Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 771
Filtrar
1.
Immunity ; 54(3): 468-483.e5, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33484643

RESUMO

Tissue resident mast cells (MCs) rapidly initiate neutrophil infiltration upon inflammatory insult, yet the molecular mechanism is still unknown. Here, we demonstrated that MC-derived tumor necrosis factor (TNF) was crucial for neutrophil extravasation to sites of contact hypersensitivity-induced skin inflammation by promoting intraluminal crawling. MC-derived TNF directly primed circulating neutrophils via TNF receptor-1 (TNFR1) while being dispensable for endothelial cell activation. The MC-derived TNF was infused into the bloodstream by directional degranulation of perivascular MCs that were part of the vascular unit with access to the vessel lumen. Consistently, intravenous administration of MC granules boosted neutrophil extravasation. Pronounced and rapid intravascular MC degranulation was also observed upon IgE crosslinking or LPs challenge indicating a universal MC potential. Consequently, the directional MC degranulation of pro-inflammatory mediators into the bloodstream may represent an important target for therapeutic approaches aimed at dampening cytokine storm syndromes or shock symptoms, or intentionally pushing immune defense.


Assuntos
Vasos Sanguíneos/imunologia , Dermatite de Contato/imunologia , Inflamação/imunologia , Mastócitos/imunologia , Neutrófilos/imunologia , Pele/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Circulação Sanguínea , Degranulação Celular , Células Cultivadas , Doenças do Sistema Imunitário , Transtornos Leucocíticos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação de Neutrófilo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Vesículas Secretórias/metabolismo , Fator de Necrose Tumoral alfa/genética
2.
Immunity ; 53(4): 793-804.e9, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32910906

RESUMO

Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.


Assuntos
Imunidade Adaptativa/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Alérgenos/imunologia , Animais , Feminino , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia
3.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506245

RESUMO

Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.


Assuntos
Exocitose , Proteínas Monoméricas de Ligação ao GTP , Humanos , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Degranulação Celular , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte
4.
Eur J Immunol ; 54(1): e2350404, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853954

RESUMO

Neutrophils are important players in COVID-19, contributing to tissue damage by release of inflammatory mediators, including ROS and neutrophil elastase. Longitudinal studies on the effects of COVID-19 on neutrophil phenotype and function are scarce. Here, we longitudinally investigated the phenotype and degranulation of neutrophils in COVID-19 patients (28 nonhospitalized and 35 hospitalized patients) compared with 17 healthy donors (HDs). We assessed phenotype, degranulation, CXCL8 (IL-8) release, and ROS generation within 8 days, at one or 6 month(s) after COVID-19 diagnosis. For degranulation and ROS production, we stimulated neutrophils, either with ssRNA and TNF or granulocyte-macrophage colony-stimulating factor and N-Formylmethionyl-leucyl-phenylalanine. During active COVID-19, neutrophils from hospitalized patients were more immature than from HDs and were impaired in degranulation and ROS generation, while neutrophils from nonhospitalized patients only demonstrated reduced CD66b+ granule release and ROS production. Baseline CD63 expression, indicative of primary granule release, and CXCL8 production by neutrophils from hospitalized patients were elevated for up to 6 months. These findings show that patients hospitalized due to COVID-19, but not nonhospitalized patients, demonstrated an aberrant neutrophil phenotype, degranulation, CXCL8 release, and ROS generation that partially persists up to 6 months after infection.


Assuntos
COVID-19 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Teste para COVID-19 , COVID-19/metabolismo , Exocitose
5.
Artigo em Inglês | MEDLINE | ID: mdl-38971540

RESUMO

BACKGROUND: Mas-related G-protein coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE: We identified and characterized novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS: Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout (KO) and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in (KI) mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS: MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested, in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 KI mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSION: MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.

6.
J Biol Chem ; 299(4): 102867, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36608933

RESUMO

Mast cells are essential regulators of inflammation most recognized for their central role in allergic inflammatory disorders. Signaling via the high-affinity immunoglobulin E (IgE) receptor, FcεRI, leads to rapid degranulation of preformed granules and the sustained release of newly synthesized proinflammatory mediators. Our group recently established rosemary extract as a potent regulator of mast cell functions, attenuating MAPK and NF-κB signaling. Carnosic acid (CA)-a major polyphenolic constituent of rosemary extract-has been shown to exhibit anti-inflammatory effects in other immune cell models, but its role as a potential modulator of mast cell activation is undefined. Therefore, we sought here to determine the modulatory effects of CA in a mast cell model of allergic inflammation. We sensitized bone marrow-derived mast cells with anti-trinitrophenyl IgE and activated with allergen (TNP-BSA) under stem cell factor potentiation, in addition to treatment with CA. Our results indicate that CA significantly inhibits allergen-induced early phase responses including Ca2+ mobilization, ROS production, and subsequent degranulation. We also show CA treatment reduced late phase responses, including the release of all cytokines and chemokines examined following IgE stimulation and corresponding gene expression excepting that of CCL2. Importantly, we determined that CA mediates its inhibitory effects through modulation of tyrosine kinase Syk and downstream effectors TAK1 (Ser412) and Akt (Ser473) as well as NFκB signaling, while phosphorylation of FcεRI (γ chain) and MAPK proteins remained unaltered. These novel findings establish CA as a potent modulator of mast cell activation, warranting further investigation as a putative anti-allergy therapeutic.


Assuntos
Abietanos , Hipersensibilidade , Mediadores da Inflamação , Mastócitos , Humanos , Alérgenos , Degranulação Celular , Imunoglobulina E , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , NF-kappa B/metabolismo , Receptores de IgE/metabolismo , Quinase Syk/metabolismo , Abietanos/farmacologia
7.
Eur J Immunol ; 53(12): e2250360, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37736882

RESUMO

In the present study, we found that methiothepin (a nonselective 5-hydroxytryptamine [5-HT] receptor antagonist) inhibited antigen-induced degranulation in rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Although antigen stimulation induces release of histamine and serotonin (5-HT) by exocytosis and mast cells express several types of 5-HT receptor, the detailed role of these receptors remains unclear. Here, pretreatment of cells with methiothepin attenuated increased intracellular Ca2+ concentration, phosphorylated critical upstream signaling components (Src family tyrosine kinases, Syk, and PLCγ1), and suppressed TNF-α secretion via inhibition of Akt (a Ser/Thr kinase activated by PI3K)and ERK phosphorylation. Furthermore, it inhibited PMA/ionomycin-induced degranulation; this finding suggested that methiothepin affected downstream signaling. IκB kinase ß phosphorylates synaptosomal associated protein 23, which regulates the fusion events of the secretory granule/plasma membrane after mast cell activation, resulting in degranulation. We showed that methiothepin blocked PMA/ionomycin-induced phosphorylation of synaptosomal associated protein 23 by inhibiting its interaction with IκB kinase ß. Together with the results of selective 5-HT antagonists, it is suggested that methiothepin inhibits mast cell degranulation by downregulating upstream signaling pathways and exocytotic fusion machinery through mainly 5-HT1A receptor. Our findings provide that 5-HT antagonists may be used to relieve allergic reactions.


Assuntos
Leucemia , Mastócitos , Ratos , Camundongos , Animais , Metiotepina/metabolismo , Metiotepina/farmacologia , Quinase I-kappa B/metabolismo , Serotonina/farmacologia , Serotonina/metabolismo , Medula Óssea/metabolismo , Ionomicina/metabolismo , Ionomicina/farmacologia , Antagonistas da Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Degranulação Celular , Quinase Syk/metabolismo , Receptores de IgE
8.
Eur J Immunol ; 53(4): e2250036, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36608264

RESUMO

Recurrent respiratory papillomatosis (RRP), a rare chronic disease caused primarily by human papillomavirus types 6 and 11, consists of repeated growth of premalignant papillomas in the airway. RRP is characterized by multiple abnormalities in innate and adaptive immunity. Natural killer (NK) cells play important roles in immune surveillance and are part of the innate immune responses that help prevent tumor growth. We identified that papillomas lack classical class I MHC and retain nonclassical class I MHC expression. Moreover, in this study, we have identified and characterized the mechanism that blocks NK cell targeting of papilloma cells. Here, we show for the first time that the PGE2 secreted by papilloma cells directly inhibits NK cells activation/degranulation principally through the PGE2 receptor EP2, and to a lesser extent through EP4 signaling. Thus, papilloma cells have a potent mechanism to block NK cell function that likely supports papilloma cell growth.


Assuntos
Papiloma , Infecções por Papillomavirus , Infecções Respiratórias , Humanos , Dinoprostona/metabolismo , Células Matadoras Naturais
9.
Biochem Biophys Res Commun ; 690: 149295, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000295

RESUMO

BACKGROUND: Bmal1 (Brain and muscle arnt-like, or Arntl) is a bHLH/PAS domain transcription factor central to the transcription/translation feedback loop of the circadian clock. Mast cells are crucial for effector functions in allergic reaction and their activity follows a circadian rhythm. However, the functional roles of Bmal1 in mast cells remain to be determined. PURPOSE: This study aimed to elucidate the specific roles of Bmal1 in IgE-dependent mast cell degranulation. RESULTS: IgE-dependent degranulation was enhanced in bone marrow-derived mast cells (BMMCs) derived from Bmal1-deficient mice (Bmal1-KO mice) compared to that in BMMCs derived from wild-type mice (WT mice) in the absence of 2-Mercaptoethanol (2-ME) in culture. Mast cell-deficient KitW-sh mice reconstituted with Bmal1-KO BMMCs showed more robust passive cutaneous anaphylactic (PCA) reactions, an in vivo model of IgE-dependent mast cell degranulation, than KitW-sh mice reconstituted with WT BMMCs. In the absence of 2-ME in culture, the mRNA expression of the anti-oxidative genes NF-E2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2), and heme oxygenase-1 (HO-1) was lower and reactive oxygen species (ROS) generation was higher in Bmal1-KO BMMCs than in WT BMMCs at steady state. The IgE-dependent ROS generation and degranulation were enhanced in Bmal1-KO BMMCs compared to WT BMMCs in the absence of 2-ME in culture. The addition of 2-ME into the culture abrogated or weakened the differences in anti-oxidative gene expression, ROS generation, and IgE-dependent degranulation between WT and Bmal1-KO BMMCs. CONCLUSION: The current findings suggest that Bmal1 controls the expression of anti-oxidative genes in mast cells and Bmal1 deficiency enhanced IgE-dependent degranulation associated with promotion of ROS generation. Thus, Bmal1 may function as a key molecule that integrates redox homeostasis and effector functions in mast cells.


Assuntos
Fatores de Transcrição ARNTL , Mastócitos , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Degranulação Celular , Imunoglobulina E/metabolismo , Mastócitos/metabolismo , Mercaptoetanol/metabolismo , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo
10.
J Transl Med ; 22(1): 753, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135185

RESUMO

BACKGROUND: Omicron variant impacts populations with its rapid contagiousness, and part of patients suffered from persistent symptoms termed as long COVID. The molecular and immune mechanisms of this currently dominant global variant leading to long COVID remain unclear, due to long COVID heterogeneity across populations. METHODS: We recruited 66 participants in total, 22 out of 66 were healthy control without COVID-19 infection history, and 22 complaining about long COVID symptoms 6 months after first infection of Omicron, referred as long COVID (LC) Group. The left ones were defined as non-long COVID (NLC) Group. We profiled them via plasma neutralizing antibody titer, SARS-CoV-2 viral load, transcriptomic and proteomics screening, and machine learning. RESULTS: No serum residual SARS-CoV-2 was observed in the participants 6 months post COVID-19 infection. No significant difference in neutralizing antibody titers was found between the long COVID (LC) Group and the non-long COVID (NLC) Group. Transcriptomic and proteomic profiling allow the stratification of long COVID into neutrophil function upregulated (NU-LC) and downregulated types (ND-LC). The NU-LC, identifiable through a refined set of 5 blood gene markers (ABCA13, CEACAM6, CRISP3, CTSG and BPI), displays evidence of relatively higher neutrophil counts and function of degranulation than the ND-LC at 6 months after infection, while recovered at 12 months post COVID-19. CONCLUSION: The transcriptomic and proteomic profiling revealed heterogeneity among long COVID patients. We discovered a subgroup of long COVID population characterized by neutrophil activation, which might associate with the development of psychiatric symptoms and indicate a higher inflammatory state. Meanwhile, a cluster of 5 genes was manually curated as the most potent discriminators of NU-LC from long COVID population. This study can serve as a foundational exploration of the heterogeneity in the pathogenesis of long COVID and assist in therapeutic targeting and detailed epidemiological investigation of long COVID.


Assuntos
COVID-19 , Neutrófilos , Proteômica , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/sangue , Neutrófilos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Transcriptoma/genética , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Adulto , Síndrome de COVID-19 Pós-Aguda , Carga Viral , Idoso , Perfilação da Expressão Gênica , Ativação de Neutrófilo , Multiômica
11.
Eur J Clin Invest ; 54(4): e14155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226472

RESUMO

BACKGROUND: Long COVID symptoms are widely diffused and have a poorly understood pathophysiology, with possible involvement of inflammatory cytokines. MATERIALS AND METHODS: A prospective follow-up study involved 385 unvaccinated patients, started 1 month after SARS-CoV-2 infection and continued for up to 12 months. We compared circulating biomarkers of neutrophil degranulation, endothelial and metabolic dysfunction in subjects with long COVID symptoms and in asymptomatic post-COVID controls. RESULTS: The highest occurrence of symptoms (71%) was after 3 months from the infection, decreasing to 62.3% and 29.4% at 6 and 12 months, respectively. Compared to controls, long COVID patients had increased levels of the neutrophilic degranulation indices MMP-8 and MPO, of endothelial dysfunction indices L-selectin and P-selectin. Among indices of metabolic dysfunction, leptin levels were higher in long COVID patients than in controls. CONCLUSION: In unvaccinated patients, symptoms may persist up to 1 year after acute COVID infection, with increased indices of neutrophil degranulation, endothelial and metabolic dysfunction. The clinical implications of specific inflammatory biomarkers require further attention, especially in individuals with fatigue and long COVID-linked cognitive dysfunctions.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Seguimentos , Neutrófilos , Estudos Prospectivos , SARS-CoV-2 , Biomarcadores
12.
Cytotherapy ; 26(5): 444-455, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38363248

RESUMO

BACKGROUND AIMS: Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS: An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS: No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen ß-chain were the most differentially expressed proteins between severity groups. CONCLUSION: Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.


Assuntos
COVID-19 , Vesículas Extracelulares , Proteômica , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Adulto , Espectrometria de Massas em Tandem , Cromatografia Líquida
13.
EMBO Rep ; 23(8): e54133, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35758160

RESUMO

NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus-infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV-1-infected cells. By combining an unbiased large-scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV-1-infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor-mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL-mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL-mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti-HIV-1 activity of NK cells but also possesses a multifunctional role beyond receptor-mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.


Assuntos
Citotoxicidade Imunológica , HIV-1 , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais , Ativação Linfocitária
14.
Mol Biol Rep ; 51(1): 202, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270668

RESUMO

BACKGROUND: Achyranthes aspera L. (family Amaranthaceae) is a plant species valued in Ayurveda for the treatment of respiratory ailments. Scientific validation of its antiallergic potential was aimed. METHODS AND RESULTS: Three extracts of A. aspera [aqueous (AaAq), hydroalcoholic (AaHA), ethanolic (AaEt)] were evaluated for their potency against C48/80-induced anaphylaxis in mice at 200 mg/kg BW oral dose. The effective dose of the most potent extract was determined through its effect on C48/80-induced anaphylaxis, and was further analyzed through its effect on mast cell degranulation, histamine-induced bronchospasm and ovalbumin (OVA)-induced asthma in a murine model. Among the three extracts, AaAq was found to be most potent at 200 mg/kg BW. AaAq 400 (400 mg/kg BW) was found to be the most effective dose in terms of inhibition of mortality and histamine level. AaAq 400 prevented the peritoneal and mesenteric mast cells from undergoing morphological changes due to degranulation induced by C48/80. Further, AaAq 400 delayed pre-convulsive time in histamine-induced bronchospasm. In the OVA-induced asthma model, AaAq 400 inhibited the level of inflammatory cell count in blood, bronchoalveolar lavage fluid and peritoneal fluid of mice. The Th2 cytokines (IL-4, IL-5, IL-13), TGF-ß and OVA-specific IgE were also reduced as evaluated by ELISA. Also, significant reduction in IL-5 (an eosinophilia indicator) transcript abundance and lung inflammatory score was observed. AaAq was safe up to 4000 mg/kg BW. CONCLUSIONS: Thus AaAq 400 possesses significant antiallergic potential and acts via attenuation of C48/80-induced anaphylaxis and inhibition of mast cell degranulation. It reduces pre-convulsive dyspnea in histamine-induced bronchospasm and Th2 cytokines in asthmatic mice.


Assuntos
Achyranthes , Anafilaxia , Antialérgicos , Asma , Espasmo Brônquico , Animais , Camundongos , Ovalbumina , Histamina , p-Metoxi-N-metilfenetilamina , Modelos Animais de Doenças , Interleucina-5 , Asma/induzido quimicamente , Asma/tratamento farmacológico , Citocinas
15.
Biosci Biotechnol Biochem ; 88(2): 181-188, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37968134

RESUMO

Type I hypersensitivity is triggered by mast cell degranulation, a stimulus-induced exocytosis of preformed secretory granules (SGs) containing various inflammatory mediators. The degree of degranulation is generally expressed as a percentage of secretory granule markers (such as ß-hexosaminidase and histamine) released into the external solution, and considerable time and labor are required for the quantification of markers in both the supernatants and cell lysates. In this study, we developed a simple fluorimetry-based degranulation assay using rat basophilic leukemia (RBL-2H3) mast cells. During degranulation, the styryl dye FM1-43 in the external solution fluorescently labeled the newly exocytosed SGs, whose increase in intensity was successively measured using a fluorescence microplate reader. In addition to the rate of ß-hexosaminidase secretion, the cellular FM1-43 intensity successfully represented the degree and kinetics of degranulation under various conditions, suggesting that this method facilitates multi-sample and/or multi-time-point analyses required for screening substances regulating mast cell degranulation.


Assuntos
Degranulação Celular , Compostos de Piridínio , Compostos de Amônio Quaternário , Ratos , Animais , Vesículas Secretórias/metabolismo , Mastócitos , beta-N-Acetil-Hexosaminidases
16.
Adv Exp Med Biol ; 1448: 9-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117804

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a severe cytokine storm syndrome (CSS), which until the turn of the century, was barely known but is now receiving increased attention. The history of HLH dates back to 1939 when it was first described in adults, to be followed in 1952 by the first description of its primary, familial form in children. Secondary forms of HLH are far more frequent and occur with infections, malignancies, metabolic diseases, iatrogenic immune suppression, and autoinflammatory/autoimmune diseases. Identification of the genetic defects leading to the defective function of natural killer (NK) cells and cytotoxic T cells as well as the corresponding mouse models have revolutionized our understanding of HLH and of immune function. Diagnosis relies on clinical and laboratory criteria; functional and genetic tests can help separate primary from secondary forms. Treatment with immunochemotherapy and hematopoietic stem cell transplantation has considerably improved survival in children with primary HLH, a formerly uniformly fatal disease.


Assuntos
Linfo-Histiocitose Hemofagocítica , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/imunologia , Humanos , História do Século XX , Animais , História do Século XXI , Células Matadoras Naturais/imunologia , Transplante de Células-Tronco Hematopoéticas
17.
Vet Dermatol ; 35(3): 263-272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38111025

RESUMO

BACKGROUND: Polyoxyethylene hydrogenated castor oil (HCO ethoxylates) is a nonionic surfactant used as an excipient for ointments and injections in human and veterinary drugs. Several polyethylene glycol (PEG) derivatives can be obtained depending on the number of moles of ethylene oxide (EO). HCO ethoxylates have the potential to cause anaphylactoid reactions. There is little published information about these types of reactions in dogs. OBJECTIVE: To determine the potential for HCO-ethoxylate-containing drugs to cause anaphylactoid reactions in dogs, employing intradermal testing (IDT) with various concentrations of HCO ethoxylates (HCO-25, -40, -60 and -80). ANIMALS: Four healthy male laboratory dogs. MATERIALS AND METHODS: We performed IDT with drugs containing HCO ethoxylates and HCO ethoxylates alone to determine threshold concentrations. The IDT scores and threshold concentrations were compared. Analysis of skin biopsies from IDT sites was used to measure the percentage of degranulated mast cells. The effect of histamine at IDT sites was investigated by pre-treatment with an antihistamine. RESULTS: All HCO-ethoxylate-containing drugs caused a wheal-and-flare reaction. The threshold concentrations (0.001% and 0.00001%) of each HCO-ethoxylate depended on the number of moles of EO (p < 0.05). Mast cell degranulation was enhanced by all HCO ethoxylates. The HCO-60-induced reaction was suppressed by an oral antihistamine. CONCLUSIONS AND CLINICAL RELEVANCE: The threshold concentration can serve as a consideration for developing safe new drug formulations and for clinical decision-making around using drugs containing PEG derivatives. IDT is useful to predict the risk of adverse effects. Antihistamines could demonstrate a prophylactic effect.


Assuntos
Anafilaxia , Óleo de Rícino , Doenças do Cão , Animais , Cães , Óleo de Rícino/efeitos adversos , Masculino , Anafilaxia/induzido quimicamente , Anafilaxia/veterinária , Doenças do Cão/induzido quimicamente , Polietilenoglicóis/efeitos adversos , Testes Intradérmicos/veterinária , Excipientes/efeitos adversos , Excipientes/química , Pele/efeitos dos fármacos , Pele/patologia
18.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474166

RESUMO

Tumor cells rely heavily on glycolysis to meet their high metabolic demands. While this results in nutrient deprivation within the tumor microenvironment and has negative effects on infiltrating immune cells such as natural killer (NK) cells, it also creates a potential target for cancer therapies. Here we use Glupin, an inhibitor of glucose transporters, to study the effect of limited glucose uptake on NK cells and their anti-tumor functions. Glupin treatment effectively inhibited glucose uptake and restricted glycolysis in NK cells. However, acute treatment had no negative effect on NK cell cytotoxicity or cytokine production. Long-term restriction of glucose uptake via Glupin treatment only delayed NK cell proliferation, as they could switch to glutaminolysis as an alternative energy source. While IFN-γ production was partially impaired, long-term Glupin treatment had no negative effect on degranulation. Interestingly, the serial killing activity of NK cells was even slightly enhanced, possibly due to changes in NAD metabolism. This demonstrates that NK cell cytotoxicity is remarkably robust and insensitive to metabolic disturbances, which makes cellular metabolism an attractive target for immune-mediated tumor therapies.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Neoplasias/metabolismo , Glicólise , Glucose/metabolismo , Microambiente Tumoral
19.
Inflammopharmacology ; 32(2): 1621-1631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38319475

RESUMO

Aframomum melegueta K Schum (A. melegueta), an herbaceous plant renowned for its medicinal seeds, was investigated for its potential immunomodulatory effects in vitro and in vivo using ethanolic and methanolic extracts. The immunomodulatory effect was evaluated by measuring antibody titers using the agglutination technique, while anti-inflammatory activity was assessed in a carrageenan-induced mouse paw edema model. In vitro immunomodulatory activity was measured by lysozyme release from neutrophils. Additionally, white blood cell counts were analyzed post-extracts treatment. The MTT assay was employed to determine cytotoxicity, and the biochemical parameters of liver toxicity were evaluated. Remarkably, both extracts exhibited a dose-dependent reduction in paw edema (p < 0.001), with the most significant reduction observed at 1 g/kg (78.13 and 74.27% for ethanolic and methanolic extracts, respectively). Neutrophil degranulation was significantly inhibited in a dose-dependent manner (p < 0.003), reaching maximal inhibition at 100 µg/mg (60.78 and 39.7% for ethanolic and methanolic extracts, respectively). In comparison to the control group, both antibody production and white blood cell counts were reduced. Neither of the extracts showcased any cytotoxicity or toxicity. These findings suggest that A. melegueta extracts exhibit immunosuppressive and anti-inflammatory activities due to the presence of various biomolecules.


Assuntos
Extratos Vegetais , Zingiberaceae , Camundongos , Animais , Extratos Vegetais/química , Sementes/química , Anti-Inflamatórios/farmacologia , Metanol , Etanol , Zingiberaceae/química , Edema
20.
J Sci Food Agric ; 104(10): 5955-5963, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415860

RESUMO

BACKGROUND: Food allergy has become a global public health problem. This study aimed to explore the possible anti-allergic effect of vitamin C (VC). A rat basophilic leukemia (RBL)-2H3 cell degranulation model was used to assess the effect of VC on degranulation in vitro, and an ovalbumin (OVA)-induced BALB/c mouse allergy model was used to assess the anti-allergy effect of VC in vivo. RESULTS: In vitro, VC significantly attenuated the release of ß-hexosaminidase, tryptase and histamine, and also reduced cytokine production (interleukins 4 and 6, tumor necrosis factor α) significantly (P < 0.05), with the inhibitory effect demonstrating a positive correlation with VC dose. In vivo, compared with the OVA group, the levels of serum immunoglobulins E and G1 of the VC low-dose (VCL) group (50 mg kg-1) and high-dose (VCH) group (200 mg·kg-1) were significantly reduced (P < 0.05). Furthermore, the plasma histamine level was also significantly decreased (P < 0.05). Moreover, TH2 cell polarization in mice of the VCL and VCH groups was significantly inhibited (P < 0.05), promoting the TH1/TH2 cell polarization balance. Additionally, VC treatment enhanced the expression of CD80 (P < 0.05) in spleen and small intestine tissues, while significantly inhibiting the expression of CD86 (P < 0.05); notably, high-dose VC treatment was more effective. CONCLUSION: VC exerted an anti-allergic effect through inhibiting degranulation and regulating TH1/TH2 cell polarization balance. © 2024 Society of Chemical Industry.


Assuntos
Antialérgicos , Ácido Ascórbico , Degranulação Celular , Hipersensibilidade Alimentar , Camundongos Endogâmicos BALB C , Células Th1 , Células Th2 , Animais , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Antialérgicos/farmacologia , Camundongos , Ácido Ascórbico/farmacologia , Degranulação Celular/efeitos dos fármacos , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Ratos , Hipersensibilidade Alimentar/tratamento farmacológico , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Humanos , Feminino , Masculino , Ovalbumina/imunologia , Ovalbumina/efeitos adversos , Citocinas/metabolismo , Citocinas/imunologia , beta-N-Acetil-Hexosaminidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA