Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Mol Biol Lett ; 28(1): 96, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017385

RESUMO

PSA is a type of proto-oncogene that is specifically and highly expressed in embryonic and prostate cancer cells, but not expressed in normal prostate tissue cells. The specific expression of prostate-specific antigen (PSA) is found to be related with the conditional transcriptional regulation of its promoter. Clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9-KRAB is a newly developed transcriptional regulatory system that inhibits gene expression by interupting the DNA transcription process. Induction of CRISPR-dCas9-KRAB expression through the PSA promoter may help feedback inhibition of cellular PSA gene expression via single guide RNA (sgRNA), thereby monitoring and suppressing the malignant state of tumor cells. In this study, we examined the transcriptional activity of the PSA promoter in different prostate cancer cells and normal prostate epithelial cells and determined that it is indeed a prostate cancer cell-specific promoter.Then we constructed the CRISPR-dCas9-KRAB system driven by the PSA promoter, which can inhibit PSA gene expression in the prostate cancer cells at the transcriptional level, and therefore supress the malignant growth and migration of prostate cancer cells and promote their apoptosis in vitro. This study provides a potentially effective anti-cancer strategy for gene therapy of prostate cancer.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias da Próstata , Humanos , Masculino , Antígeno Prostático Específico/genética , Próstata , RNA Guia de Sistemas CRISPR-Cas , Retroalimentação , Neoplasias da Próstata/genética , Sistemas CRISPR-Cas/genética
2.
Development ; 145(4)2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386245

RESUMO

CRISPR/Cas9 genome engineering has revolutionised all aspects of biological research, with epigenome engineering transforming gene regulation studies. Here, we present an optimised, adaptable toolkit enabling genome and epigenome engineering in the chicken embryo, and demonstrate its utility by probing gene regulatory interactions mediated by neural crest enhancers. First, we optimise novel efficient guide-RNA mini expression vectors utilising chick U6 promoters, provide a strategy for rapid somatic gene knockout and establish a protocol for evaluation of mutational penetrance by targeted next-generation sequencing. We show that CRISPR/Cas9-mediated disruption of transcription factors causes a reduction in their cognate enhancer-driven reporter activity. Next, we assess endogenous enhancer function using both enhancer deletion and nuclease-deficient Cas9 (dCas9) effector fusions to modulate enhancer chromatin landscape, thus providing the first report of epigenome engineering in a developing embryo. Finally, we use the synergistic activation mediator (SAM) system to activate an endogenous target promoter. The novel genome and epigenome engineering toolkit developed here enables manipulation of endogenous gene expression and enhancer activity in chicken embryos, facilitating high-resolution analysis of gene regulatory interactions in vivo.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Epigenômica/métodos , Engenharia Genética/métodos , Animais , Embrião de Galinha , Galinhas/genética , Clonagem de Organismos , Eletroporação , Imunofluorescência , Expressão Gênica , Hibridização In Situ , Reação em Cadeia da Polimerase
3.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899866

RESUMO

Overexpression of S100B is routinely used for disease-staging and for determining prognostic outcomes in patients with malignant melanoma. Intracellular interactions between S100B and wild-type (WT)-p53 have been demonstrated to limit the availability of free WT-p53 in tumor cells, inhibiting the apoptotic signaling cascade. Herein, we demonstrate that, while oncogenic overexpression of S100B is poorly correlated (R < 0.3; p > 0.05) to alterations in S100B copy number or DNA methylation in primary patient samples, the transcriptional start site and upstream promoter of the gene are epigenetically primed in melanoma cells with predicted enrichment of activating transcription factors. Considering the regulatory role of activating transcription factors in S100B upregulation in melanoma, we stably suppressed S100b (murine ortholog) by using a catalytically inactive Cas9 (dCas9) fused to a transcriptional repressor, Krüppel-associated box (KRAB). Selective combination of S100b-specific single-guide RNAs and the dCas9-KRAB fusion significantly suppressed expression of S100b in murine B16 melanoma cells without noticeable off-target effects. S100b suppression resulted in recovery of intracellular WT-p53 and p21 levels and concomitant induction of apoptotic signaling. Expression levels of apoptogenic factors (i.e., apoptosis-inducing factor, caspase-3, and poly-ADP ribose polymerase) were altered in response to S100b suppression. S100b-suppressed cells also showed reduced cell viability and increased susceptibility to the chemotherapeutic agents, cisplatin and tunicamycin. Targeted suppression of S100b therefore offers a therapeutic vulnerability to overcome drug resistance in melanoma.


Assuntos
Melanoma , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Apoptose , Melanoma/patologia , Regiões Promotoras Genéticas , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
PNAS Nexus ; 2(4): pgad062, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37020498

RESUMO

Gene regulation plays essential roles in all multicellular organisms, allowing for different specialized tissue types to be generated from a complex genome. Heterochromatin-driven gene repression, associated with a physical compaction of the genome, is a pathway involving core components that are conserved from yeast to human. Posttranslational modification of chromatin is a critical component of gene regulation. Specifically, tri-methylation of the nucleosome component histone 3 at lysine 9 (H3K9me3) is a key feature of this pathway along with the hallmark heterochromatin protein 1 (HP1). Histone methyltransferases are recruited by HP1 to deposit H3K9me3 marks which nucleate and recruit more HP1 in a process that spreads from the targeting site to signal for gene repression. One of the enzymes recruited is SETDB1, a methyltransferase which putatively catalyzes posttranslational methylation marks on H3K9. To better understand the contribution of SETDB1 in heterochromatin formation, we downregulated SETDB1 through knockdown by a dCas9-KRAB system and examined heterochromatin formation in a chromatin in vivo assay (CiA-Oct4). We studied the contribution of SETDB1 to heterochromatin formation kinetics in a developmentally crucial locus, Oct4. Our data demonstrate that SETDB1 reduction led to a delay in both gene silencing and in H3K9me3 accumulation. Importantly, SETDB1 knockdown to a ∼50% level did not stop heterochromatin formation completely. Particle-based Monte Carlo simulations in 3D space with explicit representation of key molecular processes enabled the elucidation of how SETDB1 downregulation affects the individual molecular processes underlying heterochromatin formation.

5.
Methods Mol Biol ; 2594: 59-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264488

RESUMO

The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional repressor. Here we describe a set of protocols for using the catalytically inactive dead Cas9 (dCas9)-based tools, including the bipartite super repressor consisting of the KRAB and MeCP2 domains, to achieve efficient and scalable gene silencing in mammalian cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Regulação da Expressão Gênica , Endonucleases/genética , RNA , Mamíferos/genética
6.
Cancers (Basel) ; 14(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406623

RESUMO

Enhancers are critical regulatory elements in the genome that help orchestrate spatiotemporal patterns of gene expression during development and normal physiology. In cancer, enhancers are often rewired by various genetic and epigenetic mechanisms for the activation of oncogenes that lead to initiation and progression. A key feature of active enhancers is the production of non-coding RNA molecules called enhancer RNAs, whose functions remain unknown but can be used to specify active enhancers de novo. Using a combination of eRNA transcription and chromatin modifications, we have identified a novel enhancer located 30 kb upstream of Colony Stimulating Factor 1 (CSF1). Notably, CSF1 is implicated in the progression of breast cancer, is overexpressed in triple-negative breast cancer (TNBC) cell lines, and its enhancer is primarily active in TNBC patient tumors. Genomic deletion of the enhancer (via CRISPR/Cas9) enabled us to validate this regulatory element as a bona fide enhancer of CSF1 and subsequent cell-based assays revealed profound effects on cancer cell proliferation, colony formation, and migration. Epigenetic silencing of the enhancer via CRISPR-interference assays (dCas9-KRAB) coupled to RNA-sequencing, enabled unbiased identification of additional target genes, such as RSAD2, that are predictive of clinical outcome. Additionally, we repurposed the RNA-guided RNA-targeting CRISPR-Cas13 machinery to specifically degrade the eRNAs transcripts produced at this enhancer to determine the consequences on CSF1 mRNA expression, suggesting a post-transcriptional role for these non-coding transcripts. Finally, we test our eRNA-dependent model of CSF1 enhancer function and demonstrate that our results are extensible to other forms of cancer. Collectively, this work describes a novel enhancer that is active in the TNBC subtype, which is associated with cellular growth, and requires eRNA transcripts for proper enhancer function. These results demonstrate the significant impact of enhancers in cancer biology and highlight their potential as tractable targets for therapeutic intervention.

7.
Viruses ; 13(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924938

RESUMO

Uncovering viral gene functions requires the modulation of gene expression through overexpression or loss-of-function. CRISPR interference (CRISPRi), a modification of the CRISPR-Cas9 gene editing technology, allows specific and efficient transcriptional silencing without genetic ablation. CRISPRi has been used to silence eukaryotic and prokaryotic genes at the single-gene and genome-wide levels. Here, we report the use of CRISPRi to silence latent and lytic viral genes, with an efficiency of ~80-90%, in epithelial and B-cells carrying multiple copies of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome. Our results validate CRISPRi for the analysis of KSHV viral elements, providing a functional genomics tool for studying virus-host interactions.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Inativação Gênica , Herpesvirus Humano 8/genética , Ativação Viral/genética , Latência Viral/genética , Linhagem Celular , Células Cultivadas , Regulação Viral da Expressão Gênica , Genes Reporter , Genes Virais , Infecções por Herpesviridae/virologia , Humanos , RNA Guia de Cinetoplastídeos
8.
Theranostics ; 10(11): 5137-5153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308773

RESUMO

Rationale: KRAS is one of the most frequently mutated oncogenes in cancers. The protein's picomolar affinity for GTP/GDP and smooth protein structure resulting in the absence of known allosteric regulatory sites makes its genomic-level activating mutations a difficult but attractive target. Methods: Two CRISPR systems, genome-editing CRISPR/SpCas9 and transcription-regulating dCas9-KRAB, were developed to deplete the KRAS G12S mutant allele or repress its transcription, respectively, with the goal of treating KRAS-driven cancers. Results: SpCas9 and dCas9-KRAB systems with a sgRNA targeting the mutant allele blocked the expression of the mutant KRAS gene, leading to an inhibition of cancer cell proliferation. Local adenoviral injections using SpCas9 and dCas9-KRAB systems suppressed tumor growth in vivo. The gene-depletion system (SpCas9) performed more effectively than the transcription-suppressing system (dCas9-KRAB) on tumor inhibition. Application of both Cas9 systems to wild-type KRAS tumors did not affect cell proliferation. Furthermore, through bioinformatic analysis of 31555 SNP mutations of the top 20 cancer driver genes, the data showed that our mutant-specific editing strategy could be extended to a reference list of oncogenic mutations with high editing potentials. This pipeline could be applied to analyze the distribution of PAM sequences and survey the best alternative targets for gene editing. Conclusion: We successfully developed both gene-depletion and transcription-suppressing systems to specifically target an oncogenic KRAS mutant allele that led to significant tumor regression. These findings show the potential of CRISPR-based strategies for the treatment of tumors with driver gene mutations.


Assuntos
Edição de Genes/métodos , Mutação , Neoplasias/genética , Neoplasias/terapia , Proteínas Proto-Oncogênicas p21(ras)/genética , Alelos , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Camundongos , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Rep ; 27(3): 708-718.e10, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995470

RESUMO

Studies in vertebrates have outlined conserved molecular control of definitive endoderm (END) development. However, recent work also shows that key molecular aspects of human END regulation differ even from rodents. Differentiation of human embryonic stem cells (ESCs) to END offers a tractable system to study the molecular basis of normal and defective human-specific END development. Here, we interrogated dynamics in chromatin accessibility during differentiation of ESCs to END, predicting DNA-binding proteins that may drive this cell fate transition. We then combined single-cell RNA-seq with parallel CRISPR perturbations to comprehensively define the loss-of-function phenotype of those factors in END development. Following a few candidates, we revealed distinct impairments in the differentiation trajectories for mediators of TGFß signaling and expose a role for the FOXA2 transcription factor in priming human END competence for human foregut and hepatic END specification. Together, this single-cell functional genomics study provides high-resolution insight on human END development.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Guia de Cinetoplastídeos/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Fator 3-beta Nuclear de Hepatócito/antagonistas & inibidores , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Análise de Célula Única , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo
10.
Methods Mol Biol ; 1507: 221-233, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27832543

RESUMO

CRISPR-Cas9 effector systems have wide applications for the stem cell and regenerative medicine field. The ability to dissect the functional gene regulatory networks in pluripotency and potentially in differentiation intermediates of all three germ layers makes this a valuable tool for the stem cell community. Catalytically inactive Cas9 fused to transcriptional/chromatin effector domains allows for silencing or activation of a genomic region of interest. Here, we describe the application of an inducible, RNA-guided, nuclease-deficient (d) Cas9-KRAB system (adapted from Streptococcus pyogenes) to silence target gene expression in human embryonic stem cells, via KRAB repression at the promoter region. This chapter outlines a detailed protocol for generation of a stable human embryonic stem cell line containing both Sp-dCas9-KRAB and sgRNA, followed by inducible expression of Sp-dCas9-KRAB to analyze functional effects of dCas9-KRAB at target loci in human embryonic stem cells.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes , Células-Tronco Embrionárias Humanas/metabolismo , Transcrição Gênica , Ativação Transcricional , Linhagem Celular , Humanos , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética , Proteínas Repressoras/genética
11.
Stem Cell Reports ; 9(2): 615-628, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28757163

RESUMO

Modulation of transcription, either synthetic activation or repression, via dCas9-fusion proteins is a relatively new methodology with the potential to facilitate high-throughput up- or downregulation studies of gene function. Genetic studies of neurodevelopmental disorders have identified a growing list of risk variants, including both common single-nucleotide variants and rare copy-number variations, many of which are associated with genes having limited functional annotations. By applying a CRISPR-mediated gene-activation/repression platform to populations of human-induced pluripotent stem cell-derived neural progenitor cells, neurons, and astrocytes, we demonstrate that it is possible to manipulate endogenous expression levels of candidate neuropsychiatric risk genes across these three cell types. Although proof-of-concept studies using catalytically inactive Cas9-fusion proteins to modulate transcription have been reported, here we present a detailed survey of the reproducibility of gRNA positional effects across a variety of neurodevelopmental disorder-relevant risk genes, donors, neural cell types, and dCas9 effectors.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Imagem Molecular , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA