Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 4): 708-716, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255023

RESUMO

Differential deposition by DC magnetron sputtering was applied to correct for figure errors of X-ray mirrors to be deployed on low-emittance synchrotron beamlines. During the deposition process, the mirrors were moved in front of a beam-defining aperture and the required velocity profile was calculated using a deconvolution algorithm. The surface figure was characterized using conventional off-line visible-light metrology instrumentation (long trace profiler and Fizeau interferometer) before and after the deposition. WSi2 was revealed to be a promising candidate material since it conserves the initial substrate surface roughness and limits the film stress to acceptable levels. On a 300 mm-long flat Si mirror the average height errors were reduced by a factor of 20 down to 0.2 nm root mean square. This result shows the suitability of WSi2 for differential deposition. Potential promising applications include the upgrade of affordable, average-quality substrates to the standards of modern synchrotron beamlines.


Assuntos
Algoritmos , Síncrotrons , Raios X , Radiografia
2.
Micromachines (Basel) ; 14(6)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37374778

RESUMO

In the process of plasma figure correction for a quartz sub-mirror, the plasma parallel removal process and ink masking layer are combined for the first time. A universal plasma figure correction method based on multiple distributed material removal functions is demonstrated, and its technological characteristics are analyzed. Through this method, the processing time is independent of the workpiece aperture, which saves time for the material removal function to scan along the trajectory. After seven iterations, the form error of the quartz element is converged from the initial figure error of ~114 nm RMS to a figure error of ~28 nm RMS, which shows the practical potential of the plasma figure correction method based on multiple distributed material removal functions in optical element manufacturing and the possibility of becoming a new stage process in the optical manufacturing chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA