Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Syst Biol ; 73(2): 392-418, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38613229

RESUMO

Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.


Assuntos
Alelos , Betula , Genoma de Planta , Filogenia , Poliploidia , Betula/genética , Betula/classificação , Introgressão Genética , Hibridização Genética
2.
Mol Ecol ; 32(7): 1726-1738, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635976

RESUMO

Long-distance dispersal (LDD) of seeds plays an essential role in the migration of plants to a new habitat and maintaining gene flow among geographically isolated populations. Pantropical plants with sea-drifted seeds, which have one of the largest distributions in all flowering plants, have achieved their global distribution by LDD. However, the spatiotemporal processes to achieve the wide distribution and the role of LDD in it have not yet been elucidated. In this study, we conducted phylogenomic analyses on the plastome, genome-wide nuclear SNP, and low-copy gene data of Hibiscus tiliaceus and its relatives. The dated phylogeny suggested that global expansion started approximately 4 million years ago (Ma), and species diversification occurred 1 Ma. Plastome phylogeny confirmed the nonmonophyly of the haplotypes in the two widely distributed coastal species, H. tiliaceus and H. pernambucensis. In contrast, genome-wide nuclear SNP phylogenies demonstrated clear genetic segregation among species and/or geographical regions. Ancestral polymorphisms in chloroplast genomes shared among widely distributed species have remained below the range of rapid expansion and speciation of marginal populations. This study demonstrated that the LDD of sea-drifted seeds contributed to the rapid expansion and pantropical distribution of sea hibiscus in the last few million years, and adaptation to local environment or isolation by regional effect after LDD promoted speciation, suppressing gene flow.


Assuntos
Hibiscus , Dispersão de Sementes , Hibiscus/genética , Dispersão de Sementes/genética , Filogenia , Polimorfismo Genético , Sementes/genética
3.
J Evol Biol ; 36(10): 1484-1493, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37737547

RESUMO

Because speciation might have been promoted by ancient introgression from an extinct lineage, it is important to detect the existence of 'ghost introgression' in focal taxa and examine its contribution to their diversification. In this study, we examined possible ghost introgression and its contributions to the diversification of ricefishes of the genus Adrianichthys in Lake Poso, an ancient lake on Sulawesi Island, in which some extinctions are known to have occurred. Population-genomic analysis revealed that two extant Adrianichthys species, A. oophorus and A. poptae are reproductively isolated from each other. Comparisons of demographic models demonstrated that introgression from a ghost population, which diverged from the common ancestor of A. oophorus and A. poptae, is essential for reconstructing the demographic history of Adrianichthys. The best model estimated that the divergence of the ghost population greatly predated the divergence between A. oophorus and A. poptae, and that the ghost population secondarily contacted the two extant species within Lake Poso more recently. Genome scans and simulations detected a greatly divergent locus, which cannot be explained without ghost introgression. This locus was also completely segregated between A. oophorus and A. poptae. These findings suggest that variants that came from a ghost population have contributed to the divergence between A. oophorus and A. poptae, but the large time-lag between their divergence and ghost introgression indicates that the contribution of introgression may be restricted.


Assuntos
Lagos , Filogenia
4.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216323

RESUMO

Allotetraploid durum wheat is the second most widely cultivated wheat, following hexaploid bread wheat, and is one of the major protein and calorie sources of the human diet. However, durum wheat is encountered with a severe grain yield bottleneck due to the erosion of genetic diversity stemming from long-term domestication and especially modern breeding programs. The improvement of yield and grain quality of durum wheat is crucial when confronted with the increasing global population, changing climate environments, and the non-ignorable increasing incidence of wheat-related disorders. This review summarized the domestication and evolution process and discussed the durum wheat re-evolution attempts performed by global researchers using diploid einkorn, tetraploid emmer wheat, hexaploid wheat (particularly the D-subgenome), etc. In addition, the re-evolution of durum wheat would be promoted by the genetic enrichment process, which could diversify allelic combinations through enhancing chromosome recombination (pentaploid hybridization or pairing of homologous chromosomes gene Ph mutant line induced homoeologous recombination) and environmental adaptability via alien introgressive genes (wide cross or distant hybridization followed by embryo rescue), and modifying target genes or traits by molecular approaches, such as CRISPR/Cas9 or RNA interference (RNAi). A brief discussion of the future perspectives for exploring germplasm for the modern improvement and re-evolution of durum wheat is included.


Assuntos
Grão Comestível/genética , Triticum/genética , Alelos , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Diploide , Domesticação , Genes de Plantas/genética , Humanos , Fenótipo , Locos de Características Quantitativas/genética , Tetraploidia
5.
Mol Phylogenet Evol ; 161: 107165, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33798670

RESUMO

Introgressive hybridization can be a powerful force impacting patterns of evolution at multiple taxonomic levels. We aimed to understand how introgression has affected speciation and diversification within a species complex of jumping spiders. The Habronattus americanus subgroup is a recently radiating group of jumping spiders, with species now in contact after hypothesized periods of isolation during glaciation cycles of the Pleistocene. Effects of introgression on genomes and morphology were investigated using phylogenomic and clustering methods using RADseq, ultraconserved elements (UCEs), and morphological data. We characterized 14 unique species/morphs using non-metric multidimensional scaling of morphological data, a majority of which were not recovered as monophyletic in our phylogenomic analyses. Morphological clusters and genetic lineages are highly incongruent, such that geographic region was a greater predictor of phylogenetic relatedness and genomic similarity than species or morph identity. STRUCTURE analyses support this pattern, revealing clusters corresponding to larger geographic regions. A history of rapid radiation in combination with frequent introgression seems to have mostly homogenized the genomes of species in this system, while selective forces maintain distinct male morphologies. GEMMA analyses support this idea by identifying SNPs correlated with distinct male morphologies. Overall, we have uncovered a system at odds with a typical bifurcating evolutionary model, instead supporting one where closely related species evolve together connected through multiple introgression events, creating a reticulate evolutionary history.


Assuntos
Evolução Molecular , Introgressão Genética , Filogenia , Aranhas/classificação , Aranhas/genética , Animais , Genoma , Masculino
6.
J Evol Biol ; 34(11): 1767-1780, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34532915

RESUMO

An increasing volume of empirical studies demonstrated that hybridization between distant lineages may have promoted speciation in various taxa. However, the timing, extent and direction of introgressive hybridization remain unknown in many cases. Here, we report a possible case in which repeated hybridization promoted divergence of Oryzias ricefishes (Adrianichthyidae) on Sulawesi, an island of Wallacea. Four Oryzias species are endemic to the Malili Lake system in central Sulawesi, which is composed of five tectonic lakes; of these, one lake is inhabited by two species. Morphological and population genomic analyses of genome-wide single-nucleotide polymorphisms revealed that these two sympatric species are phylogenetically sister to but substantially reproductively isolated from each other. Analyses of admixture and comparison of demographic models revealed that the two sympatric species experienced several substantial introgressions from outgroup populations that probably occurred soon after they had secondary contact with each other in the lake. However, the ratio of migrants from the outgroups was estimated to be different between the two species, which is consistent with the hypothesis that these introgressions aided their divergence or prevented them from forming a hybrid swarm. Repeated lake fragmentations and fusions may have promoted diversification of this freshwater fish species complex that is endemic to this ancient lake system.


Assuntos
Hibridização Genética , Lagos , Animais , Peixes , Especiação Genética , Filogenia , Simpatria
7.
Mol Ecol ; 29(24): 4970-4984, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058329

RESUMO

It has long been of interest to identify the phenotypic traits that mediate reproductive isolation between related species, and more recently, the genes that underpin them. Much work has focused on identifying genes associated with animal colour, with the candidate gene CYP2J19 identified in laboratory studies as the ketolase converting yellow dietary carotenoids to red ketocarotenoids in birds with red pigments. However, evidence that CYP2J19 explains variation between red and yellow feather coloration in wild populations of birds is lacking. Hybrid zones provide the opportunity to identify genes associated with specific traits. Here we investigate genomic regions associated with colour in red-fronted and yellow-fronted tinkerbirds across a hybrid zone in southern Africa. We sampled 85 individuals, measuring spectral reflectance of forecrown feathers and scoring colours from photographs, while testing for carotenoid presence with Raman spectroscopy. We performed a genome-wide association study to identify associations with carotenoid-based coloration, using double-digest RAD sequencing aligned to a short-read whole genome of a Pogoniulus tinkerbird. Admixture mapping using 104,933 single nucleotide polymorphisms (SNPs) identified a region of chromosome 8 that includes CYP2J19 as the only locus with more than two SNPs significantly associated with both crown hue and crown score, while Raman spectra provided evidence of ketocarotenoids in red feathers. Asymmetric backcrossing in the hybrid zone suggests that yellow-fronted females mate more often with red-fronted males than vice versa. Female red-fronted tinkerbirds mating assortatively with red-crowned males is consistent with the hypothesis that converted carotenoids are an honest signal of quality.


Assuntos
Carotenoides , Estudo de Associação Genômica Ampla , África Austral , Animais , Aves/genética , Cor , Feminino , Masculino , Pigmentação/genética
8.
Mol Phylogenet Evol ; 150: 106886, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32534185

RESUMO

Closely related taxa often exhibit mitonuclear discordance attributed to introgression of mitochondrial DNA (mtDNA), yet few studies have considered the underlying causes of mtDNA introgression. Here we test for demographic versus adaptive processes as explanations for mtDNA introgression in three subspecies of the intermediate horseshoe bat (Rhinolophus affinis). We generated sequences of 1692 nuclear genes and 13 mitochondrial protein-coding genes for 48 individuals. Phylogenetic reconstructions based on 320 exon sequences and 2217 single nucleotide polymorphisms (SNPs) both revealed conflicts between the species tree and mtDNA tree. These results, together with geographic patterns of mitonuclear discordance, and shared identical or near-identical mtDNA sequences, suggest extensive introgression of mtDNA between the two parapatric mainland subspecies. Under demographic hypotheses, we would also expect to uncover traces of ncDNA introgression, however, population structure and gene flow analyses revealed little nuclear admixture. Furthermore, we found inconsistent estimates of the timing of population expansion and that of the most recent common ancestor for the clade containing introgressed haplotypes. Without a clear demographic explanation, we also examined whether introgression likely arises from adaptation. We found that five mtDNA genes contained fixed amino acid differences between introgressed and non-introgressed individuals, including putative positive selection found in one codon, although this did not show introgression. While our evidence for rejecting demographic hypotheses is arguably stronger than that for rejecting adaptation, we find no definitive support for either explanation. Future efforts will focus on larger-scale resequencing to decipher the underlying causes of discordant mitonuclear introgression in this system.


Assuntos
Quirópteros/classificação , Mitocôndrias/genética , Animais , Núcleo Celular/genética , Quirópteros/genética , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Fluxo Gênico , Genoma , Fases de Leitura Aberta/genética , Filogenia , Polimorfismo de Nucleotídeo Único
9.
Mol Phylogenet Evol ; 142: 106658, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639523

RESUMO

The evolutionary history of the genus Corylus, a tertiary disjunct lineage consisting of approximately 15-20 taxa with New and Old World distribution, has not been fully studied using molecular tools. In this research, we reconstructed comprehensive phylogenies of this genus using multiple datasets (genome-wide SNPs; complete chloroplast genomes; and nuclear ribosomal ITS sequences) based on detailed sampling of 17 Corylus species currently recognized. Divergence times were estimated using a fossil calibrated relaxed clock model, and ancestral area reconstruction were inferred using Bayesian binary MCMC (BBM) method and the dispersal-extinction-cladogenesis (DEC) model. Phylogenetic incongruences were detected from datasets, with nuclear SNP and ITS phylogenies supporting four major clades that correspond well with morphological traits, while chloroplast phylogeny revealed geographic partitioning. Recombination and introgressive hybridization played important roles in Corylus diversification. Molecular dating and biogeographical analyses unambiguously revealed that Corylus originated in Southwest China during the middle Eocene. The westward migration of Phyllochlamys (Clade C) and Colurnae (Clade D) and the uplift of Qinghai-Tibet Plateau drove the formation of European taxa, whereas the transoccanic migration crossing the Bering Land Bridge of Siphonochlamys (Clade B) and Phyllochlamys (Clade C) led to the occurrence of North American taxa. The topographic heterogeneity and climatic oscillations from Miocene to Pleistocene made East Asia the diversity center for Corylus. This study offers important insights into the phylogenetic relationships and biogeography history of the genus Corylus.


Assuntos
Corylus/classificação , Teorema de Bayes , Corylus/genética , DNA Espaçador Ribossômico , Evolução Molecular , Ásia Oriental , Fósseis , Introgressão Genética , Especiação Genética , Genoma de Cloroplastos , Filogenia , Filogeografia , Recombinação Genética
10.
Anim Genet ; 51(4): 611-616, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32378756

RESUMO

The Nile tilapia (Oreochromis niloticus) is a prominent farmed fish in aquaculture worldwide. Crossbreeding has recently been carried out between the Red-Stirling and the wt Chitralada strains of Nile tilapia, producing a heterotic hybrid (7/8 Chitralada and 1/8 Red-Stirling) that combines the superior growth performance of the Chitralada with the reddish coloration of the Red-Stirling strain. While classical selective breeding and crossbreeding strategies are well known, the molecular mechanisms underlying the phenotypic expression of economically advantageous traits in tilapia remain largely unknown. Molecular investigations have shown that variable expression of growth hormone (gh), insulin-like growth factors (igf1 and 2) and somatolactin (smtla) - components of the growth hormone/insulin-like growth factor (GH/IGF) axis - and myostatin (mstn) genes can affect traits of economic relevance in farmed animals. The aim of this study was to assess and compare the gene expression signature among Chitralada, Red-Stirling and their backcross hybrid in order to gain insights into the effects of introgressive breeding in modulation of the GH/IGF axis. Gene expression analyses in distinct tissues showed that most genes of the GH/IGF axis were up-regulated and mstn was down-regulated in backcross animals in comparison with Red-Stirling and Chitralada animals. These gene expression profiles revealed that backcross animals displayed a distinctive expression signature, which attests to the effectiveness of the introgressive breeding technique. Our findings also suggest that the GH/IGF axis and mstn genes might be candidate markers for fish performance and prove useful within genetic improvement programs aimed at the production of superior-quality tilapia strains using introgressive breeding.


Assuntos
Ciclídeos/genética , Introgressão Genética , Transcriptoma , Animais , Cruzamento , Ciclídeos/crescimento & desenvolvimento , Hibridização Genética
11.
Parasitol Res ; 119(7): 2189-2205, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468189

RESUMO

Schistosomiasis remains a parasitic infection which poses serious public health consequences around the world, particularly on the African continent where cases of introgression/hybridization between human and cattle schistosomiasis are being discovered on a more frequent basis in humans, specifically between Schistosoma haematobium and S. bovis. The aim of this paper is to analyze the occurrence of S. bovis in cattle and its relationship with S. haematobium in an area where cattle and humans share the same site in Benin (West Africa). We used the chronobiology of cercarial emergence as an ecological parameter and both molecular biology (COI mtDNA and ITS rDNA) of the larvae and morphology of the eggs as taxonomic parameters. The results showed a chronobiological polymorphism in the cercarial emergence rhythm. They showed for the first time the presence of S. bovis in Benin, the presence of introgressive hybridization between S. bovis and S. haematobium in domestic cattle, and the presence of atypical chronobiological patterns in schistosomes from cattle, with typical S. haematobium shedding pattern, double-peak patterns, and nocturnal patterns. Our results showed that the chronobiological life-history trait is useful for the detection of new hosts and also may reveal the possible presence of introgressive hybridization in schistosomes. Our results, for the first time, place cattle as reservoir host for S. haematobium and S. bovis x S. haematobium. The consequences of these results on the epidemiology of the disease, the transmission to humans, and the control of the disease are very important.


Assuntos
Bovinos/parasitologia , Schistosoma/isolamento & purificação , Esquistossomose/veterinária , Animais , Benin/epidemiologia , Cercárias/genética , Cercárias/crescimento & desenvolvimento , Cercárias/isolamento & purificação , Ritmo Circadiano , DNA Mitocondrial/genética , DNA Ribossômico/genética , Introgressão Genética , Humanos , Schistosoma/genética , Schistosoma/crescimento & desenvolvimento , Schistosoma haematobium/genética , Schistosoma haematobium/crescimento & desenvolvimento , Schistosoma haematobium/isolamento & purificação , Esquistossomose/parasitologia
12.
BMC Evol Biol ; 19(1): 153, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340762

RESUMO

BACKGROUND: Evolutionary patterns of scleractinian (stony) corals are difficult to infer given the existence of few diagnostic characters and pervasive phenotypic plasticity. A previous study of Hawaiian Montipora (Scleractinia: Acroporidae) based on five partial mitochondrial and two nuclear genes revealed the existence of a species complex, grouping one of the rarest known species (M. dilatata, which is listed as Endangered by the International Union for Conservation of Nature - IUCN) with widespread corals of very different colony growth forms (M. flabellata and M. cf. turgescens). These previous results could result from a lack of resolution due to a limited number of markers, compositional heterogeneity or reflect biological processes such as incomplete lineage sorting (ILS) or introgression. RESULTS: All 13 mitochondrial protein-coding genes from 55 scleractinians (14 lineages from this study) were used to evaluate if a recent origin of the M. dilatata species complex or rate heterogeneity could be compromising phylogenetic inference. Rate heterogeneity detected in the mitochondrial data set seems to have no significant impacts on the phylogenies but clearly affects age estimates. Dating analyses show different estimations for the speciation of M. dilatata species complex depending on whether taking compositional heterogeneity into account (0.8 [0.05-2.6] Myr) or assuming rate homogeneity (0.4 [0.14-0.75] Myr). Genomic data also provided evidence of introgression among all analysed samples of the complex. RADseq data indicated that M. capitata colour morphs may have a genetic basis. CONCLUSIONS: Despite the volume of data (over 60,000 SNPs), phylogenetic relationships within the M. dilatata species complex remain unresolved most likely due to a recent origin and ongoing introgression. Species delimitation with genomic data is not concordant with the current taxonomy, which does not reflect the true diversity of this group. Nominal species within the complex are either undergoing a speciation process or represent ecomorphs exhibiting phenotypic polymorphisms.


Assuntos
Antozoários/genética , Genoma , Animais , Teorema de Bayes , Calibragem , Genoma Mitocondrial , Havaí , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Tempo
13.
Mol Phylogenet Evol ; 135: 210-221, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30831270

RESUMO

A comprehensive phylogeny of the genus Salaria based on mitochondrial and nuclear markers grouped the extant species of the genus in well-characterised marine and freshwater clades, thus rejecting the hypothesis of a polytypic origin of the freshwater Salaria populations and supporting the occurrence of a single invasion event of the inland waters by the genus. Based on both mitochondrial and nuclear DNA datasets, the Salaria species of the freshwater clade proved to be vicariant taxa originating from a common ancestor which could possibly spread throughout the circum-Mediterranean inland waters during the late Miocene Messinian salinity crisis, then experiencing a process of allopatric differentiation after the re-flooding of the Mediterranean basin. Within the marine clade, although the nuDNA datasets showed the existence of well-supported subclades in accordance to the morphological identification of the studied specimens, one of the two subclades obtained in the phylogenetic tree based on the mtDNA dataset included both S. basilisca and S. pavo specimens, thus failing to find the two species as reciprocally monophyletic. Such a mito-nuclear discordance is here ascribed to multiple mtDNA unidirectional introgression events from S. basilisca to S. pavo, and the molecular diversity pattern of the marine Salaria species is here ascribed to a Pleistocene speciation event nowadays partly concealed by the occurrence of introgressive hybridization phenomena between the two taxa. Our results urge for prudence when implementing DNA barcoding approaches since, in the presence of mito-nuclear discordance phenomena, single-marker mtDNA-only analyses might lead to significant misidentifications.


Assuntos
Organismos Aquáticos/genética , DNA Mitocondrial/genética , Hibridização Genética , Perciformes/genética , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , Evolução Molecular , Geografia , Haplótipos/genética , Mitocôndrias/genética , Especificidade da Espécie
14.
Mol Phylogenet Evol ; 135: 1-11, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30802596

RESUMO

Phylogenetic analyses using diverse datasets can yield conflicting inference of evolutionary history. Phylogenetic conflicts observed in both animal and plant systems have often been explained by two competing (but not mutually exclusive) hypotheses, i.e., hybridization vs. incomplete lineage sorting (ILS). The likelihood of either process contributing to phylogenetic conflict in a given group is context-dependent, involving attributes of life history, distribution, and phylogeny, among others. Here we explore phylogenetic conflict in Stewartia s.l., a genus with ca. 20 species of trees and shrubs from the tea family (Theaceae) disjunctly distributed between eastern Asia (EAS) and eastern North America (ENA). We use both restriction-site associated DNA sequencing (RAD-seq) and complete plastome sequence data to reconstruct the phylogeny of the group using concatenation and coalescence approaches. Our results indicate strong conflicts between the topologies reconstructed using nuclear and plastid data. Four-taxon D-statistic (ABBA-BABA) tests detected prevailing signals of introgression. Bayesian Analysis of Macro-evolutionary Mixtures (BAMM) inferred that species diversification occurred in the middle to late Miocene. Ancestral range reconstructions indicated co-distribution of ancestral species (represented by internal nodes) for both the Hartia clade (in southern China) and the EAS Stewartia s.s. clade (Japan Archipelago and the Yangtze Valley of China). The latter clade experienced multiple events of dispersal and vicariance during its diversification history. Ancient introgressive hybridization following species diversification in the mid- to late-Miocene likely caused diverging histories in the nuclear and plastid genomes, leading to phylogenetic conflict in Stewartia s.l. Our study indicates that species diversification driven by both the intensification of the East Asian summer monsoon since the late Miocene and reduced risks of extinction due to frequent dispersal possibly via East China Sea Land Bridge impacted the anomalous species richness between EAS and ENA. Our study highlights the importance of using data from different genomes while reconstructing deep and shallow phylogenies of organisms.


Assuntos
Variação Genética , Filogenia , Theaceae/genética , Animais , Teorema de Bayes , Calibragem , Bases de Dados Genéticas , Hibridização Genética , Filogeografia , Plastídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Especificidade da Espécie
15.
Ecol Appl ; 29(3): e01857, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30680837

RESUMO

Worldwide, stocking of fish represents a valuable tool for conservation and maintenance of species exploited by recreational fishing. Releases of hatchery-reared fish are more and more recognized to have numerous demographic, ecological, and genetic impacts on wild populations. However, consequences on intraspecific trophic relationships have rarely been investigated. In this study, we assessed the impacts of supplementation stocking and resulting introgressive hybridization on the trophic niches occupied by stocked, local, and hybrid lake trout (Salvelinus namaycush) within populations of piscivorous and planktivorous ecotypes stocked from a wild piscivorous source population. We compared trophic niches using stable isotope analysis (δ13 C and δ15 N) and trophic position among the three genetic origins. Putative genetic effects were tested with phenotype-genotype association of "life history" ecological traits (body size, growth rate, condition index, and trophic niche) and genotypes (RADseq SNP markers) using redundant discriminant analysis (RDA). Results showed that sympatry resulting from the stocking of contrasting ecotypes is a risk factor for niche partitioning. Planktivorous populations are more susceptible to niche partitioning, by competitive exclusion of the local fish from a littoral niche to an alternative pelagic/profundal niche. Observed niche partitioning is probably a manifestation of competitive interactions between ecotypes. Our results emphasize that ecotypic variation should be considered for more efficient management and conservation practices and in order to mitigate negative impact of supplementation stocking.


Assuntos
Ecótipo , Interação Gene-Ambiente , Animais , Ecologia , Genótipo , Truta
16.
Mol Biol Evol ; 34(4): 969-979, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087768

RESUMO

The origin of domesticated Asian rice (Oryza sativa) has been a contentious topic, with conflicting evidence for either single or multiple domestication of this key crop species. We examined the evolutionary history of domesticated rice by analyzing de novo assembled genomes from domesticated rice and its wild progenitors. Our results indicate multiple origins, where each domesticated rice subpopulation (japonica, indica, and aus) arose separately from progenitor O. rufipogon and/or O. nivara. Coalescence-based modeling of demographic parameters estimate that the first domesticated rice population to split off from O. rufipogon was O. sativa ssp. japonica, occurring at ∼13.1-24.1 ka, which is an order of magnitude older then the earliest archeological date of domestication. This date is consistent, however, with the expansion of O. rufipogon populations after the Last Glacial Maximum ∼18 ka and archeological evidence for early wild rice management in China. We also show that there is significant gene flow from japonica to both indica (∼17%) and aus (∼15%), which led to the transfer of domestication alleles from early-domesticated japonica to proto-indica and proto-aus populations. Our results provide support for a model in which different rice subspecies had separate origins, but that de novo domestication occurred only once, in O. sativa ssp. japonica, and introgressive hybridization from early japonica to proto-indica and proto-aus led to domesticated indica and aus rice.


Assuntos
Adaptação Biológica/genética , Fluxo Gênico/genética , Oryza/genética , Alelos , Evolução Biológica , Produtos Agrícolas/genética , Domesticação , Evolução Molecular , Genes de Plantas/genética , Especiação Genética , Variação Genética/genética , Oryza/metabolismo , Filogenia , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos
17.
Mol Ecol ; 27(23): 4653-4656, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30562841

RESUMO

Is interspecific hybridization an ordinary part of species biology? And if so, how evolutionarily important is it? These questions have been discussed in the botanical literature, in one form or another, at least since J.P. Lotsy early in the last century. He coined the term syngameon, now defined as "a group of otherwise distinct species interconnected by limited gene exchange, i.e. the most inclusive interbreeding evolutionary unit" (Suarez-Gonzalez, Lexer, & Cronk, Biology Letters, 14, 20170688, ). North American poplars (Populus, Salicaceae) form one such syngameon. In this issue of Molecular Ecology, a new study (Chhatre, Evans, DiFazio, & Keller, Molecular Ecology, 27, ) uses three species from the North American poplar syngameon to tackle the twin issues of (a) the extent of gene exchange and (b) the significance of this gene exchange to the biology of these trees. They demonstrate that a hybrid zone exists where the ranges of Populus angustifolia and Populus balsamifera overlap in the Rocky Mountains, and postulate that this hybridization may facilitate population survival at the range edges. Indeed, the authors show that a remarkable number of loci are introgressing under selection. Very remarkably, they detect additional hybridity (making a trihybrid zone) with Populus trichocarpa (a species that does not occur in the area). Intriguingly, there is some genomic evidence of ancient introgression events. This suggests a model of episodic species divergence and hybridization, in which the syngameon is dynamic and behaving as a supraspecific metapopulation over geological time.


Assuntos
Populus/genética , Evolução Biológica , Genética Populacional , Hibridização Genética , Hibridização de Ácido Nucleico
18.
Mol Phylogenet Evol ; 129: 96-105, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30121341

RESUMO

The bushbuck is the most widespread bovid species in Africa. Previous mitochondrial studies have revealed a polyphyletic pattern suggesting the possible existence of two distinct species. To assess this issue, we have sequenced 16 nuclear genes and one mitochondrial fragment (cytochrome b gene + control region) for most species of the tribe Tragelaphini, including seven bushbuck individuals belonging to the two divergent mtDNA haplogroups, Scriptus and Sylvaticus. Our phylogenetic analyses show that the Scriptus lineage is a sister-group of Sylvaticus in the nuclear tree, whereas it is related to Tragelaphus angasii in the mitochondrial tree. This mito-nuclear discordance indicates that the mitochondrial genome of Scriptus was acquired by introgression after one or several past events of hybridization between bushbuck and an extinct species closely related to T. angasii. The division into two bushbuck species is supported by the analyses of nuclear markers and by the karyotype here described for T. scriptus (2n = 57 M/58F), which is strikingly distinct from the one previously found for T. sylvaticus (2n = 33 M/34F). Molecular dating estimates suggest that the two species separated during the Early Pleistocene after an event of interspecific hybridization, which may have mediated massive chromosomal rearrangements in the common ancestor of T. scriptus.


Assuntos
Antílopes/genética , Bovinos/classificação , Cromossomos de Mamíferos/genética , Loci Gênicos , Especiação Genética , Hibridização Genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , Citocromos b/genética , DNA Mitocondrial/genética , Feminino , Haplótipos/genética , Cariótipo , Masculino , Especificidade da Espécie , Fatores de Tempo
19.
Mol Phylogenet Evol ; 125: 14-28, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29551520

RESUMO

The origin of conifer genera, the main components of mountain temperate and boreal forests, was deemed to arise in the Mesozoic, although paleontological records and molecular data point to a recent diversification, presumably related to Neogene cooling. The geographical area(s) where the modern lines of conifers emerged remains uncertain, as is the sequence of events leading to their present distribution. To gain further insights into the biogeography of firs (Abies), we conducted phylogenetic analyses of chloroplast, mitochondrial and nuclear markers. The species tree, generated from ten single-copy nuclear genes, yielded probably the best phylogenetic hypothesis available for Abies. The tree obtained from five regions of chloroplast DNA largely corresponded to the nuclear species tree. Ancestral area reconstructions based on fossil calibrated chloroplast DNA and nuclear DNA trees pointed to repeated intercontinental migrations. The mitochondrial DNA haplotype tree, however, disagreed with nuclear and chloroplast DNA trees. It consisted of two clusters: one included mainly American haplotypes, while the other was composed of only Eurasian haplotypes. Presumably, this conflict is due to inter-continental migrations and introgressive hybridization, accompanied by the capture of the mitotypes from aboriginal species by the invading firs. Given that several species inhabiting Northeastern Asia carry American mitotypes and mutations typical for the American cluster, whereas no Asian mitotypes were detected within the American species, we hypothesize that Abies migrated from America to Eurasia, but not in the opposite direction. The direction and age of intercontinental migrations in firs are congruent with other conifers, such as spruces and pines of subsection Strobus, suggesting that these events had the same cause.


Assuntos
Abies/genética , Genoma de Planta , Abies/classificação , América , Ásia , Teorema de Bayes , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Ecótipo , Europa (Continente) , Geografia , Filogenia , Fatores de Tempo
20.
Microb Ecol ; 75(3): 799-810, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28956100

RESUMO

Understanding the role of microbiota as reproductive barriers or sources of adaptive novelty in the fundamental biological phenomenon of speciation is an exciting new challenge necessitating exploration of microbiota variation in wild interbreeding species. We focused on two interbreeding cyprinid species, Chondrostoma nasus and Parachondrostoma toxostoma, which have geographic distributions characterized by a mosaic of hybrid zones. We described microbiota diversity and composition in the three main teleost mucosal tissues, the skin, gills and gut, in the parental parapatric populations. We found that tissue type was the principal determinant of bacterial community composition. In particular, there was strong microbiota differentiation between external and internal tissues, with secondary discrimination between the two species. These findings suggest that specific environmental and genetic filters associated with each species have shaped the bacterial communities, potentially reflecting deterministic assemblages of bacteria. We defined the core microbiota common to both Chondrostoma species for each tissue, highlighting the occurrence of microbe-host genome interactions at this critical level for studies of the functional consequences of hybridization. Further investigations will explore to what extend these specific tissue-associated microbiota signatures could be profoundly altered in hybrids, with functional consequences for post-mating reproductive isolation in relation to environmental constraints.


Assuntos
Bactérias/classificação , Biodiversidade , Cyprinidae/microbiologia , Microbiota/fisiologia , Filogenia , Animais , Bactérias/genética , DNA Bacteriano , Feminino , França , Microbioma Gastrointestinal , Brânquias/microbiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Especificidade de Hospedeiro , Hibridização Genética , Masculino , Microbiota/genética , Mucosa/microbiologia , Pele/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA