Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793958

RESUMO

Ion mobility spectrometry (IMS) has been widely studied and applied as an effective analytical technology for the on-site detection of volatile organic compounds (VOCs). Despite its superior selectivity compared with most gas sensors, its limited dynamic range is regarded as a major drawback, limiting its further application in quantitative measurements. In this work, we proposed a novel sample introduction method based on pulsed membrane adsorption, which effectively enhanced IMS's ability to measure analytes at higher concentrations. Taking N-methyl-2-pyrrolidone (NMP) as an example, this new sampling method expanded the dynamic range from 1 ppm to 200 ppm. The working principle and measurement strategy of this sampling method were also discussed, providing new insights for the design and application of IMS-based instruments.

2.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679500

RESUMO

It has become increasingly important to monitor environment contamination by such chemicals as chemical warfare agents (CWAs) and industrial toxic chemicals (TICs), as well as radiation hazards around and inside collective protection facilities. This is especially important given the increased risk of terrorist or military attacks. The Military Institute of Chemistry and Radiometry (MICR) has constructed and developed the ALERT device for the effective monitoring of these threats. This device uses sensors that detect chemical and radiological contaminations in the air. The CWA detector is an ion mobility spectrometer, TICs are detected by electrochemical sensors, and radiation hazards are detected via Geiger-Muller tubes. The system was designed to protect the crew from contamination. When chemical or radioactive contamination is detected at the air inlet for the shelter, air filtration through a carbon filter is activated. At this time, the air test procedure at the filter outlet is started to test the condition of the filter on an ongoing basis. After detecting contamination at the filter outlet, the system turns off the air pumping and the service can start the procedure of replacing the damaged carbon filter. This paper presents the results of laboratory testing of the ALERT gas alarm detector, which showed high measurements for important parameters, including sensitivity, repeatability, accuracy, and speed.


Assuntos
Poluição do Ar , Substâncias para a Guerra Química , Monitoramento de Radiação , Substâncias para a Guerra Química/análise , Poluição Ambiental , Radiometria
3.
Anal Bioanal Chem ; 413(11): 3055-3067, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33675374

RESUMO

Fusarium oxysporum is a plant pathogenic fungus leading to severe crop losses in agriculture every year. A sustainable way of combating this pathogen is the application of mycoparasites-fungi parasitizing other fungi. The filamentous fungus Trichoderma atroviride is such a mycoparasite that is able to antagonize phytopathogenic fungi. It is therefore frequently applied as a biological pest control agent in agriculture. Given that volatile metabolites play a crucial role in organismic interactions, the major aim of this study was to establish a method for on-line analysis of headspace microbial volatile organic compounds (MVOCs) during cultivation of different fungi. An ion mobility spectrometer with gas chromatographic pre-separation (GC-IMS) enables almost real-time information of volatile emissions with good selectivity. Here we illustrate the successful use of GC-IMS for monitoring the time- and light-dependent release of MVOCs by F. oxysporum and T. atroviride during axenic and co-cultivation. More than 50 spectral peaks were detected, which could be assigned to 14 volatile compounds with the help of parallel gas chromatography-mass spectrometric (GC-MS) measurements. The majority of identified compounds are alcohols, such as ethanol, 1-propanol, 2-methyl propanol, 2-methyl butanol, 3-methyl-1-butanol and 1-octen-3-ol. In addition to four ketones, namely acetone, 2-pentanone, 2-heptanone, 3-octanone, and 2-octanone; two esters, ethyl acetate and 1-butanol-3-methylacetate; and one aldehyde, 3-methyl butanal, showed characteristic profiles during cultivation depending on axenic or co-cultivation, exposure to light, and fungal species. Interestingly, 2-octanone was produced only in co-cultures of F. oxysporum and T. atroviride, but it was not detected in the headspace of their axenic cultures. The concentrations of the measured volatiles were predominantly in the low ppbv range; however, values above 100 ppbv were detected for several alcohols, including ethanol, 2-methylpropanol, 2-methyl butanol, 1- and 3-methyl butanol, and for the ketone 2-heptanone, depending on the cultivation conditions. Our results highlight that GC-IMS analysis can be used as a valuable analytical tool for identifying specific metabolite patterns for chemotaxonomic and metabolomic applications in near-to-real time and hence easily monitor temporal changes in volatile concentrations that take place in minutes.


Assuntos
Fusarium/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hypocreales/metabolismo , Espectrometria de Mobilidade Iônica/métodos , Compostos Orgânicos Voláteis/metabolismo
4.
Anal Bioanal Chem ; 413(9): 2577-2586, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33655348

RESUMO

To understand aroma perception from complex food matrices' determination of dynamic aroma release during simulated oral processing is necessary. In this study optimization, validation and application of a novel method coupling headspace-solid phase microextraction (HS-SPME) with gas chromatography-ion mobility spectrometry (GC-IMS) is presented. Thirteen character impact compounds imparting different chemical properties are studied to understand capabilities and limitations of the method. It was shown for the first time that the temperature of the IMS sample inlet can be increased up to 200 °C without instrumental constraints. Linear calibration was possible for eleven of the thirteen compounds with one decade dynamic range. The limit of detection and quantitation were 2.1-63.0 ppb and 7.2-210.1 ppb, respectively. Diacetyl could be detected in negative polarity mode of IMS, however with lower precision compared to the compounds detected in positive mode. Limitations of the method were short HS-SPME extraction time, which in the case of caproic acid was not sufficient for reliable quantification. Additionally, δ-decalactone could not be detected due to maximum GC temperature of 200 °C. Application of the method to determine dynamic aroma release from a dairy matrix was successfully shown for nine compounds. Analysis of complex food matrix was performed with similar precision compared to analysis in aqueous solution, thus proving high robustness of the method towards matrix effects.


Assuntos
Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Leite/química , Odorantes/análise , Microextração em Fase Sólida/métodos , Animais , Bovinos , Espectrometria de Mobilidade Iônica/métodos , Limite de Detecção
5.
Appl Microbiol Biotechnol ; 105(10): 4297-4307, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33974116

RESUMO

Rapid screening of infected people plays a crucial role in interrupting infection chains. However, the current methods for identification of bacteria are very tedious and labor intense. Fast on-site screening for pathogens based on volatile organic compounds (VOCs) by ion mobility spectrometry (IMS) could help to differentiate between healthy and potentially infected subjects. As a first step towards this, the feasibility of differentiating between seven different bacteria including resistant strains was assessed using IMS coupled to multicapillary columns (MCC-IMS). The headspace above bacterial cultures was directly drawn and analyzed by MCC-IMS after 90 min of incubation. A cluster analysis software and statistical methods were applied to select discriminative VOC clusters. As a result, 63 VOC clusters were identified, enabling the differentiation between all investigated bacterial strains using canonical discriminant analysis. These 63 clusters were reduced to 7 discriminative VOC clusters by constructing a hierarchical classification tree. Using this tree, all bacteria including resistant strains could be classified with an AUC of 1.0 by receiver-operating characteristic analysis. In conclusion, MCC-IMS is able to differentiate the tested bacterial species, even the non-resistant and their corresponding resistant strains, based on VOC patterns after 90 min of cultivation. Although this result is very promising, in vivo studies need to be performed to investigate if this technology is able to also classify clinical samples. With a short analysis time of 5 min, MCC-IMS is quite attractive for a rapid screening for possible infections in various locations from hospitals to airports.Key Points• Differentiation of bacteria by MCC-IMS is shown after 90-min cultivation.• Non-resistant and resistant strains can be distinguished.• Classification of bacteria is possible based on metabolic features.


Assuntos
Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis , Bactérias , Humanos
6.
Sensors (Basel) ; 21(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283071

RESUMO

One of the significant problems in the modern world is the detection of improvised explosives made of materials synthesized at home. Such compounds include triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD). An attempt was made to construct an instrument allowing for the simultaneous detection of both compounds despite the large difference of vapor pressure: very high for TATP and very low for HMTD. The developed system uses differential ion mobility spectrometry (DMS) in combination with a specially designed gas sample injection system. The created system of detectors allowed for the detection of a high concentration of TATP and a very low concentration of HMTD. TATP detection was possible despite the presence of impurities-acetone remaining from the technological process and formed as a coproduct of diacetone diperoxide (DADP) synthesis. Ammonia added to the carrier gas improved the possibility of detecting the abovementioned explosives, reducing the intensity of the acetone signal. The obtained results were then compared with the detection capabilities of drift tube ion mobility spectrometer (DT-IMS), which has not made possible such detection as DMS.

7.
Sensors (Basel) ; 21(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34372282

RESUMO

Sensitive real-time detection of vapors produced by toxic industrial chemicals (TICs) always represents a stringent priority. Hydrogen cyanide (HCN) is definitely a TIC, being widely used in various industries and as an insecticide; it is a reactive, very flammable, and highly toxic compound that affects the central nervous system, cardiovascular system, eyes, nose, throat, and also has systemic effects. Moreover, HCN is considered a blood chemical warfare agent. This study was focused toward quick detection and quantification of HCN in air using time-of-flight ion mobility spectrometry (ToF IMS). Results obtained clearly indicate that IMS can rapidly detect HCN at sub-ppmv levels in air. Ion mobility spectrometric response was obtained in the negative ion mode and presented one single distinct product ion, at reduced ion mobility K0 of 2.38 cm2 V-1 s-1. Our study demonstrated that by using a miniaturized commercial IMS system with nonradioactive ionization source model LCD-3.2E (Smiths Detection Ltd., London, UK), one can easily measure HCN at concentrations of 0.1 ppmv (0.11 mg m-3) in negative ion mode, which is far below the OSHA PEL-TWA value of 10 ppmv. Measurement range was from 0.1 to 10 ppmv and the estimated limit of detection LoD was ca. 20 ppbv (0.02 mg m-3).


Assuntos
Substâncias para a Guerra Química , Cianeto de Hidrogênio , Substâncias para a Guerra Química/análise , Gases , Cianeto de Hidrogênio/análise , Espectrometria de Mobilidade Iônica , Londres
8.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316669

RESUMO

Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K0 of 1.89 cm2 V-1 s-1 (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K0 of 1.90 and 1.71 cm2 V-1 s-1, were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m-3) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode.


Assuntos
Anidridos Acéticos/análise , Técnicas Biossensoriais , Drogas Ilícitas/análise , Drogas Ilícitas/química , Espectrometria de Mobilidade Iônica , Oligoelementos/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/normas , Espectrometria de Mobilidade Iônica/instrumentação , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Mobilidade Iônica/normas , Reprodutibilidade dos Testes
9.
Anal Bioanal Chem ; 411(24): 6229-6246, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30957205

RESUMO

With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future. Graphical abstract.

10.
Anal Bioanal Chem ; 411(24): 6275-6285, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30868190

RESUMO

Today, bottom-up protein identification in MALDI-MS is based on employing singly charged peptide ions, which are predominantly formed in the ionization process. However, peptide mass fingerprinting (PMF) with subsequent tandem MS confirmation using these peptide ions is often hampered due to the lower quality of fragment ion mass spectra caused by the higher collision energy necessary for fragmenting singly protonated peptides. Accordingly, peptide ions of higher charge states would be of high interest for analytical purposes, but they are usually not detected in MALDI-MS experiments as they overlap with singly charged matrix clusters and peptide ions. However, when utilizing ion mobility spectrometry (IMS), doubly charged peptide ions can be actively used by separating them from the singly protonated peptides, visualized, and selectively targeted for tandem MS experiments. The generated peptide fragment ion spectra can be used for a more confident protein identification using PMF with tandem MS confirmation, as most doubly protonated peptide ions yield fragment ion mass spectra of higher quality compared to tandem mass spectra of the corresponding singly protonated precursor ions. Mascot protein scores can be increased by approximately 50% when using tandem mass spectra of doubly charged peptide ions, with ion scores up to six times higher compared with ion scores of tandem mass spectra from singly charged precursors.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Peptídeos/análise , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos/química
11.
Ecotoxicol Environ Saf ; 165: 459-466, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218969

RESUMO

A sensitive and fast ultrasound-assisted dispersive liquid-liquid microextraction procedure combined with ion mobility spectrometry has been developed for the simultaneous extraction and determination of bendiocarb and azinphos-ethyl. Experimental parameters affecting the analytical performance of the method were optimized: type and volume of extraction solvent (chloroform, 150 µL), pH (9.0), type and volume of buffer (ammonium buffer pH = 9.0, 4.5 mL) and extraction time (3.0 min). Under optimum conditions, the linearity was found to be in the range of 2-40 and 6-100 ng/mL and the limits of detection (LOD) were 1.04 and 1.31 ng/mL for bendiocarb and azinphos-ethyl, respectively. The method was successfully validated for the analysis of bendiocarb and azinphos-ethyl in different samples such as waters, soil, food and beverage samples.


Assuntos
Azinfos-Metil/análogos & derivados , Bebidas/análise , Monitoramento Ambiental/métodos , Alimentos/normas , Espectrometria de Mobilidade Iônica , Microextração em Fase Líquida/métodos , Fenilcarbamatos/análise , Solo/química , Ultrassom , Água/análise , Azinfos-Metil/análise , Poluentes Ambientais/análise , Análise de Alimentos/métodos , Limite de Detecção , Solventes/química
12.
Anal Bioanal Chem ; 409(28): 6595-6603, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28932891

RESUMO

Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Óleos Voláteis/análise , Terpenos/análise , Cosméticos/química , Desenho de Equipamento , Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Espectrometria de Mobilidade Iônica/instrumentação , Compostos Orgânicos Voláteis/análise
13.
Anal Bioanal Chem ; 409(27): 6279-6286, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28842769

RESUMO

A laser-induced fluorescence (LIF) was used as a complimentary detection system for time-of-flight ion mobility spectrometry (TOF-IMS). A LIF detection system is potentially faster than a conventional electrometer detector and can provide additional (to usual for IMS drift time) analytical information, namely wavelength of fluorescence maxima and fluorescence lifetime. Therefore, better discrimination ability can be expected. Additionally, the combination of IMS and LIF operates at atmospheric pressure. This allows fluorescence measurements of specified ions and ion clusters, which would not survive in a mass spectrometer. An IMS drift cell of open design with both the electrometer and LIF detectors was designed. The feasibility of IMS-LIF was demonstrated on the example of the Xanthene dye Rhodamine 6G (R6G). Electrospray was used as an ionization source. The release and desolvation of R6G ions from the electrospray with following IMS-LIF analysis were demonstrated. The effects of experimental parameters (e.g., ion gate and drift voltages, distance to ESI emitter) are demonstrated and discussed. The obtained results are promising enough to ensure the potential of LIF as a complimentary/alternative detection system for time-of-flight ion mobility spectrometry.

14.
Proteomics ; 15(16): 2804-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25644066

RESUMO

The top-down approach in protein sequencing requires simple methods in which the analyte can be readily dissociated at every position along the backbone. In this context, ultraviolet photodissociation (UVPD) recently emerged as a promising tool because, in contrast to slow heating techniques such as CID, the absorption of UV light is followed by a rather statistically distributed cleavage of backbone bonds. As a result, nearly complete sequence coverage can be obtained. It is well known, however, that gas-phase proteins can adopt a variety of different, sometimes coexisting conformations and the influence of this structural diversity on the UVPD fragmentation behavior is not clear. Using ion mobility-UVPD-MS, we recently showed that UVPD is sensitive to the higher order structure of gas-phase proteins. In particular, the cis/trans isomerization of certain proline peptide bonds was shown to significantly influence the UVPD fragmentation pattern of two extended conformers of 11(+) ubiquitin. Building on these results, we here provide conformer-selective UVPD data for 7(+) ubiquitin ions, which are known to be present in a much more diverse and wider ensemble of different structures, ranging from very compact to highly extended species. Our data show that certain conformers fall into groups with similar UVPD fragmentation pattern. Surprisingly, however, the conformers within each group can differ tremendously in their collision cross-section. This indicates that the multiple coexisting conformations typically observed for 7(+) ubiquitin are caused by a few, not easily interconvertible, subpopulations.


Assuntos
Proteínas/química , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Raios Ultravioleta , Desenho de Equipamento , Fotólise , Conformação Proteica , Análise de Sequência de Proteína
15.
Front Mol Biosci ; 10: 1112521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006618

RESUMO

It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.

16.
Mass Spectrom Rev ; 30(5): 940-73, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21294149

RESUMO

In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods.

17.
Se Pu ; 40(12): 1119-1127, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36450352

RESUMO

The main methods currently used to detect illegally added chemicals in cosmetics include thin-layer chromatography, high performance liquid chromatography (HPLC), gas chromatography (GC), and liquid chromatography-mass spectrometry (LC-MS). Compared with other analytical techniques, these methods have the advantages of high sensitivity, specificity, and accuracy, all of which are required in practical detection work. However, they also present a number of limitations, such as long analysis times and requirements for skilled operators and strictly controlled laboratory environments. Supervision, a growing trend in market surveillance, requires rapid and effective methods to screen illegally added chemicals. The suspected samples are sealed for some time and then sent to the laboratory for further testing. Ion mobility spectrometry (IMS) is a new type of trace gas separation technology that was developed in recent years. The principle behind IMS is the separation and characterization of chemical species based on differences in the migration speed of their gas-phase ions under an electric field. As this technology has the advantages of miniaturization, easy operation, and quick responses, it is widely used in food and drug quality testing, as well as other related fields. However, it is rarely used in cosmetic detection, likely because the cosmetics matrix is highly complex, which can interfere with ion determination. Thus, optimizing the pretreatment process of cosmetics for IMS is important. In this work, solid-phase extraction (SPE) is combined with IMS to establish a method for the rapid screening of 14 antibacterial drugs in anti-acne cosmetics. The IMS detection parameters, sample extraction conditions, and SPE clean-up conditions (SPE column, type of leachate, type and volume of eluent) were studied and optimized in detail. The sample was extracted with 80%(v/v) acetonitrile aqueous solution (containing 0.2% (mass fraction) trichloroacetic acid), loaded onto an activated Oasis® MCX SPE column, leached with 3.0 mL of methanol, and eluted with 1.0 mL of 2% ammonia methanol solution. The eluate was then directly injected into the IMS instrument. The IMS parameters were as follows: positive ion source voltage=2200 V, transfer tube voltage=8000 V, inlet temperature=180 ℃, transfer tube temperature=180 ℃, ion gate voltage=50 V, gate voltage pulse width=85 µs, and migration gas flow rate=1.2 L/min. The migration times for the 14 antibacterial drugs ranged from 11 to 17 ms, and the detection limits for the target compounds ranged from 0.2 to 1.2 µg/g. Owing to the narrow linear range of IMS, a quantitative method employing HPLC was also established to optimize the SPE pretreatment step and verify the positive samples. Chromatographic separation was conducted on a Phenomenex Luna C18 column (250 mm×4.6 mm, 5 µm), with a column flow rate of 1.0 mL/min and gradient elution with mobile phases A (0.01 mol/L potassium dihydrogen phosphate adjusted to pH 4.0 with phosphoric acid) and B (acetonitrile). The column temperature was set to 35 ℃, and the injection volume was fixed at 5 µL. A total of 25 cosmetics samples were screened, and one positive sample was found to be consistent with the results of HPLC. The proposed method is fast, simple, and efficient, and it can be used for the rapid screening of the 14 antibacterial drugs in anti-acne cosmetics. Pretreatment can significantly reduce the influence of the cosmetic matrices on the determination results, improve instrument sensitivity, and effectively decrease the occurrence rate of false positives and negatives. The technique developed in this work can improve the efficiency of screening for illegally added chemicals and expand the applications of IMS for detecting various chemicals in complex matrices, such as cosmetics.


Assuntos
Cosméticos , Espectrometria de Mobilidade Iônica , Metanol , Cromatografia Gasosa-Espectrometria de Massas , Extração em Fase Sólida , Antibacterianos , Acetonitrilas
18.
Talanta ; 233: 122579, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215071

RESUMO

An electrospray is a dispersed nebula of charged droplets produced under the influence of a strong electric field. The charged droplets subsequently result in ions in the gas phase. Therefore, electrospray is a commonly used method for transferring liquids to the gas phase while ionizing its constituents at the same time. In this work, we investigate the performance of an electrospray ionization ion mobility spectrometer by varying the electric field strength in the desolvation region. In particular, we investigate a new tristate ion shutter with increased sensitivity for ions with higher molecular mass and lower ion mobility that are usually suppressed by classical Bradbury-Nielsen or Tyndall-Powell ion shutters when using short gating times as required for high resolving power. The electric field in the tristate ion shutter affects the optimal ratio of the electric field strengths in the drift and desolvation region. Furthermore, the solvent flow rate needs to be considered when setting the field strengths in the desolvation region. However, a higher electric field strength in the desolvation region affects the field at the emitter tip. For this reason, a smaller ratio of the drift field strength and the desolvation field strength is beneficial, especially since higher solvent flow rates require higher fields to initiate an electrospray. In this work, we use tetraoctylammonium bromide as an instrument standard and the fungicide metalaxyl, the herbicide isoproturon and the antibiotic cefuroxime as model compounds.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Íons , Peso Molecular
19.
J Pharm Biomed Anal ; 195: 113846, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33422832

RESUMO

Ion mobility spectrometry (IMS) is a rapid separation technique capable of extracting complementary structural information to chromatography and mass spectrometry (MS). IMS, especially in combination with MS, has experienced inordinate growth in recent years as an analytical technique, and elicited intense interest in many research fields. In natural product analysis, IMS shows promise as an additional tool to enhance the performance of analytical methods used to identify promising drug candidates. Potential benefits of the incorporation of IMS into analytical workflows currently used in natural product analysis include the discrimination of structurally similar secondary metabolites, improving the quality of mass spectral data, and the use of mobility-derived collision cross-section (CCS) values as an additional identification criterion in targeted and untargeted analyses. This review aims to provide an overview of the application of IMS to natural product analysis over the last six years. Instrumental aspects and the fundamental background of IMS will be briefly covered, and recent applications of the technique for natural product analysis will be discussed to demonstrate the utility of the technique in this field.


Assuntos
Produtos Biológicos , Espectrometria de Mobilidade Iônica , Espectrometria de Massas
20.
J Am Soc Mass Spectrom ; 32(11): 2698-2706, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34590845

RESUMO

Signal digitization is a commonly overlooked part of ion mobility-mass spectrometry (IMS-MS) workflows, yet it greatly affects signal-to-noise ratio and MS resolution measurements. Here, we report on the integration of a 2 GS/s, 14-bit ADC with structures for lossless ion manipulations (SLIM-IMS-MS) and compare the performance to a commonly used 8-bit ADC. The 14-bit ADC provided a reduction in the digitized noise by a factor of ∼6, owing largely to the use of smaller bit sizes. The low baseline allowed threshold voltage levels to be set very close to the MCP baseline voltage, allowing for as much signal to be acquired as possible without overloading or excessive digitization of MCP baseline noise. Analyses of Agilent tuning mixture ions and a mixture of heavy labeled phosphopeptides showed that the 14-bit ADC provided a ∼1.5-2× signal-to-noise (S/N) increase for high intensity ions, such as the Agilent tuning mixture ions and the 2+ and 3+ charge states of many phosphopeptide constituents. However, signal enhancements were as much as 10-fold for low intensity ions, and the 14-bit ADC enabled discernible signal intensities otherwise lost using an 8-bit digitizer. Additionally, the 14-bit ADC required ∼14-fold fewer mass spectra to be averaged to produce a mass spectrum with a similar S/N as the 8-bit ADC, demonstrating ∼10× higher measurement throughput. The high resolution, low baseline, and fast speed of the new 14-bit ADC enables high performance digitization of MS, IMS-MS, and SLIM-IMS-MS spectra and provides a much better picture of analyte profiles in complex mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA