Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Biochem Biophys Res Commun ; 727: 150322, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945064

RESUMO

The tumor microenvironment (TME) comprises cancer and non-cancerous stromal cells, including fibroblasts. Free fatty acids (FFAs) regulate various biological responses by binding to G protein-coupled FFA receptors (FFARs). In this study, we examined the impact of FFAR1 and FFAR4 on the cell migration of pancreatic cancer PANC-1 cells co-cultured with 3T3 fibroblast cells under hypoxic conditions. PANC-1 cells cultured at 1 % O2 exhibited elevated FFAR1 expression and decreased FFAR4 expression compared to those at 21 % O2. Cell migration of PANC-1 cells was reduced under 1 % O2 conditions. FFAR1 knockdown enhanced PANC-1 cell migration, whereas FFAR4 knockdown inhibited it. Co-culture of PANC-1 cells with 3T3 cells at 1 % O2 significantly increased FFAR4 expression, while FFAR1 expression remained unchanged. To evaluate the effects of FFAR1 and FFAR4 on PANC-1 cell migration in co-culture with 3T3 cells, we conducted a wound healing assay using the Culture-Insert 2 Well. PANC-1 and 3T3 cells were individually seeded into the two wells and incubated at both 21 % and 1 % O2 for 13 h. The cell migration of PANC-1 cells co-cultured with 3T3 cells at 1 % O2 was notably higher compared to 21 % O2. TUG-770 reduced and TUG-891 enhanced the cell migration of PANC-1 cells co-cultured with 3T3 cells under both 21 % and 1 % O2 conditions. These findings suggest that FFAR1 and FFAR4 play important roles in regulating the cell migration of PANC-1 cells co-cultured with 3T3 cells under hypoxic conditions.


Assuntos
Movimento Celular , Técnicas de Cocultura , Fibroblastos , Neoplasias Pancreáticas , Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Microambiente Tumoral , Hipóxia Celular , Células 3T3
2.
J Neuroinflammation ; 21(1): 26, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238790

RESUMO

Experimental autoimmune encephalomyelitis (EAE) induced in inbred rodents, i.e., genetically identical animals kept under identical environmental conditions, shows variable clinical outcomes. We investigated such variations of EAE in Dark Agouti rats immunized with spinal cord homogenate and identified four groups: lethal, severe, moderate, and mild, at day 28 post immunization. Higher numbers of CD4+ T cells, helper T cells type 1 (Th1) and 17 (Th17) in particular, were detected in the spinal cord of the severe group in comparison with the moderate group. In addition, increased proportion of Th1 and Th17 cells, and heightened levels of interferon (IFN)-γ and interleukin (IL)-6 were detected in the small intestine lamina propria of the severe group. A selective agonist of free fatty acid receptor type 2 (Ffar2) applied orally in the inductive phase of EAE shifted the distribution of the disease outcomes towards milder forms. This effect was paralleled with potentiation of intestinal innate lymphoid cells type 3 (ILC3) regulatory properties, and diminished Th1 and Th17 cell response in the lymph nodes draining the site of immunization. Our results suggest that different clinical outcomes in DA rats are under determinative influence of intestinal ILC3 activity during the inductive phase of EAE.


Assuntos
Encefalomielite Autoimune Experimental , Ratos , Animais , Camundongos , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/prevenção & controle , Imunidade Inata , Medula Espinal/patologia , Microglia , Células Th17 , Células Th1 , Camundongos Endogâmicos C57BL
3.
Brain Behav Immun ; 118: 423-436, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467381

RESUMO

Gut inflammation can trigger neuroinflammation and is linked to mood disorders. Microbiota-derived short-chain fatty acids (SCFAs) can modulate microglia, yet the mechanism remains elusive. Since microglia do not express free-fatty acid receptor (FFAR)2, but intestinal epithelial cells (IEC) and peripheral myeloid cells do, we hypothesized that SCFA-mediated FFAR2 activation within the gut or peripheral myeloid cells may impact microglia inflammation. To test this hypothesis, we developed a tamoxifen-inducible conditional knockout mouse model targeting FFAR2 exclusively on IEC and induced intestinal inflammation with dextran sodium sulfate (DSS), a well-established colitis model. Given FFAR2's high expression in myeloid cells, we also investigated its role by selectively deleting it in these populations of cells. In an initial study, male and female wild-type mice received 0 or 2% DSS for 5d and microglia were isolated 3d later to assess inflammatory status. DSS induced intestinal inflammation and upregulated inflammatory gene expression in microglia, indicating inflammatory signaling via the gut-brain axis. Despite the lack of significant effects of sex in the intestinal phenotype, male mice showed higher microglial inflammatory response than females. Subsequent studies using FFAR2 knockout models revealed that FFAR2 expression in IECs or immune myeloid cells did not affect DSS-induced colonic pathology (i.e. clinical and histological scores and colon length), or colonic expression of inflammatory genes. However, FFAR2 knockout led to an upregulation of several microglial inflammatory genes in control mice and downregulation in DSS-treated mice, suggesting that FFAR2 may constrain neuroinflammatory gene expression under healthy homeostatic conditions but may permit it during intestinal inflammation. No interactions with sex were observed, suggesting sex does not play a role on FFAR2 potential function in gut-brain communication in the context of colitis. To evaluate the role of FFAR2 activated by microbiota-derived SCFAs, we employed the same knockout and DSS models adding fermentable dietary fiber (0 or 2.5% inulin for 8 wks). Despite no genotype or fiber main effects, contrary to our hypothesis, inulin feeding augmented DSS-induced inflammation and signs of colitis, suggesting context-dependent effects of fiber. These findings highlight microglial involvement in colitis-associated neuroinflammation and advance our understanding of FFAR2's role in the gut-brain axis. Although not integral, we observed that the role of FFAR2 differs between homeostatic and inflammatory conditions, underscoring the need to consider different inflammatory conditions and disease contexts when investigating the role of FFAR2 and SCFAs in the gut-brain axis.


Assuntos
Colite , Microglia , Animais , Feminino , Masculino , Camundongos , Colo/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Células Epiteliais/patologia , Inflamação/metabolismo , Inulina/efeitos adversos , Inulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides , Doenças Neuroinflamatórias , Receptores Acoplados a Proteínas G/metabolismo
4.
Exp Mol Pathol ; 137: 104902, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788249

RESUMO

OBJECTIVE: Little information is available concerning protein expression of the free fatty acid receptor 2 (FFAR2), especially in tumours. Therefore, the aim of the present study was to comprehensively characterise the expression profile of FFAR2 in a large series of human normal and neoplastic tissues using immunohistochemistry thus providing a basis for further in-depth investigations into its potential diagnostic or therapeutic importance. METHODS: We developed a novel rabbit polyclonal anti-FFAR2 antibody, 0524, directed against the C-terminal region of human FFAR2. Antibody specificity was confirmed via Western blot analyses and immunocytochemistry using the FFAR2-expressing cell line BON-1 and FFAR2-specific small interfering RNA as well as native and FFAR2-transfected HEK-293 cells. The antibody was then used for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic human tissues. RESULTS: In normal tissues, FFAR2 was mainly present in distinct cell populations of the cerebral cortex, follicular cells and C cells of the thyroid, cardiomyocytes of the heart, bronchial epithelia and glands, hepatocytes and bile duct epithelia of the liver, gall bladder epithelium, exocrine and ß-cells of the endocrine pancreas, glomerular mesangial cells and podocytes as well as collecting ducts of the kidney, intestinal mucosa (particularly enteroendocrine cells), prostate epithelium, seminiferous tubules of the testicles, and placental syncytiotrophoblasts. In neoplastic tissues, FFAR2 was particularly prevalent in papillary thyroid carcinomas, parathyroid adenomas, and gastric, colon, pancreatic, hepatocellular, cholangiocellular, urinary bladder, breast, cervical, and ovarian carcinomas. CONCLUSIONS: We generated and characterised a novel rabbit polyclonal anti-human FFAR2 antibody that is well-suited for visualising FFAR2 expression in human routine pathology tissues. This antibody is also suitable for Western blot and immunocytochemistry experiments. To our knowledge, this antibody enabled the first broad FFAR2 protein expression profile in various normal and neoplastic human tissues.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Células HEK293 , Animais , Coelhos , Imuno-Histoquímica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Feminino , Masculino
5.
Gen Comp Endocrinol ; 353: 114520, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641150

RESUMO

G protein-coupled receptor 84 (GPR84) was cloned as an orphan receptor, and medium-chain fatty acids were then revealed as endogenous ligands. GPR84 is expressed in immune cells and is believed to protect liver function from lipotoxicity caused by overeating and high-fat diet intake. This study aimed to present the molecular characterization of GPR84 in domestic cats. The deduced amino acid sequence of the feline GPR84 shows high sequence homology (83-89 %) with the orthologues from other mammalians by cDNA cloning of feline GPR84. Remarkably high mRNA expression was observed in the bone marrow by Q-PCR analysis. The inhibition of intracellular cAMP concentration was observed in cells transfected with feline GPR84 and treated with medium-chain fatty acids. Immunostaining of GPR84 and free fatty acid receptor 2 (FFAR2)/GPR43 in the bone marrow, where high mRNA expression was observed, showed reactions in macrophages and myeloid cells. To clarify whether the receptor formed homo/hetero-merization, GPR84 and FFARs were analyzed using Nano-Luc binary technology and NanoLuc bioluminescence resonance energy transfer technologies, which revealed that GPR84 formed more heteromers with FFAR2 than homomers with each other. In addition, when GPR84 and FFAR2/GPR43 were cotransfected in the cell, their localization on the cell membrane was reduced compared with that when single receptors were transfected. These results indicated that GPR84 is a functional receptor protein that is expressed in cat tissues and may have a protein-protein interaction with FFAR2/GPR43 on the cell membrane.


Assuntos
Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Gatos , Sequência de Aminoácidos
6.
Neurol Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862654

RESUMO

BACKGROUND: Altered gut metabolites, especially short-chain fatty acids (SCFAs), in feces and plasma are observed in patients with Parkinson's disease (PD). OBJECTIVE: We aimed to investigate the colonic expression of two SCFA receptors, free fatty acid receptor (FFAR)2 and FFAR3, and gut barrier integrity in patients with PD and correlations with clinical severity. METHODS: In this retrospective study, colonic biopsy specimens were collected from 37 PD patients and 34 unaffected controls. Of this cohort, 31 participants (14 PD, 17 controls) underwent a series of colon biopsies. Colonic expression of FFAR2, FFAR3, and the tight junction marker ZO-1 were assayed by immunofluorescence staining. The You Only Look Once (version 8, YOLOv8) algorithm was used for automated detection and segmentation of immunostaining signal. PD motor function was assessed with the Movement Disorder Society (MDS)-Unified Parkinson's Disease Rating Scale (UPDRS), and constipation was assessed using Rome-IV criteria. RESULTS: Compared with controls, PD patients had significantly lower colonic expression of ZO-1 (p < 0.01) and FFAR2 (p = 0.01). On serial biopsy, colonic expression of FFAR2 and FFAR3 was reduced in the pre-motor stage before PD diagnosis (both p < 0.01). MDS-UPDRS motor scores did not correlate with colonic marker levels. Constipation severity negatively correlated with colonic ZO-1 levels (r = -0.49, p = 0.02). CONCLUSIONS: Colonic expression of ZO-1 and FFAR2 is lower in PD patients compared with unaffected controls, and FFAR2 and FFAR3 levels decline in the pre-motor stage of PD. Our findings implicate a leaky gut phenomenon in PD and reinforce that gut metabolites may contribute to the process of PD.

7.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791266

RESUMO

Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gßγ-activated phospholipase C (PLC)-ß/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action.


Assuntos
Catecolaminas , Receptores Adrenérgicos alfa 2 , Receptores Acoplados a Proteínas G , Animais , Células PC12 , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Catecolaminas/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Adipocinas/metabolismo , Células Cromafins/metabolismo , Transdução de Sinais , Norepinefrina/metabolismo , Norepinefrina/farmacologia
8.
J Lipid Res ; 64(6): 100374, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075982

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome, but a predominant subset of HFpEF patients has metabolic syndrome (MetS). Mechanistically, systemic, nonresolving inflammation associated with MetS might drive HFpEF remodeling. Free fatty acid receptor 4 (Ffar4) is a GPCR for long-chain fatty acids that attenuates metabolic dysfunction and resolves inflammation. Therefore, we hypothesized that Ffar4 would attenuate remodeling in HFpEF secondary to MetS (HFpEF-MetS). To test this hypothesis, mice with systemic deletion of Ffar4 (Ffar4KO) were fed a high-fat/high-sucrose diet with L-NAME in their water to induce HFpEF-MetS. In male Ffar4KO mice, this HFpEF-MetS diet induced similar metabolic deficits but worsened diastolic function and microvascular rarefaction relative to WT mice. Conversely, in female Ffar4KO mice, the diet produced greater obesity but no worsened ventricular remodeling relative to WT mice. In Ffar4KO males, MetS altered the balance of inflammatory oxylipins systemically in HDL and in the heart, decreasing the eicosapentaenoic acid-derived, proresolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE), while increasing the arachidonic acid-derived, proinflammatory oxylipin 12-hydroxyeicosatetraenoic acid (12-HETE). This increased 12-HETE/18-HEPE ratio reflected a more proinflammatory state both systemically and in the heart in male Ffar4KO mice and was associated with increased macrophage numbers in the heart, which in turn correlated with worsened ventricular remodeling. In summary, our data suggest that Ffar4 controls the proinflammatory/proresolving oxylipin balance systemically and in the heart to resolve inflammation and attenuate HFpEF remodeling.


Assuntos
Insuficiência Cardíaca , Síndrome Metabólica , Masculino , Feminino , Camundongos , Animais , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Oxilipinas , Síndrome Metabólica/complicações , Volume Sistólico/fisiologia , Remodelação Ventricular , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Inflamação/complicações
9.
Physiology (Bethesda) ; 37(6): 311-322, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944007

RESUMO

A surge in the prevalence of obesity and metabolic syndrome, which promote systemic inflammation, underlies an increase in cardiometabolic disease. Free fatty acid receptor 4 is a nutrient sensor for long-chain fatty acids, like ω3-polyunsaturated fatty acids (ω3-PUFAs), that attenuates metabolic disease and resolves inflammation. Clinical trials indicate ω3-PUFAs are cardioprotective, and this review discusses the mechanistic links between ω3-PUFAs, free fatty acid receptor 4, and attenuation of cardiometabolic disease.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Ácidos Graxos não Esterificados , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Humanos , Inflamação , Transdução de Sinais
10.
J Neuroinflammation ; 20(1): 302, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111048

RESUMO

G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in  both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1ß and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1ß. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.


Assuntos
Ácidos Graxos Ômega-3 , Microglia , Receptores Acoplados a Proteínas G , Adulto , Animais , Humanos , Camundongos , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Doenças Neuroinflamatórias , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
11.
J Cell Physiol ; 237(9): 3651-3660, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35802479

RESUMO

Transient receptor potential ankyrin 1 and vanilloid 1 (TRPA1 and TRPV1, respectively) channels contribute to inflammatory and neuropathic pain, indicating that their pharmacological inhibition could be a novel strategy for treating painful diseases. However, the mechanisms of TRPA1/V1 channel modulation have been mostly characterized to be upregulation and sensitization via variety of exogenous stimuli, endogenous inflammatory mediators, and metabolites of oxidative stress. Here we used calcium imaging of dorsal root ganglion neurons to identify an inhibitor signaling pathway for TRPA1 and TRPV1 regulated by resolvins (RvD1 and RvE1), which are endogenous anti-inflammatory lipid mediators. TRPA1 and TRPV1 channel activations were evoked by the TRPA1 agonist allyl isothiocyanate and the TRPV1 agonist capsaicin. Our results show that RvD1-induced selective inhibition of TRPA1 activity was mediated by free fatty acid receptor 4 (FFAR4)-protein kinase C (PKC) signaling. Experiments assessing RvE1-induced TRPV1 inhibition showed that RvE1 actions required both FFAR1 and FFAR4. Combined stimulation of FFAR1/FFAR4 or FFAR1/PKC mimicked TRPV1 inhibition by RvE1, and these effects were blocked by a protein kinase D (PKD) inhibitor, implying that PKD is an effector of the FFAR/PKC signaling axis in RvE1-induced TRPV1 inhibition. Despite selective inhibition of TRPV1 in the nanomolar range of RvE1, higher concentrations of RvE1 also inhibited TRPA1, possibly through PKC. Collectively, our findings reveal FFAR1 and FFAR4 as key signaling pathways mediating the selective targeting of resolvins to regulate TRPA1 and TRPV1, elucidating endogenous analgesic mechanisms that could be exploited as potential therapeutic targets.


Assuntos
Ácidos Graxos não Esterificados , Receptores Acoplados a Proteínas G , Canais de Cátion TRPV , Animais , Ácidos Graxos não Esterificados/metabolismo , Gânglios Espinais/metabolismo , Camundongos , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(14): 7123-7128, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30872479

RESUMO

The long-chain fatty acid receptor FFAR1/GPR40 binds agonists in both an interhelical site between the extracellular segments of transmembrane helix (TM)-III and TM-IV and a lipid-exposed groove between the intracellular segments of these helices. Molecular dynamics simulations of FFAR1 with agonist removed demonstrated a major rearrangement of the polar and charged anchor point residues for the carboxylic acid moiety of the agonist in the interhelical site, which was associated with closure of a neighboring, solvent-exposed pocket between the extracellular poles of TM-I, TM-II, and TM-VII. A synthetic compound designed to bind in this pocket, and thereby prevent its closure, was identified through structure-based virtual screening and shown to function both as an agonist and as an allosteric modulator of receptor activation. This discovery of an allosteric agonist for a previously unexploited, dynamic pocket in FFAR1 demonstrates both the power of including molecular dynamics in the drug discovery process and that this specific, clinically proven, but difficult, antidiabetes target can be addressed by chemotypes different from existing ligands.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Sítio Alostérico , Benzofuranos/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , Sulfonas/antagonistas & inibidores
13.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562873

RESUMO

Dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) has been used as an adjunct therapy for psoriasis due to its anti-inflammatory properties. Free fatty acid receptor 4 (FFA4 or GPR120) is a receptor-sensing n-3 PUFA. In the present study, we examined whether FFA4 acted as a therapeutic target for n-3 PUFA in psoriasis therapy. Experimentally, psoriasis-like skin lesions were induced by treatment with imiquimod for 6 consecutive days. A selective FFA4 agonist, Compound A (30 mg/kg), was used in FFA4 WT and FFA4 KO mice. Imiquimod-induced psoriasis-like skin lesions, which present as erythematous papules and plaques with silver scaling, as well as markedly elevated IL-17/IL-23 cytokine levels in skin tissues, were significantly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Enlarged lymph nodes and spleens, as well as imiquimod-induced, elevated IL-17/IL-23 cytokine levels, were also strongly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Imiquimod-induced increases in the CD4+IL-17A+ T cell population in lymph nodes and spleens were suppressed by Compound A treatment in FFA4 WT mice; however, this was not seen in FFA4 KO mice. Furthermore, compound A suppressed the differentiation of CD4+ naïve T cells from splenocytes into TH17 cells in an FFA4-dependent manner. In conclusion, we demonstrated that the activation of FFA4 ameliorates imiquimod-induced psoriasis, and the suppression of the differentiation of TH17 cells may partly contribute to its efficacy. Therefore, we suggest that FFA4 could be a therapeutic target for psoriasis therapy.


Assuntos
Ácidos Graxos Ômega-3 , Psoríase , Animais , Citocinas/uso terapêutico , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Imiquimode/toxicidade , Interleucina-17/genética , Interleucina-23 , Camundongos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Pele/patologia
14.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563671

RESUMO

Epidemiological and clinical studies have suggested that intake of n-3 polyunsaturated fatty acids (PUFA) reduces the incidence of allergic airway diseases and improves pulmonary function in patients with allergic asthma. However, the pharmacological targets of PUFA have not been elucidated upon. We investigated whether free fatty acid receptor 4 (FFA4, also known as GPR120) is a molecular target for beneficial PUFA in asthma therapy. In an ovalbumin (OVA)-induced allergic asthma model, compound A (a selective agonist of FFA4) was administrated before OVA sensitization or OVA challenge in FFA4 wild-type (WT) and knock-out (KO) mice. Compound A treatment of RBL-2H3 cells suppressed mast cell degranulation in vitro in a concentration-dependent manner. Administration of compound A suppressed in vivo allergic characteristics in bronchoalveolar lavage fluid (BALF) and lungs, such as inflammatory cytokine levels and eosinophil accumulation in BALF, inflammation and mucin secretion in the lungs. Compound A-induced suppression was not only observed in mice treated with compound A before OVA challenge, but in mice treated before OVA sensitization as well, implying that compound A acts on mast cells as well as dendritic cells. Furthermore, this suppression by compound A was only observed in FFA4-WT mice and was absent in FFA4-KO mice, implying that compound A action is mediated through FFA4. Activation of FFA4 may be a therapeutic target of PUFA in allergic asthma by suppressing the activation of dendritic cells and mast cells, suggesting that highly potent specific agonists of FFA4 could be a novel therapy for allergic asthma.


Assuntos
Asma , Mastócitos , Animais , Asma/induzido quimicamente , Líquido da Lavagem Broncoalveolar , Citocinas/uso terapêutico , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/uso terapêutico , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ovalbumina/efeitos adversos
15.
J Biol Chem ; 295(34): 12224-12232, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32647011

RESUMO

The supplementation of royal jelly (RJ) is known to provide a variety of health benefits, including anti-inflammatory and anti-obesity effects. RJ treatment also reportedly protects against bone loss, but no single factor in RJ has yet been identified as an anti-osteoporosis agent. Here we fractionated RJ and identified 10-hydroxy-2-decenoic acid (10H2DA) as a key component involved in inhibiting osteoclastogenesis based on mass spectrometric analysis. We further demonstrated free fatty acid receptor 4 (FFAR4) as directly interacting with 10H2DA; binding of 10H2DA to FFAR4 on osteoclasts inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced activation of NF-κB signaling, thereby attenuating the induction of nuclear factor of activated T cells (NFAT) c1, a key transcription factor for osteoclastogenesis. Oral administration of 10H2DA attenuated bone resorption in ovariectomized mice. These results suggest a potential therapeutic approach of targeting osteoclast differentiation by the supplementation of RJ, and specifically 10H2DA, in cases of pathological bone loss such as occur in postmenopausal osteoporosis.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/química , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ácidos Graxos Monoinsaturados/química , Feminino , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Ligante RANK/metabolismo
16.
Pharmacol Res ; 163: 105173, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027715

RESUMO

FFA4 is a novel therapeutic target for the treatment of metabolic diseases, such as type II diabetes. However, there are still few ligands with structural diversity, selectivity and high potency, and the signaling pathway downstream of FFA4 remains to be poorly characterized. In this study, a high performance liquid chromatography-corona charged aerosol detector (HPLC-CAD) combined with label-free dynamic mass redistribution (DMR) method was introduced to guide the discovery of FFA4 agonists from Arnebia euchroma (Royle) Johnst. Ten compounds were identified as FFA4 agonists and structure-activity relationship was obtained. Among them, shikonin displayed the most potent activity with pEC50 value of 6.02 ± 0.19. The activity of shikonin was confirmed by FLIPR (fluorometric imaging plate reader) assay. Signaling pathways of FFA4 were explored in HT-29 cells endogenously expressing FFA4 using shikonin and known FFA4 agonists α-linolenic acid (ALA) and TUG891. Multiple pathways included Gq/11-PLC-Ca2+-PKC, RohA, JNK, p38 MAPK, Gi/o and PI3K signaling but may not involve Gs signaling triggered by shikonin, ALA and TUG891. Besides, shikonin, TUG891 and ALA could induce ERK1/2 and AKT phosphorylation in HT-29 cells. Moreover, anti-diabetes effects of shikonin were evaluated on the glucose intolerance in diabetic db/db mice. Shikonin reduced plasma glucose level, suggesting that it had the potential in treatment of type II diabetes. The agonists identified in this study provided structure guidance for FFA4 drug design. This study was also useful for understanding FFA4 pharmacology and its biological function.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Naftoquinonas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas , Animais , Boraginaceae , Células CHO , Cricetulus , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Células HT29 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Naftoquinonas/química , Naftoquinonas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade
17.
J Enzyme Inhib Med Chem ; 36(1): 1651-1658, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34294008

RESUMO

A set of 1,3,4-thiadiazole-2-carboxamides bearing a substituted biphenyl in the amide portion was synthesised and tested for agonistic activity towards free fatty acid receptor 1 (FFA1). The observed activity trends were impossible to rationalised based solely on the docking energy scores of Glide SP. On the contrary, when the phospholipid cell membrane bilayer was reconstructed around FFA1, it became apparent that inactive compounds displayed significant strained contacts with the membrane while for active compounds the strain was noticeably lower. These findings justify using the improved docking protocol for modelling GPCR-ligand interactions which uses the crystal structure of the receptor and a reconstructed portion of a cell membrane.


Assuntos
Hidrazinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Ligantes , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
18.
Mol Cell Neurosci ; 105: 103493, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32333962

RESUMO

Neuroinflammation contributes to neurodegenerative disorders, including Alzheimer's disease (AD). Gut microbes are involved in regulating systemic inflammation. Short-chain fatty acids (SCFAs), which are among the many metabolites released by gut microbes, can cross the blood-brain barrier (BBB) and interact with microglia. High concentrations of individual SCFAs decrease the inflammatory responses of peripheral monocytes; therefore, we hypothesized that SCFAs act on their own or in combinations to reduce the inflammatory response of microglia. Cultured human THP-1 monocytic cells and differentiated human HL-60 myelomonocytic cells were used to model select immune functions of human microglia. Acetate, propionate, butyrate, formate, and valerate were added to cells alone or as a mixture containing SCFAs at an approximate physiological concentration ratio. The SCFA mixture, as well as several individual SCFAs at the highest concentrations used in the mixture (15-236 µM), decreased the secretion of interleukin (IL)-1ß, monocyte chemoattractant protein (MCP)-1, tumor necrosis factor (TNF)-α, and cytotoxins by immune-stimulated THP-1 cells. GLPG 0974, a free fatty acid receptor (FFAR) 2/3 antagonist, did not block the inhibitory effect of the SCFA mixture on IL-1ß secretion by THP-1 cells while blocking the inhibitory effect of formate alone. We demonstrated that formate and valerate alone reduced the phagocytic activity of immune-stimulated THP-1 cells. Formate, but not valerate, alone also inhibited the N-formylmethionine-leucyl-phenylalanine (fMLP)-induced respiratory burst of HL-60 cells, reducing the production of reactive oxygen species (ROS). Our data indicate that SCFAs could regulate select microglial functions that are disrupted in AD.


Assuntos
Butiratos/farmacologia , Ácidos Graxos Voláteis/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , Tiofenos/farmacologia , Quimiocina CCL2/metabolismo , Ácidos Graxos Voláteis/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microglia/efeitos dos fármacos , Microglia/imunologia , Monócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
Mol Cell Neurosci ; 109: 103569, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161065

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder without a known cure or effective treatment. Research has identified several modifiable risk factors and suggested preventative measures to reduce the risk of developing AD, including alterations in diet. Polyunsaturated fatty acids (PUFAs) have been shown to regulate inflammatory responses in the central nervous system (CNS), the main site of inflammation in AD. In the CNS, microglia are immune cells responsible for the maintenance of homeostasis. However, in AD, microglia can become adversely activated, causing them to release increased levels of cytotoxins and inflammatory mediators, including nitric oxide (NO) and monocyte-chemoattractant protein (MCP)-1. We assessed the effects of two PUFAs, α-linolenic acid (ALA) and linoleic acid (LA), on select microglial immune functions, since the effects of these dietary fatty acids on neuroimmune responses are not well characterized. In BV-2 mouse microglia activated with lipopolysaccharide (LPS), exposure to LA reduced NO secretion and inducible nitric oxide synthase (iNOS) levels, whereas exposure to ALA reduced NO without a corresponding reduction of iNOS. Neither ALA nor LA altered MCP-1 levels or cytotoxins released by THP-1 human microglia-like cells stimulated with a combination of LPS and interferon (IFN)-γ. Specific receptor antagonists were used to demonstrate that the inhibitory effect of LA on NO secretion did not depend on the free fatty acid receptor (FFAR) 1 or FFAR4. Furthermore, gas chromatography with a flame ionization detector (GC-FID) revealed that exposure to LA or ALA did not alter the fatty acid composition of BV-2 microglia. Our data indicate that regulation of select microglial immune functions by ALA and LA could be one of the mechanisms underlying the observed link between certain dietary patterns and AD, such as reduced risk of cognitive decline and dementia associated with the Mediterranean diet.


Assuntos
Gorduras na Dieta/farmacologia , Ácido Linoleico/farmacologia , Microglia/efeitos dos fármacos , Óxido Nítrico/biossíntese , Ácido alfa-Linolênico/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Microglia/imunologia , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Células THP-1
20.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578942

RESUMO

The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Descoberta de Drogas/métodos , Humanos , Ligantes , Modelos Moleculares , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA