Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401785, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946611

RESUMO

Developing a water-soluble, oxygen-tolerant, and acid-stable synthetic H2 production catalyst is vital for renewable energy infrastructure. To access such an effective catalyst, we strategically incorporated enzyme-inspired, multicomponent outer coordination sphere elements around the cobaloxime (Cl-Co-X) core with suitable axial coordination (X). Our cobaloximes with axial imidazole or L-histidine coordination in photocatalytic HAT including the construction of anilines via a non-canonical cross-coupling approach is found superior compared to commonly used cobaloxime catalysts. The reversible Co(II)/Co(I) process is influenced by the axial N ligand's nature. Imidazole/ L-histidine with a higher pKa promptly produces H2 upon irradiation, leading to the improved reactivity compared to previously employed axial (di)chloride or pyridine analogue.

2.
Angew Chem Int Ed Engl ; : e202405775, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775208

RESUMO

Drawing inspiration from nature has long been a cornerstone of chemical innovation, with natural systems offering a wealth of untapped potential for discovery. In this minireview, we delve into the burgeoning field of cobaloxime catalysis in organic synthesis, which mimics the catalytic activity of the natural organometallic alkylcobalamine enzymes. Our focus lies on elucidating the latest advancements in this area, as well as delineating the primary mechanistic pathways at play. By describing, and comparing these mechanisms, we provide a comprehensive overview of the current state-of-the-art, while also shedding light on the key unresolved challenges that await further exploration.

3.
Angew Chem Int Ed Engl ; 63(24): e202401579, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609328

RESUMO

We disclose herein a novel photoredox and cobalt co-catalyzed ring-opening/acceptorless dehydrogenative functionalization of mono-donor cyclopropanes. This sustainable and atom-economic approach allows the rapid assembly of a wide range of allylic N,O-acyl-acetal derivatives. The starting materials are readily available and the reaction features mild conditions, broad substrate scope, and excellent functional group compatibility. The optimized conditions accommodate assorted cycloalkylamides and primary, secondary, and tertiary alcohols, with applications in late-stage functionalization of pharmaceutically relevant compounds, stimulating further utility in medicinal chemistry. Moreover, selective nucleophilic substitutions with various carbon nucleophiles were achieved in a one-pot fashion, offering a reliable avenue to access some cyclic and acyclic derivatives.

4.
Angew Chem Int Ed Engl ; 62(7): e202214944, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36510781

RESUMO

A new way to form fluorenones via the direct excitation of substrates instead of photocatalyst to activate the C(sp2 )-H bond under redox-neutral condition is reported. Our design relies on the photoexcited aromatic aldehyde intermediates that can be intercepted by cobaloxime catalyst through single electron transfer for following ß-H elimination. The generation of acyl radical and successful interception by a metal catalyst cobaloxime avoid the use of a photocatalyst and stoichiometric external oxidants, affording a series of highly substituted fluorenones, including six-membered ketones, such as xanthone and thioxanthone derivatives in good to excellent yields, and with hydrogen as the only byproduct. This catalytic system features a readily available metal catalyst, mild reaction conditions and broad substrate scope, in which sunlight reaction and scale-up experiments by continuous-flow approach make the new methodology sustainable and amenable for potentially operational procedures.

5.
Angew Chem Int Ed Engl ; 62(44): e202311082, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698088

RESUMO

We report an azide-functionalized cobaloxime proton-reduction catalyst covalently tethered into the Wurster-type covalent organic frameworks (COFs). The cobaloxime-modified COF photocatalysts exhibit enhanced photocatalytic activity for hydrogen evolution reaction (HER) in alcohol-containing solution with no presence of a typical sacrificial agent. The best performing cobaloxime-modified COF hybrid catalyzes hydrogen production with an average HER rate up to 38 µmol h-1 in ethanol/phosphate buffer solution under 4 h illumination. Ultrafast transient optical spectroscopy characterizations and charge carrier analysis reveal that the alcohol contents functioning as hole scavengers could be oxidized by the photogenerated holes of COFs to form aldehydes and protons. The consumption of the photogenerated holes thus suppresses exciton recombination of COFs and improves the ratio of free electrons that were effectively utilized to drive catalytic reaction for HER. This work demonstrates a great potential of COF-catalyzed HER using alcohol solvents as hole scavengers and provides an example toward realizing the accessibility to the scope of reaction conditions and a greener route for energy conversion.

6.
Chemistry ; 28(72): e202202781, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36322775

RESUMO

A photoredox/cobalt dual catalytic procedure has been developed that allows benzoylation of olefins. Here the photoredox catalyst effects the decarboxylation of α-ketoacids to form benzoyl radicals. After addition of this radical to styrenes, the cobalt catalyst abstracts a H-atom. Hydrogen evolution from the putative cobalt hydride intermediate allows a Heck-like aroylation without the need for a stoichiometric oxidant. Mechanistic studies reveal that electronically different styrenes lead to a curved Hammett plot, thus suggesting a change in product-determining step in the catalytic mechanism.


Assuntos
Alcenos , Cetoácidos , Cobalto , Catálise , Estirenos
7.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364105

RESUMO

The C-X bond cleavage in different methyl halides (CH3X; X = Cl, Br, I) mediated by 5,6-dimethylbenzimidazole-bis(dimethylglyoximate)cobalt(II) (CoIICbx) was theoretically investigated in the present work. An SN2-like mechanism was considered to simulate the chemical process where the cobalt atom acts as the nucleophile and the halogen as the leaving group. The reaction path was computed by means of the intrinsic reaction coordinate method and analyzed in detail through the reaction force formalism, the quantum theory of atoms in molecules (QTAIM), and the calculation of one-electron density derived quantities, such as the source function (SF) and the spin density. A thorough comparison of the results with those obtained in the same reaction occurring in presence of 5,6-dimethylbenzimidazole-bis(dimethylglyoximate)cobalt(I) (CoICbx) was conducted to reveal the main differences between the two cases. The reactions mediated by CoIICbx were observed to be endothermic and possess higher activation energies in contrast to the reactions where the CoICbx complex is present. The latter was supported by the reaction force results, which suggest a relationship between the activation energy and the ionization potentials of the different nucleophiles present in the cleavage reaction. Moreover, the SF results indicates that the lower axial ligand (i.e., 5,6-dimethylbenzimidazole) exclusively participates on the first stage of the reaction mediated by the CoIICbx complex, while for the CoICbx case, it appears to have an important role along the whole process. Finally, the QTAIM charge analysis indicates that oxidation of the cobalt atom occurs in both cases; at the same time, it suggests the formation of an uncommon two-center one-electron bond in the CoIICbx case. The latter was confirmed by means of electron localization calculations, which resulted in a larger electron count at the Co-C interatomic region for the CoICbx case upon comparison with its CoIICbx counterpart.


Assuntos
Cobalto , Teoria Quântica , Cobalto/química , Modelos Teóricos , Ligantes , Elétrons
8.
Angew Chem Int Ed Engl ; 61(40): e202209293, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35912895

RESUMO

Herein, cobaloxime is used for the first time as a catalyst for the synthesis of phosphorylated heteroaromatics, which is an intriguing and versatile functional motif. With visible-light irradiation, cobaloxime not only oxidizes phosphine oxides to form phosphorus radicals (P-radicals) for a subsequent reaction with radical acceptor isocyanides or heteroaromatics, but also combines the radical intermediate with ß-H elimination, thereby producing phosphorylated heteroaromatics with only H2 or CH4 as byproduct. Phosphine oxides with dialkyl, alkylaryl, and diaryl substituents could be directly transformed into phosphorylated phenanthridines, benzothiazoles, isoquinolines, and common heteroaromatics. This catalytic system features extremely mild conditions, broad substrate scope and good to excellent yields. Scale-up reaction and sunlight reaction show the great application potential in the green synthesis of important organophosphorus chemicals.


Assuntos
Cianetos , Óxidos , Benzotiazóis , Isoquinolinas , Compostos Organometálicos , Fenantridinas , Fosfinas , Fósforo
9.
Chemistry ; 26(54): 12454-12471, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32449820

RESUMO

Recently, dual-catalytic strategies towards the decarboxylative elimination of carboxylic acids have gained attention. Our lab previously reported a photoredox/cobaloxime dual catalytic method that allows the synthesis of enamides and enecarbamates directly from N-acyl amino acids and avoids the use of any stoichiometric reagents. Further development, detailed herein, has improved upon this transformation's utility and further experimentation has provided new insights into the reaction mechanism. These new developments and insights are anticipated to aid in the expansion of photoredox/cobalt dual-catalytic systems.

10.
Chemphyschem ; 15(14): 2951-8, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25113847

RESUMO

The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we analyze the low-energy electronic absorption bands of two cobaloxime systems experimentally and use a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.


Assuntos
Modelos Teóricos , Compostos Organometálicos/química , Espectrofotometria Ultravioleta/métodos
11.
Nanomaterials (Basel) ; 12(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080120

RESUMO

While cobaloximes have been protagonists in the molecular (photo)catalytic hydrogen evolution reaction field, researchers originally shed light on the catalytically active metallic center. However, the specific chemical environment of cobalt, including equatorial and axial ligation, has also a strong impact on the catalytic reaction. In this article, we aim to demonstrate how pyridine vs. imidazole axial ligation of a cobaloxime complex covalently grafted on graphene affects the hydrogen evolution reaction performance in realistic acidic conditions. While pyridine axial ligation mirrors a drastically superior electrocatalytic performance, imidazole exhibits a remarkable long-term stability.

12.
ACS Appl Mater Interfaces ; 12(28): 31372-31381, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538612

RESUMO

Mesoporous NiO photocathodes containing the push-pull dye PB6 and alkyl-derivatized cobaloxime catalysts were prepared using surface amide couplings and analyzed for photocatalytic proton reduction catalysis. The length of the alkyl linker used to derivatize the cobalt catalysts was found to correlate to the photocurrent with the highest photocurrent observed using shorter alkyl linkers but the lowest one for samples without linker. The alkyl linkers were also helpful in slowing dye-NiO charge recombination. Photoelectrochemical measurements and femtosecond transient absorption spectroscopic measurements suggested electron transfer to the surface-immobilized catalysts occurred; however, H2 evolution was not observed. Based on UV-vis, X-ray fluorescence spectroscopy (XRF), and X-ray photoelectron spectroscopy (XPS) measurements, the cobalt catalyst appeared to be limiting the photocathode performance mainly via cobalt demetallation from the oxime ligand. This study highlights the need for a deeper understanding of the effect of catalyst molecular design on photocathode performance.

13.
Front Chem ; 7: 641, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616654

RESUMO

A "turn-on" fluorescence sensing system based on a BODIPY-cobaloxime complex for the detection of H2S in liquid and gas phase was developed. To that aim, two cobaloxime complexes bearing an axial pyridyl-BODIPY ligand were initially evaluated as sensitive fluorescent HS- indicators in aqueous solution. The sensing mechanism involves the selective substitution of the BODIPY ligand by the HS- anion at the cobalt center, which is accompanied by a strong fluorescence enhancement. The selection of a complex with an ideal stability and reactivity profile toward HS- relied on the optimal interaction between the cobalt metal-center and two different pyridyl BODIPY ligands. Loading the best performing BODIPY-cobaloxime complex onto a polymeric hydrogel membrane allowed us to study the selectivity of the probe for HS- against different anions and cysteine. Successful detection of H2S by the fluorescent "light-up" membrane was not only accomplished for surface water but could also be demonstrated for relevant H2S concentrations in gas phase.

14.
ACS Appl Mater Interfaces ; 11(37): 34010-34019, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31453677

RESUMO

Although hybrid photocathodes built by immobilizing molecular catalysts to the surface of semiconductors through chemical linkages have been reported in recent years, systematic and comparative studies remain scarce about the impact of various anchoring groups on the performance, stability, and charge-transfer kinetics of molecular catalyst-decorated hybrid photocathodes for photoelectrochemical (PEC) H2 production. In this study, the molecular cobaloxime catalysts, CoPy-4-X (Py = pyridine, X = PO3H2, COOH, and CONH(OH)), bearing different anchoring groups were synthesized and covalently immobilized to the surface of the porous TiO2 layer coated on a p-Si plate or a fluorine-doped tin oxide glass. The influence of the anchoring groups on the performance of p-Si/TiO2/CoPy-4-X photocathodes was comparatively studied for PEC H2 evolution. Among the tested hybrid photocathodes, the one with a hydroxamate as an anchoring group displayed higher activity and lower charge-transfer resistance than that observed for the electrode with a carboxylate or a phosphonate as the anchoring group. Notably, the catalytic current of p-Si/TiO2/CoPy-4-CONH(OH) was attenuated only by 2.9% in the controlled potential photoelectrolysis tests in borate buffer solution at pH 9 at 0 V versus a reversible hydrogen electrode over 6 h. Moreover, the influence of anchoring groups on the interfacial electron transfer from the TiO2 layer to the immobilized cobaloxime catalyst and electron-hole recombination was studied by transient absorption spectroscopy. These results revealed that the hydroxamate as an anchoring group is superior to the carboxylate and phosphonate groups for speeding up the interfacial electron transfer and firmly immobilizing the molecular catalysts to the metal oxide semiconductors to build efficient and stable hybrid photoelectrodes.

15.
ACS Catal ; 9(11): 10294-10298, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32195013

RESUMO

A cobaloxime/H2 system used to synthesize valuable γ-lactams from acrylamide molecules is described. In addition to cycloisomerized lactams, linear hydrogenated products were also observed. The amounts of the hydrogenation product were observed to correlate with the bulk of the substituent on the acrylamide nitrogen. Further analysis of the product distributions with experimental and computational studies suggested that while cyclization can occur from one C=C acrylamide rotamer, hydrogenation can occur from both. This observation was further evinced through calculation of the hydrogenation rate constant, which was observed to be ca. 102 faster than previously determined for a related system using n Bu3SnH.

16.
ACS Appl Mater Interfaces ; 9(27): 23230-23237, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28631477

RESUMO

The influence of the electrostatic interaction on photocatalytic H2 evolution activity in cobaloxime/cadmium sulfide (CdS) hybrid systems was studied by measuring the charges of the cobaloximes and the zeta potentials of CdS under different pH conditions (pHs 4-7). Cobaloxime/CdS hybrid systems may have potential as a valid model for the investigation of the electrostatic interaction between a molecular catalyst and semiconductor because the kinetics of methanol oxidation and the driving force of electron transfer from photoirradiated CdS to cobaloxime have little effect on the pH-dependent photocatalytic H2 evolution activity. Our experimental results suggest that electrostatic repulsion between cobaloxime and CdS disfavors the electron transfer from CdS to cobaloxime and hence lowers the photocatalytic H2 evolution activity. Whereas, electrostatic attraction favors the electron transfer process and enhances the photocatalytic H2 evolution activity. However, an electrostatic attraction interaction that is too strong may accelerate both forward and backward electron transfer processes, which would reduce charge separation efficiency and lower photocatalytic H2 evolution activity.

17.
ACS Appl Mater Interfaces ; 8(15): 10038-47, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26998554

RESUMO

We report the immobilization of hydrogen-producing cobaloxime catalysts onto p-type gallium phosphide (111)A and (111)B substrates via coordination to a surface-grafted polyvinylimidazole brush. Successful grafting of the polymeric interface and subsequent assembly of cobalt-containing catalysts are confirmed using grazing angle attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Photoelectrochemical testing in aqueous conditions at neutral pH shows that cobaloxime modification of either crystal face yields a similar enhancement of photoperformance, achieving a greater than 4-fold increase in current density and associated rates of hydrogen production as compared to results obtained using unfunctionalized electrodes tested under otherwise identical conditions. Under simulated solar illumination (100 mW cm(-2)), the catalyst-modified photocathodes achieve a current density ≈ 1 mA cm(-2) when polarized at 0 V vs the reversible hydrogen electrode reference and show near-unity Faradaic efficiency for hydrogen production as determined by gas chromatography analysis of the headspace. This work illustrates the modularity and versatility of the catalyst-polymer-semiconductor approach for directly coupling light harvesting to fuel production and the ability to export this chemistry across distinct crystal face orientations.

18.
ACS Appl Mater Interfaces ; 8(31): 19994-20002, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428561

RESUMO

A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multitopic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity toward hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited-state lifetime of the covalently immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.

19.
J Phys Chem C Nanomater Interfaces ; 117(34): 17367-17375, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-24443663

RESUMO

A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-mM concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods, with Co K-edge probing were applied to the investigation of a cobaloxime-based photo-catalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well as the effect of sample degradation for these two setups are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA