Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2301780120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399420

RESUMO

Nearly half of the elements in the periodic table are extracted, refined, or plated using electrodeposition in high-temperature melts. However, operando observations and tuning of the electrodeposition process during realistic electrolysis operations are extremely difficult due to severe reaction conditions and complicated electrolytic cell, which makes the improvement of the process very blind and inefficient. Here, we developed a multipurpose operando high-temperature electrochemical instrument that combines operando Raman microspectroscopy analysis, optical microscopy imaging, and a tunable magnetic field. Subsequently, the electrodeposition of Ti-which is a typical polyvalent metal and generally shows a very complex electrode process-was used to verify the stability of the instrument. The complex multistep cathodic process of Ti in the molten salt at 823 K was systematically analyzed by a multidimensional operando analysis strategy involving multiple experimental studies, theoretical calculations, etc. The regulatory effect and its corresponding scale-span mechanism of the magnetic field on the electrodeposition process of Ti were also elucidated, which would be inaccessible with existing experimental techniques and is significant for the real-time and rational optimization of the process. Overall, this work established a powerful and universal methodology for in-depth analysis of high-temperature electrochemistry.

2.
Angew Chem Int Ed Engl ; 61(32): e202206482, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35686474

RESUMO

Recently, the ultra-high temperature electrochemistry (UTE, about >1000 °C) has emerged, which represents an exploration to extend the temperature limit of human technology in electrochemical engineering. UTE has far-reaching impact on revolutionary low-carbon metal extraction and the in situ production of oxygen for deep-space exploration. It is hence of urgency to systematically summarize the development of UTE. In this Review, the basic concepts of UTE and the physicochemical properties of molten oxides are analyzed. The principles in the design of inert anodes for the oxygen evolution reaction in molten oxides are discussed, which forms a solid basis for the in situ production of oxygen from simulated lunar regolith by UTE. Furthermore, liquid metal cathodes for revolutionary titanium extraction and ironmaking/steelmaking are highlighted. With emphasis on the key challenges and perspectives, the Review can provide valuable inspiration for the rapid advancement of UTE.


Assuntos
Metais , Óxidos , Eletroquímica , Eletrodos , Humanos , Óxidos/química , Oxigênio/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA