a purified and defined transcription system as well as in cell nuclei. Upon transcriptional induction, NDF is recruited to the transcribed regions of thousands of genes and colocalizes with a subset of H3K36me3-enriched regions. Notably, the recruitment of NDF to gene bodies is accompanied by an increase in the transcript levels of many of the NDF-enriched genes. In addition, the global loss of NDF results in a decrease in the RNA levels of many genes. In humans, NDF is present at high levels in all tested tissue types, is essential in stem cells, and is frequently overexpressed in breast cancer. These findings indicate that NDF is a nucleosome-destabilizing factor that is recruited to gene bodies during transcriptional activation and facilitates Pol II transcription through nucleosomes.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Oxirredutases/metabolismo , Transcrição Gênica/genética , Motivos de Aminoácidos/genética , Animais , Neoplasias da Mama/genética , Núcleo Celular , Cromatina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Escherichia coli/genética , Regulação da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Camundongos , Proteínas Nucleares/genética , Oxirredutases/genética , Transporte Proteico , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Crit Rev Biochem Mol Biol ; 58(1): 1-18, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36921088

RESUMO

In the human cell nucleus, dynamically organized chromatin is the substrate for gene regulation, DNA replication, and repair. A central mechanism of DNA loop formation is an ATPase motor cohesin-mediated loop extrusion. The cohesin complexes load and unload onto the chromosome under the control of other regulators that physically interact and affect motor activity. Regulation of the dynamic loading cycle of cohesin influences not only the chromatin structure but also genome-associated human disorders and aging. This review focuses on the recently spotlighted genome organizing factors and the mechanism by which their dynamic interactions shape the genome architecture in interphase.


Assuntos
Cromatina , Replicação do DNA , Humanos , Cromatina/genética , Interfase/genética , Regulação da Expressão Gênica , Núcleo Celular
14.
J Cell Sci ; 136(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718642

RESUMO

Dynamic chromatin organization instantly influences DNA accessibility through modulating local macromolecular density and interactions, driving changes in transcription activities. Chromatin dynamics have been reported to be locally confined but contribute to coherent chromatin motion across the entire nucleus. However, the regulation of dynamics, nuclear orientation and compaction of subregions along a single chromosome are not well-understood. We used CRISPR-based real-time single-particle tracking and polymer models to characterize the dynamics of specific genomic loci and determine compaction levels of large human chromosomal domains. Our studies showed that chromosome compaction changed during interphase and that compactions of two arms on chromosome 19 were different. The dynamics of genomic loci were subdiffusive and dependent on chromosome regions and transcription states. Surprisingly, the correlation between locus-dependent nuclear localization and mobility was negligible. Strong tethering interactions detected at the pericentromeric region implies local condensation or associations with organelles within local nuclear microenvironments, such as chromatin-nuclear body association. Based on our findings, we propose a 'guided radial model' for the nuclear orientation of the long arm of chromosome 19.


Assuntos
Núcleo Celular , Cromatina , Humanos , Núcleo Celular/fisiologia , Cromossomos Humanos , Interfase
15.
J Virol ; 98(4): e0201523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451083

RESUMO

Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent, whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X, and macroH2A were enhanced in infected cells, whereas those of H2A.B were uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, as well as ectopic and endogenous H2B were assembled into HSV-1 chromatin evenly throughout the genome but canonical H2A was relatively depleted whereas H2A.B was enriched, particularly in the most dynamic viral chromatin. When viral transcription and DNA replication were restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. IMPORTANCE: Herpes simplex virus 1 (HSV-1) transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed epigenetic mechanisms of regulation of HSV-1 transcription have not been fully characterized and may differ from those regulating cellular transcription. Whereas lytic HSV-1 chromatin is unusually dynamic, latent silenced HSV-1 chromatin is not. The mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment of the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding of its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.


Assuntos
Cromatina , Epigênese Genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1 , Histonas , Transcrição Viral , Replicação Viral , Cromatina/genética , Cromatina/metabolismo , Inativação Gênica , Variação Genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/fisiologia , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Ativação Viral , Latência Viral , Humanos , Animais , Células Vero , Células HEK293
16.
Mol Cell ; 67(2): 282-293.e7, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28712725

RESUMO

The eukaryotic genome is organized within cells as chromatin. For proper information output, higher-order chromatin structures can be regulated dynamically. How such structures form and behave in various cellular processes remains unclear. Here, by combining super-resolution imaging (photoactivated localization microscopy [PALM]) and single-nucleosome tracking, we developed a nuclear imaging system to visualize the higher-order structures along with their dynamics in live mammalian cells. We demonstrated that nucleosomes form compact domains with a peak diameter of ∼160 nm and move coherently in live cells. The heterochromatin-rich regions showed more domains and less movement. With cell differentiation, the domains became more apparent, with reduced dynamics. Furthermore, various perturbation experiments indicated that they are organized by a combination of factors, including cohesin and nucleosome-nucleosome interactions. Notably, we observed the domains during mitosis, suggesting that they act as building blocks of chromosomes and may serve as information units throughout the cell cycle.


Assuntos
Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Microscopia de Vídeo/métodos , Mitose , Nucleossomos/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos , Células HCT116 , Células HeLa , Heterocromatina/química , Humanos , Camundongos , Movimento (Física) , Conformação de Ácido Nucleico , Nucleossomos/química , Conformação Proteica , Interferência de RNA , Relação Estrutura-Atividade , Fatores de Tempo , Transcrição Gênica , Transfecção , Coesinas
17.
Histochem Cell Biol ; 162(1-2): 79-90, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607419

RESUMO

Eukaryotic genomes store information on many levels, including their linear DNA sequence, the posttranslational modifications of its constituents (epigenetic modifications), and its three-dimensional folding. Understanding how this information is stored and read requires multidisciplinary collaborations from many branches of science beyond biology, including physics, chemistry, and computer science. Concurrent recent developments in all these areas have enabled researchers to image the genome with unprecedented spatial and temporal resolution. In this review, we focus on what single-molecule imaging and tracking of individual proteins in live cells have taught us about chromatin structure and dynamics. Starting with the basics of single-molecule tracking (SMT), we describe some advantages over in situ imaging techniques and its current limitations. Next, we focus on single-nucleosome studies and what they have added to our current understanding of the relationship between chromatin dynamics and transcription. In celebration of Robert Feulgen's ground-breaking discovery that allowed us to start seeing the genome, we discuss current models of chromatin structure and future challenges ahead.


Assuntos
Cromatina , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/química , Cromatina/metabolismo , Cromatina/química , Humanos , Animais
18.
Bioessays ; 44(7): e2200043, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661389

RESUMO

Eukaryotic genome DNA is wrapped around core histones and forms a nucleosome structure. Together with associated proteins and RNAs, these nucleosomes are organized three-dimensionally in the cell as chromatin. Emerging evidence demonstrates that chromatin consists of rather irregular and variable nucleosome arrangements without the regular fiber structure and that its dynamic behavior plays a critical role in regulating various genome functions. Single-nucleosome imaging is a promising method to investigate chromatin behavior in living cells. It reveals local chromatin motion, which reflects chromatin organization not observed in chemically fixed cells. The motion data is like a gold mine. Data analyses from many aspects bring us more and more information that contributes to better understanding of genome functions. In this review article, we describe imaging of single-nucleosomes and their tracked behavior through oblique illumination microscopy. We also discuss applications of this technique, especially in elucidating nucleolar organization in living cells.


Assuntos
Cromatina , Nucleossomos , Montagem e Desmontagem da Cromatina , DNA/química , Histonas/metabolismo
19.
Trends Biochem Sci ; 44(7): 565-574, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31072688

RESUMO

Misregulation of the processes controlling eukaryotic gene expression can result in disease. Gene expression is influenced by the surrounding chromatin; hence the nuclear environment is also of vital importance. Recently, understanding of chromatin hierarchical folding has increased together with the discovery of membrane-less organelles which are distinct, dynamic liquid droplets that merge and expand within the nucleus. These 'sieve'-like regions may compartmentalize and separate functionally distinct regions of chromatin. This article aims to discuss recent studies on nuclear phase within the context of poly(ADP-ribose), ATP, and Mg2+ levels, and we propose a combinatorial complex role for these molecules in phase separation and genome regulation. We also discuss the implications of this process for gene regulation and discuss possible strategies to test this.


Assuntos
Trifosfato de Adenosina/metabolismo , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma Humano , Magnésio/metabolismo , Humanos
20.
Semin Cell Dev Biol ; 113: 75-87, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32690375

RESUMO

DNA damage challenges both genome integrity and its organization with histone proteins into chromatin, with prominent alterations in histone variant dynamics and histone modifications. While these alterations jeopardize epigenome stability, they are also instrumental for an efficient and timely response to DNA damage. Here, we review recent findings illustrating how histone variants and post-translational modifications actively contribute to and control the DNA damage response. We present accumulating evidence that histone protein changes help relieve the chromatin barrier to DNA repair by regulating chromatin compaction and mobility. We also highlight how histone modifications and variants control transcriptional silencing at damage sites, and we describe both pre-existing and DNA damage-induced chromatin features that govern DNA damage signaling and guide DNA repair pathway choice. We discuss how histone dynamics ultimately participate to the restoration of epigenome integrity and present our current knowledge of key molecular players involved in these critical processes.


Assuntos
Cromatina/metabolismo , Dano ao DNA/genética , Histonas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA