Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(39): e2410968121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284065

RESUMO

Hydrogen, the lightest and most abundant element in the universe, plays essential roles in a variety of clean energy technologies and industrial processes. For over a century, it has been known that hydrogen can significantly degrade the mechanical properties of materials, leading to issues like hydrogen embrittlement. A major challenge that has significantly limited scientific advances in this field is that light atoms like hydrogen are difficult to image, even with state-of-the-art microscopic techniques. To address this challenge, here, we introduce Atom-H, a versatile and generalizable machine learning-based framework for imaging hydrogen atoms at the atomic scale. Using a high-resolution electron microscope image as input, Atom-H accurately captures the distribution of hydrogen atoms and local stresses at lattice defects, including dislocations, grain boundaries, cracks, and phase boundaries. This provides atomic-scale insights into hydrogen-governed mechanical behaviors in metallic materials, including pure metals like Ni, Fe, Ti and alloys like FeCr. The proposed framework has an immediate impact on current research into hydrogen embrittlement and is expected to have far-reaching implications for mapping "invisible" atoms in other scientific disciplines.

2.
Sci Technol Adv Mater ; 25(1): 2318213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414574

RESUMO

Cation-based resistance switches have been considered as promising candidates for memory cells and other novel devices. So far, the most accepted switching processes of such devices are based on the formation/rupture of metallic filaments between two electrodes. Although many recent studies have identified the existence of H2O (and resulting -OH groups) in such devices, their effects on the switching process are still unclear. In the present work, by taking Cu/Ta2O5/Pt device as an example, we have theoretically revealed that H ions may dissociate from -OH groups and accumulate onto the Cu filament in amorphous Ta2O5. After that, the adsorbed H ions will induce a series of changes, such as the elongation of the adjacent Cu-Cu bonds, the weakening of the Cu-Cu bonds, the increase of charge on Cu cations, and the enhancement of diffusivities of Cu cations, all of which eventually lead to the rupture of the Cu filament. Interestingly, our proposed 'H-triggered metal filament rupture' model is similar to the widely studied 'hydrogen embrittlement phenomenon'. The crucial point of this model is the high catalytic activity of Cu towards the splitting of -OH group. Consequently, it is expected that this model could be applicable to other Cu-cation based resistance switches.


Cation-based resistance switches have been considered as the promising candidates for memory cells and other novel devices. So far, the most accepted switching processes of such devices are based on the forming/rupture of metallic filaments between two electrodes. Although many recent studies have identified the existence of H2O (and as-resulted -OH groups) in such devices, their effects on the switching process are still unclear. In the present work, by taking Cu/Ta2O5/Pt device as an example, we have theoretically proposed that the H ions take the very important role during the rupture process of Cu filament in such device. Interestingly, our proposed 'H-triggered metal filament rupture' model is similar to the widely studied 'Hydrogen Embrittlement' phenomenon in the industry field, which serves as additional evidence supporting the credibility of such model. The crucial point of mechanism of this model is considered to be the high catalytic activity of Cu towards the splitting of -OH group. Consequently, it is expected that this model could be applicable to other Cu-cation based resistance switches.

3.
Entropy (Basel) ; 25(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37190461

RESUMO

In this study, we examined the effect of charging current density on the hydrogen embrittlement (HE) of MEA and the associated HE mechanisms using electron backscattered diffraction (EBSD). Results show that MEA is susceptible to HE, but is stronger than as-rolled and 3D-printed Cantor alloy and stainless steel. The HE susceptibility of MEA decreases with increasing current density. Ductile fracture with transgranular dimples switches to intergranular brittle fracture with clear slip bands in the interior of grains. EBSD results uncovered that hydrogen facilitates localized slips and deformation twins. Hydrogen-enhanced localized plasticity and hydrogen decohesion are the possible HE mechanisms.

4.
J Comput Chem ; 41(13): 1299-1309, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32112574

RESUMO

Reducing hydrogen embrittlement in the low-cost Fe─C based steels have the potential to significantly impact the development of hydrogen energy technologies. Molecular dynamics studies of hydrogen interactions with Fe─C steels provide fundamental information about the behavior of hydrogen at microstructural length scales, although such studies have not been performed due to the lack of an Fe─C─H ternary interatomic potential. In this work, the literature on interatomic potentials related to the Fe─C─H systems are reviewed with the aim of constructing an Fe─C─H potential from the published binary potentials. We found that Fe─C, Fe─H, and C─H bond order potentials exist and can be combined to construct an Fe─C─H ternary potential. Therefore, we constructed two such Fe─C─H potentials and demonstrate that these ternary potentials can reasonably capture hydrogen effects on deformation characteristics and deformation mechanisms for a variety of microstructural variations of the Fe─C steels, including martensite that results from γ to α phase transformation, and pearlite that results from the eutectic formation of the Fe3 C cementite compound.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34877160

RESUMO

Several welds and associated heat-affected zones (HAZs) on two API X70 and two API X52 pipes were tested to determine the fatigue crack growth rate (FCGR) in pressurized hydrogen gas and assess the area of the pipe that was most susceptible to fatigue when subjected to hydrogen gas. The relationship between FCGRs for welds and HAZs compared to base metal is discussed relative to local residual stresses, differences in the actual path of the crack, and hydrogen pressure effects.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31579346

RESUMO

Press-hardened steel (PHS), used for automotive safety-related structure parts, is sensitive to hydrogen embrittlement due to its martensitic microstructure. Hydrogen is introduced in PHS during the hot press forming (HPF) process, by an atmospheric corrosion process. In this study, the hydrogen embrittlement behavior of uncoated, aluminized, and galvanized PHSs was investigated. The Al-10%Si coating promoted the absorption of diffusible hydrogen at elevated temperature during the HPF while the reacted coating layer prevented the absorbed hydrogen from out-diffusing through the reacted coating surface layer at room temperature. Therefore, the aluminized PHS showed a greater sensitivity to both the hydrogen uptake and the resultant embrittlement, as compared to the uncoated and galvanized PHSs. Use of galvanized PHS for HPF application reduces the risk of hydrogen embrittlement, since the Zn coating effectively prevents the hydrogen uptake. The greater embrittlement resistance of the galvanized PHS is possibly due to the inhibition of the hydrogen generation reaction by the surface ZnO oxide layer and the low rate of hydrogen transport through the liquid Zn phase.

7.
J Comput Chem ; 35(31): 2239-44, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25250795

RESUMO

Hydrogen interstitials in austenitic Fe-Mn alloys were studied using density-functional theory to gain insights into the mechanisms of hydrogen embrittlement in high-strength Mn steels. The investigations reveal that H atoms at octahedral interstitial sites prefer a local environment containing Mn atoms rather than Fe atoms. This phenomenon is closely examined combining total energy calculations and crystal orbital Hamilton population analysis. Contributions from various electronic phenomena such as elastic, chemical, and magnetic effects are characterized. The primary reason for the environmental preference is a volumetric effect, which causes a linear dependence on the number of nearest-neighbour Mn atoms. A secondary electronic/magnetic effect explains the deviations from this linearity.

8.
Sci Rep ; 14(1): 21338, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266586

RESUMO

The effect of interstitial hydrogen on the elastic properties of bcc Fe, bcc Fe-Cr, and bcc Fe-Ni was investigated using density functional theory calculations. Our results indicate that the elastic moduli decrease linearly with increasing hydrogen concentration. The consequences of hydrogen for the mechanical properties of bcc Fe, bcc Fe-Cr, and bcc Fe-Ni were analyzed, considering various factors such as the ideal shear stress, Peierls stress, number of dislocation pile-ups, and critical crack growth lengths. At the same hydrogen concentration, compared to the bcc Fe and bcc Fe-Ni systems, fewer dislocation pile-ups and shorter critical crack growth lengths can facilitate the nucleation and propagation of cracks in the bcc Fe-Cr system. Finally, we propose a mechanism to explain the influence of Cr and Ni on hydrogen embrittlement.

9.
Materials (Basel) ; 17(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274627

RESUMO

Crack detection in high-pressure hydrogen gas components, such as pipes, is crucial for ensuring the safety and reliability of hydrogen infrastructure. This study conducts the nondestructive testing of crack propagation in steel piping under cyclic compressive loads in the presence of hydrogen in the material. The specimens were hydrogen-precharged through immersion in a 20 mass% ammonium thiocyanate solution at 40 °C for 72 h. The crack growth rate in hydrogen-precharged specimens was approximately 10 times faster than that in uncharged specimens, with cracks propagating from the inner to outer surfaces of the pipe. The fracture surface morphology differed significantly, with flat surfaces in hydrogen-precharged materials and convex or concave surfaces in uncharged materials. Eddy current and hammering tests revealed differences in the presence of large cracks between the two materials. By contrast, hammering tests revealed differences in the presence of a half size crack between the two materials. These findings highlight the effect of hydrogen precharging on crack propagation in steel piping and underscore the importance of early detection methods.

10.
Materials (Basel) ; 17(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399215

RESUMO

Hydrogen embrittlement (HE) is a broadly recognized phenomenon in metallic materials. If not well understood and managed, HE may lead to catastrophic environmental failures in vessels containing hydrogen, such as pipelines and storage tanks. HE can affect the mechanical properties of materials such as ductility, toughness, and strength, mainly through the interaction between metal defects and hydrogen. Various phenomena such as hydrogen adsorption, hydrogen diffusion, and hydrogen interactions with intrinsic trapping sites like dislocations, voids, grain boundaries, and oxide/matrix interfaces are involved in this process. It is important to understand HE mechanisms to develop effective hydrogen resistant strategies. Tensile, double cantilever beam, bent beam, and fatigue tests are among the most common techniques employed to study HE. This article reviews hydrogen diffusion behavior, mechanisms, and characterization techniques.

11.
Materials (Basel) ; 17(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274698

RESUMO

A phenomenological model for estimating the effects of load ratio R and hydrogen pressure PH2 on the hydrogen-assisted fatigue crack growth rate (HA-FCGR) behavior in the transient and steady-state regimes of pressure vessel steels is described. The "transient regime" is identified with crack growth within a severely embrittled zone of intense plasticity at the crack tip. The "steady-state" behavior is associated with the crack growing into a region of comparatively lower hydrogen concentration located further away from the crack tip. The model treats the effects of R and PH2 as being functionally separable. In the transient regime, the effects of the hydrogen pressure on the HA-FCGR behavior were negligible but were significant in the steady-state regime. The hydrogen concentration in the steady-state region is modeled as being dependent on the kinetics of lattice diffusion, which is sensitive to pressure. Experimental HA-FCGR data from the literature were used to validate the model. The new model was shown to be valid over a wide range of conditions that ranged between -1≤R≤0.8 and 0.02≤PH2≤103 MPa for pressure vessel steels.

12.
Materials (Basel) ; 17(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673211

RESUMO

Medium-carbon, high-strength steels are widely used in the field of hydrogen energy because of their good mechanical properties, and they can be readily tailored by heat treatment processes such as the normalizing-tempering (N&T) and quenching-tempering (Q&T) methods. The hydrogen embrittlement (HE) susceptibility of a medium-carbon, high-strength steel was investigated utilizing microstructural characterization with scanning electron microscopy (SEM), the electron backscatter diffraction (EBSD) technique, and transmission electron microscopy (TEM). A study was also conducted on the steel's hydrogen transport behavior as affected by the N&T and Q&T treatments. The steel contained more hydrogen traps, such as dislocations, grain boundaries, lath boundaries, and carbide interfaces, after the Q&T process, which was associated with a lower HE sensitivity when comparing the two treatments. In comparison, the N&T process produced larger-size and lesser-density carbides distributed along the grain boundaries, and this resulted in a relatively higher HE susceptibility, as revealed by the slow-strain-rate tensile (SSRT) tests of the hydrogen-charged steels and by the fractographic study of the fracture surface.

13.
Microscopy (Oxf) ; 73(2): 196-207, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38102762

RESUMO

Hydrogen is attracting attention as an energy carrier for realizing a low-carbon society, because it can directly convert the energy obtained from chemical reactions into electrical energy without carbon dioxide emissions. This paper presents in situ transmission electron microscopy (TEM) observations related to hydrogen storage in metal and metal hydrides, hydrogen embrittlement of metallic materials used for storing and transporting hydrogen in containers and pipes, and fuel cells and water electrolysis using metal catalysts and oxides as electrode materials. All of these processes are important for practical applications of hydrogen. Numerous in situ TEM studies have revealed the microscopic structural changes when hydrogen reacts with the materials, when hydrogen is solidly dissolved in the materials and during the operation of the material. This review is expected to facilitate further development of TEM operando observations of hydrogen-related materials.

14.
Materials (Basel) ; 17(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893961

RESUMO

This study compares the hydrogen embrittlement susceptibility of a Fe-30Mn-8Al-1.2C austenitic low-density steel aged at 600 °C for 0 (RX), 1 min (A1) and 60 min (A60), each exhibiting varying sizes and distributions of nano-sized κ-carbides. Slow strain rate tests were conducted to assess hydrogen embrittlement susceptibility, while thermal desorption analysis was applied to investigate hydrogen trapping behaviors. Fracture surface analysis was employed to discuss the associated failure mechanisms. The results suggest that nano-sized κ-carbides with sizes ranging from 2-4 nm play a crucial role in mitigating hydrogen embrittlement, contrasting with the exacerbating effect of coarse grain boundary κ-carbides. This highlights the significance of controlling the sizes and morphology of precipitates in designing hydrogen-resistant materials.

15.
Materials (Basel) ; 17(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39063773

RESUMO

X80 steel plays a pivotal role in the development of oil and gas pipelines; however, its welded joints, particularly the heat-affected zone (HAZ), are susceptible to stress corrosion cracking (SCC) due to their complex microstructures. This study investigates the SCC initiation mechanisms of X80 steel welded joints under practical pipeline conditions with varying levels of cathodic protection. The SCC behaviors were analyzed through electrochemical measurements, hydrogen permeation tests, and interrupted slow strain rate tensile tests (SSRTs) conducted in a near-neutral pH environment under different potential conditions (OCP, -1.1 VSCE, -1.2 VSCE). These behaviors were influenced by microstructure type, grain size, martensite/austenite (M/A) constituents, and dislocation density. The sub-zones of the weld exhibited differing SCC resistance, with the fine-grain (FG) HAZ, base metal (zone), welded metal (WM) zone, and coarse-grain (CG) HAZ in descending order. In particular, the presence of coarse grains, low dislocation density, and extensive M/A islands collectively increased corrosion susceptibility and SCC sensitivity in the CGHAZ compared to other sub-zones. The SCC initiation mechanisms of the sub-zones within the X80-steel welded joint were primarily anodic dissolution (AD) under open-circuit potential (OCP) condition, shifting to either hydrogen-enhanced local plasticity (HELP) or hydrogen embrittlement (HE) mechanisms at -1.1 VSCE or -1.2 VSCE, respectively.

16.
Materials (Basel) ; 17(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473572

RESUMO

The phenomenon of hydrogen embrittlement (HE) in metals and alloys, which determines the performance of components in hydrogen environments, has recently been drawing considerable attention. This study explores the interplay between strain rates and solute hydrogen in inducing HE of Ti6Al4V alloy. For the hydrogen-charged sample, as the strain rate was decreased from 10-2/s to 10-5/s, the ductility decreased significantly, but the HE effect on mechanical strength was negligible. The low strain rate (LSR) conditions facilitated the development of high-angle grain boundaries, providing more pathways for hydrogen diffusion and accumulation. The presence of solute hydrogen intensified the formation of nano/micro-voids and intergranular cracking tendencies, with micro-crack occurrences observed exclusively in the LSR conditions. These factors expanded the brittle hydrogen-damaged region more deeply into the interior of the lattice. This, in turn, accelerated both crack initiation and intergranular crack propagation, finally resulting in a considerable HE effect and a reduction in ductility at the LSR. The current study underscores the influence of strain rate on HE, enhancing the predictability of longevity and improving the reliability of components operating in hydrogen-rich environments under various loading conditions.

17.
Materials (Basel) ; 17(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473582

RESUMO

Cathodic protection is widely used to protect structural steel from corrosion in marine environments. However, an inappropriate cathodic potential may lead to hydrogen embrittlement (HE). Therefore, this study investigates the relationship between cathodic protection potential, structure and composition of calcareous deposits, and hydrogen embrittlement susceptibility of Q460 steel. The slow strain rate test results and fracture analysis reveal that Q460 steel had the smallest HE susceptibility when covered with the calcareous deposits formed under -1.1 VSCE. The deposits have a relatively thin calcium-rich inner layer and a condensed magnesium-rich outer layer, which can significantly inhibit hydrogen entry. A sustained deposition reaction during slow strain rate testing (SSRT) in artificial seawater can also decrease the HE susceptibility of Q460 steel.

18.
Materials (Basel) ; 17(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38473649

RESUMO

Ti6Al4V (Ti64) is a versatile material, finding applications in a wide range of industries due to its unique properties. However, hydrogen embrittlement (HE) poses a challenge in hydrogen-rich environments, leading to a notable reduction in strength and ductility. This study investigates the complex interplay of solute hydrogen (SH) and hydride phase (HP) formation in Ti64 by employing two different current densities during the charging process. Nanoindentation measurements reveal distinct micro-mechanical behavior in base metal, SH, and HP, providing crucial insights into HE mechanisms affecting macro-mechanical behavior. The fractography and microstructural analysis elucidate the role of SH and HP in hydrogen-assisted cracking behaviors. The presence of SH heightens intergranular cracking tendencies. In contrast, the increased volume of HP provides sites for crack initiation and propagation, resulting in a two-layer brittle fracture pattern. The current study contributes to a comprehensive understanding of HE in Ti6Al4V, essential for developing hydrogen-resistant materials.

19.
Materials (Basel) ; 17(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612062

RESUMO

The effect of hydrogen content on the deformation and fracture behavior of 27Cr-4Mo-2Ni super ferritic stainless steel (SFSS) was investigated in this study. It was shown that the plasticity and yield strength of SFSS were very susceptible to hydrogen content. The introduction of hydrogen led to a significant decrease in elongation and a concurrent increase in yield strength. Nevertheless, a critical threshold was identified in the elongation reduction, after which the elongation remained approximately constant even with more hydrogen introduced, while the yield strength exhibited a monotonic increase with increasing hydrogen content within the experimental range, attributed to the pinning effect of the hydrogen Cottrell atmosphere on dislocations. Furthermore, the hydrogen-charged SFSS shows an apparent drop in flow stress after upper yielding and a reduced work hardening rate during the subsequent plastic deformation. The more hydrogen is charged, the more the flow stress drops, and the lower the work hardening rate becomes.

20.
Materials (Basel) ; 17(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39274793

RESUMO

P91 steel (X10CrMoVNb9-1) is widely used in the energy industry. It is characterized by good mechanical properties, creep resistance, corrosion resistance, impact toughness, and resistance to thermal fatigue. Due to their operating conditions and martensitic structure, components made from P91 steel are often subject to damage related to the presence of hydrogen. This article compares the results of the mechanical properties evaluation for P91 steel in an aggressive solution charged under load and without load. Based on the research, it was found that the hydrogen environment significantly affects the mechanical properties of P91 steel, reducing strength and yield strength, and decreasing ductility. It was revealed that in samples tested after 72 h without preloading, the tensile strength decreased by 1.5%, and the elongation decreased by about 29% for the sample, compared to the delivered condition sample. Under loaded conditions, the difference in tensile strength increased by approximately 8%, while elongation increased by nearly 50.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA