Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 39: 331-361, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843925

RESUMO

Microtubules are essential dynamic polymers composed of α/ß-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and ß-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.


Assuntos
Microtúbulos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Movimento Celular
2.
Proteomics ; 21(20): e2100004, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558204

RESUMO

All eukaryotic flagella are made of microtubules and driven by dynein motor proteins. However, every organism is unique in terms of its flagellar waveform, beat frequency, and its general motility pattern. With recent research, it is becoming clear that despite overall conservation in flagellar structure, the pattern of tubulin post-translational modifications within the flagella are diverse and may contribute to variations in their patterns of motility. In this study, we have analyzed the tubulin post-translational modification in the protozoan parasites Giardia lamblia and Trichomonas vaginalis using global, untargeted mass spectrometry. We show that tubulin monoglycylation is a modification localized to the flagella present in G. lamblia but absent in T. vaginalis. We also show the presence of glutamylated tubulin in both G. lamblia and T. vaginalis. Using MS/MS, we were also able to identify the previously unknown sites of monoglycylation in ß-tubulin at E438 and E439 in G. lamblia. Using isolated flagella, we also characterized the flagellar proteome in G. lamblia and T. vaginalis and identified 475 proteins in G. lamblia and 386 proteins in T. vaginalis flagella. Altogether, the flagellar proteomes as well as the sites of tubulin PTMs in these organisms, reveal potential mechanisms in regulating flagellar motilities in these neglected protozoan parasites.


Assuntos
Giardia lamblia , Trichomonas vaginalis , Flagelos/metabolismo , Giardia lamblia/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Espectrometria de Massas em Tandem , Trichomonas vaginalis/metabolismo , Tubulina (Proteína)
3.
Proc Natl Acad Sci U S A ; 114(25): 6545-6550, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28576883

RESUMO

Glycylation and glutamylation, the posttranslational addition of glycines and glutamates to genetically encoded glutamates in the intrinsically disordered tubulin C-terminal tails, are crucial for the biogenesis and stability of cilia and flagella and play important roles in metazoan development. Members of the diverse family of tubulin tyrosine ligase-like (TTLL) enzymes catalyze these modifications, which are part of an evolutionarily conserved and complex tubulin code that regulates microtubule interactions with cellular effectors. The site specificity of TTLL enzymes and their biochemical interplay remain largely unknown. Here, we report an in vitro characterization of a tubulin glycylase. We show that TTLL3 glycylates the ß-tubulin tail at four sites in a hierarchical order and that TTLL3 and the glutamylase TTLL7 compete for overlapping sites on the tubulin tail, providing a molecular basis for the anticorrelation between glutamylation and glycylation observed in axonemes. This anticorrelation demonstrates how a combinatorial tubulin code written in two different posttranslational modifications can arise through the activities of related but distinct TTLL enzymes. To elucidate what structural elements differentiate TTLL glycylases from glutamylases, with which they share the common TTL scaffold, we determined the TTLL3 X-ray structure at 2.3-Å resolution. This structure reveals two architectural elements unique to glycyl initiases and critical for their activity. Thus, our work sheds light on the structural and functional diversification of TTLL enzymes, and constitutes an initial important step toward understanding how the tubulin code is written through the intersection of activities of multiple TTLL enzymes.


Assuntos
Peptídeo Sintases/química , Tubulina (Proteína)/química , Animais , Axonema/genética , Cílios/genética , Flagelos/genética , Glutamatos/genética , Glicina/genética , Humanos , Microtúbulos/química , Microtúbulos/genética , Peptídeo Sintases/genética , Processamento de Proteína Pós-Traducional/genética , Tubulina (Proteína)/genética , Tirosina/genética , Xenopus/genética
4.
J Cell Sci ; 130(8): 1347-1353, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28325758

RESUMO

Microtubules are key cytoskeletal elements of all eukaryotic cells and are assembled of evolutionarily conserved α-tubulin-ß-tubulin heterodimers. Despite their uniform structure, microtubules fulfill a large diversity of functions. A regulatory mechanism to control the specialization of the microtubule cytoskeleton is the 'tubulin code', which is generated by (i) expression of different α- and ß-tubulin isotypes, and by (ii) post-translational modifications of tubulin. In this Cell Science at a Glance article and the accompanying poster, we provide a comprehensive overview of the molecular components of the tubulin code, and discuss the mechanisms by which these components contribute to the generation of functionally specialized microtubules.


Assuntos
Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Animais , Movimento Celular , Humanos , Tubulina (Proteína)/genética
5.
J Cell Sci ; 130(5): 938-949, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104815

RESUMO

Tubulin is subject to a wide variety of posttranslational modifications, which, as part of the tubulin code, are involved in the regulation of microtubule functions. Glycylation has so far predominantly been found in motile cilia and flagella, and absence of this modification leads to ciliary disassembly. Here, we demonstrate that the correct functioning of connecting cilia of photoreceptors, which are non-motile sensory cilia, is also dependent on glycylation. In contrast to many other tissues, only one glycylase, TTLL3, is expressed in retina. Ttll3-/- mice lack glycylation in photoreceptors, which results in shortening of connecting cilia and slow retinal degeneration. Moreover, absence of glycylation results in increased levels of tubulin glutamylation in photoreceptors, and inversely, the hyperglutamylation observed in the Purkinje cell degeneration (pcd) mouse abolishes glycylation. This suggests that both posttranslational modifications compete for modification sites, and that unbalancing the glutamylation-glycylation equilibrium on axonemes of connecting cilia, regardless of the enzymatic mechanism, invariably leads to retinal degeneration.


Assuntos
Ácido Glutâmico/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Tubulina (Proteína)/metabolismo , Animais , Apoptose , Cílios/metabolismo , Glicosilação , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/patologia , Peptídeo Sintases/metabolismo , Fenótipo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Retina/metabolismo , Retina/patologia , Rodopsina/metabolismo , Fatores de Tempo
6.
EMBO J ; 33(19): 2247-60, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25180231

RESUMO

TTLL3 and TTLL8 are tubulin glycine ligases catalyzing posttranslational glycylation of microtubules. We show here for the first time that these enzymes are required for robust formation of primary cilia. We further discover the existence of primary cilia in colon and demonstrate that TTLL3 is the only glycylase in this organ. As a consequence, colon epithelium shows a reduced number of primary cilia accompanied by an increased rate of cell division in TTLL3-knockout mice. Strikingly, higher proliferation is compensated by faster tissue turnover in normal colon. In a mouse model for tumorigenesis, lack of TTLL3 strongly promotes tumor development. We further demonstrate that decreased levels of TTLL3 expression are linked to the development of human colorectal carcinomas. Thus, we have uncovered a novel role for tubulin glycylation in primary cilia maintenance, which controls cell proliferation of colon epithelial cells and plays an essential role in colon cancer development.


Assuntos
Proliferação de Células , Cílios/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Glicina/metabolismo , Peptídeo Sintases/fisiologia , Tubulina (Proteína)/fisiologia , Animais , Western Blotting , Carcinógenos/toxicidade , Células Cultivadas , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Int J Mol Sci ; 18(10)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065455

RESUMO

Microtubules are hollow tube-like polymeric structures composed of α,ß-tubulin heterodimers. They play an important role in numerous cellular processes, including intracellular transport, cell motility and segregation of the chromosomes during cell division. Moreover, microtubule doublets or triplets form a scaffold of a cilium, centriole and basal body, respectively. To perform such diverse functions microtubules have to differ in their properties. Post-translational modifications are one of the factors that affect the properties of the tubulin polymer. Here we focus on the direct and indirect effects of post-translational modifications of tubulin on microtubule dynamics.


Assuntos
Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Animais , Humanos
8.
Dev Cell ; 57(21): 2497-2513.e6, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347241

RESUMO

Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and ß-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on ß-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.


Assuntos
Caenorhabditis elegans , Tubulina (Proteína) , Animais , Katanina/genética , Tubulina (Proteína)/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional
9.
Front Cell Dev Biol ; 10: 872058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493101

RESUMO

In recent decades, advancing insights into the mechanisms of cardiac dysfunction have focused on the involvement of microtubule network. A variety of tubulin post-translational modifications have been discovered to fine-tune the microtubules' properties and functions. Given the limits of therapies based on conserved structures of the skeleton, targeting tubulin modifications appears to be a potentially promising therapeutic strategy. Here we review the current understanding of tubulin post-translational modifications in regulating microtubule functions in the cardiac system. We also discussed how altered modifications may lead to a range of cardiac dysfunctions, many of which are linked to heart failure.

10.
Dev Cell ; 54(1): 7-20, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32634400

RESUMO

Microtubules are non-covalent mesoscale polymers central to the eukaryotic cytoskeleton. Microtubule structure, dynamics, and mechanics are modulated by a cell's choice of tubulin isoforms and post-translational modifications, a "tubulin code," which is thought to support the diverse morphology and dynamics of microtubule arrays across various cell types, cell cycle, and developmental stages. We give a brief historical overview of research into tubulin diversity and highlight recent progress toward uncovering the mechanistic underpinnings of the tubulin code. As a large number of essential pathways converge upon the microtubule cytoskeleton, understanding how cells utilize tubulin diversity is crucial to understanding cellular physiology and disease.


Assuntos
Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Simulação de Dinâmica Molecular , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
11.
Methods Cell Biol ; 127: 19-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837384

RESUMO

Primary and motile cilia differ in their structure, composition, and function. In the brain, primary cilia are immotile signalling organelles present on neural stem cells and neurons. Multiple motile cilia are found on the surface of ependymal cells in all brain ventricles, where they contribute to the flow of cerebrospinal fluid. During development, monociliated ependymal progenitor cells differentiate into multiciliated ependymal cells, thus providing a simple system for studying the transition between these two stages. In this chapter, we provide protocols for immunofluorescence staining of developing ependymal cells in vivo, on whole mounts of lateral ventricle walls, and in vitro, on cultured ependymal cells. We also provide a list of markers we currently use to stain both types of cilia, including proteins at the ciliary membrane and tubulin posttranslational modifications of the axoneme.


Assuntos
Cílios/fisiologia , Epêndima/citologia , Células Ependimogliais/citologia , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Antígeno AC133 , Fatores de Ribosilação do ADP/fisiologia , Adenilil Ciclases/fisiologia , Animais , Antígenos CD , Biomarcadores , Antígeno CD24 , Diferenciação Celular , Células Cultivadas , Epêndima/fisiologia , Epêndima/cirurgia , Glicoproteínas , Imuno-Histoquímica , Ventrículos Laterais/fisiologia , Ventrículos Laterais/cirurgia , Camundongos , Peptídeos , Cultura Primária de Células/métodos , Coloração e Rotulagem/métodos , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA