Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Curr Issues Mol Biol ; 45(2): 1644-1654, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36826051

RESUMO

Dengue is the most prevalent mosquito-borne viral disease. It is caused by the infection of any of the four dengue virus (DENV) serotypes DENV-1 to DENV-4. The DENV non-structural glycoprotein 1 (NS1) plays an important role in virus replication and the immunopathogenesis of virus infection. The NS1 protein has been identified as both a cell-associated homodimer and a soluble secreted lipoprotein nanoparticle. The nature of the residues at positions NS1-272 and NS1-324 in the ß-ladder domain may have an effect on the biological behaviors of DENV-2 NS1 protein in human hepatoma Huh7 cells. The stability of the NS1 protein from the Reunion 2018 DENV-2 strain was affected by the presence of lysine residues at positions 272 and 324. In the present study, we evaluated the impact of mutations into lysine at positions 272 and 324 on recombinant NS1 protein from the DES-14 DENV-2 strain bearing arginine residue on these two positions. The DES-14 NS1 protein mutant bearing a lysine at position 324 was deficient in protein stability and secretion compared to wild-type protein. The defect in the DES-14 NS1 protein mutant was associated to oxidative stress and pro-inflammatory cytokine activation in Huh7 cells. The ubiquitin-proteasome proteolytic pathway might play a key role in the stability of DENV-2 protein bearing a lysine residue at position 324.

2.
New Phytol ; 238(3): 1085-1100, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779574

RESUMO

Chromatin is a dynamic platform within which gene expression is controlled by epigenetic modifications, notably targeting amino acid residues of histone H3. Among them is lysine 27 of H3 (H3K27), the trimethylation of which by the Polycomb Repressive Complex 2 (PRC2) is instrumental in regulating spatiotemporal patterns of key developmental genes. H3K27 is also subjected to acetylation and is found at sites of active transcription. Most information on the function of histone residues and their associated modifications in plants was obtained from studies of loss-of-function mutants for the complexes that modify them. To decrypt the genuine function of H3K27, we expressed a non-modifiable variant of H3 at residue K27 (H3.3K27A ) in Arabidopsis, and developed a multi-scale approach combining in-depth phenotypical and cytological analyses, with transcriptomics and metabolomics. We uncovered that the H3.3K27A variant causes severe developmental defects, part of them are reminiscent of PRC2 mutants, part of them are new. They include early flowering, increased callus formation and short stems with thicker xylem cell layer. This latest phenotype correlates with mis-regulation of phenylpropanoid biosynthesis. Overall, our results reveal novel roles of H3K27 in plant cell fates and metabolic pathways, and highlight an epigenetic control point for elongation and lignin composition of the stem.


Assuntos
Arabidopsis , Histonas , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lisina/metabolismo , Lignina/metabolismo , Metilação , Epigênese Genética , Genes Controladores do Desenvolvimento
3.
J Anim Physiol Anim Nutr (Berl) ; 106(5): 1072-1085, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34528302

RESUMO

Flavour is an important factor in evaluating meat quality, and amino acids and fats are important components affecting meat flavour. In this study, we evaluated the relationship between the variation of lysine residue addition and the slaughter performance and meat quality of broilers, which decreased with the addition of lysine residues but improved the meat quality of the broilers. 10% lysine residue addition was the most beneficial for reducing feed cost and improving meat quality. Meanwhile, the plasma metabolites of broilers fed increasing concentrations of lysine residue supplemented feeds were analysed using liquid chromatography-mass spectrometry (LC-MS). Principal component analysis (PCA) and partial least square discriminant analysis (OPLS-DA) were used screen, the differential metabolites induced by lysine residue. In the broilers 29, 37, 63, 87, 80 and 111 differential metabolites were detected (p < 0.05). Amongst them, 3-iodotyrosine, N-methyl-L-glutamic acid, coumaraldehyde, 2-dimethylphenol, N-methylnicotinamide and L-erythrone were the common differential metabolites between group A and groups B, C, D, E, F and G. The addition of lysine residue was positively correlated with alanine aminotransferase (p < 0.05, r = 0.942) and high-density lipoprotein cholesterol (p < 0.05, r = 0.798) and negatively correlated with aspartate aminotransferase (p < 0.05, r = 0.822). According to the classification of differential metabolites and their enriched pathway analysis, differential metabolites mainly caused changes in amino acid and lipid metabolism. Our study shows that a certain proportion of lysine residue in diet affects the specific metabolic pathway of broilers, which may affect amino acid and fat metabolism by regulating alanine aminotransferase, aspartate aminotransferase and high-density lipoprotein cholesterol, ultimately affecting the flavour.


Assuntos
Galinhas , Lisina , Aminoácidos , Ração Animal/análise , Animais , Galinhas/fisiologia , Colesterol , Dieta/veterinária , Lipoproteínas HDL , Carne/análise
4.
Biochem Biophys Res Commun ; 548: 74-77, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631678

RESUMO

Peroxidase activity of cytochrome c (cyt c)/cardiolipin (CL) complex is supposed to be involved in the initiation of apoptosis via peroxidative induction of mitochondrial membrane permeabilization. As cyt c binding to CL-containing membranes is at least partially associated with electrostatic protein/lipid interaction, we screened single-point mutants of horse heart cyt c with various substitutions of lysine at position 72, considered to play a significant role in both the binding and peroxidase activity of the protein. Contrary to expectations, K72A, K72R and K72L substitutions exerted slight effects on both the cyt c binding to CL-containing liposomal membranes and the cyt c/H2O2-induced calcein leakage from liposomes, used here as a membrane permeabilization assay. Both the binding and permeabilization were decreased to various extents, but not significantly, in the case of K72E and K72N mutants. A drastic difference was found between the sequence of the permeabilizing activities of the cyt c variants and the previously described order of their proapoptotic activities (Chertkova et al., 2008).


Assuntos
Substituição de Aminoácidos , Apoptose , Citocromos c/metabolismo , Cavalos/metabolismo , Bicamadas Lipídicas/metabolismo , Lisina/genética , Miocárdio/metabolismo , Animais , Lipossomos/metabolismo , Permeabilidade , Ligação Proteica , Fatores de Tempo
5.
J Proteome Res ; 18(3): 923-933, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30672296

RESUMO

Pseudomonas aeruginosa is a multi-drug resistant human pathogen largely involved in nosocomial infections. Today, effective antibacterial agents are lacking. Exploring the bacterial physiology at the post-translational modifications (PTM) level may contribute to the renewal of fighting strategies. Indeed, some correlations between PTMs and the bacterial virulence, adaptation, and resistance have been shown. In a previous study performed in P. aeruginosa, we reported that many virulence factors like chitin-binding protein CbpD and elastase LasB were multiphosphorylated. Besides phosphorylation, other PTMs, like those occurring on lysine, seem to play key roles in bacteria. In the present study, we investigated for the first time the lysine succinylome and acetylome of the extracellular compartment of P. aeruginosa by using a two-dimensional immunoaffinity approach. Some virulence factors were identified as multimodified on lysine residues, among them, LasB and CbpD. Lysine can be modified by a wide range of chemical groups. In order to check the presence of other chemical groups on modified lysines identified on LasB and CbpD, we used 1- and 2- dimensional gel electrophoresis approaches to target lysine modified by 7 other modifications: butyrylation, crotonylation, dimethylation, malonylation, methylation, propionylation, and trimethylation. We showed that some lysines of these two virulence factors were modified by these 9 different PTMs. Interestingly, we found that the PTMs recovered on these two virulence factors were different than those previously reported in the intracellular compartment.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Lisina/metabolismo , Metaloendopeptidases/metabolismo , Processamento de Proteína Pós-Traducional , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/metabolismo , Eletroforese em Gel Bidimensional , Humanos
6.
J Biol Chem ; 293(45): 17574-17581, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30228186

RESUMO

Ras proteins participate in multiple signal cascades, regulating crucial cellular processes, including cell survival, proliferation, and differentiation. We have previously reported that Ras proteins are modified by sumoylation and that Lys-42 plays an important role in mediating the modification. In the current study, we further investigated the role of Lys-42 in regulating cellular activities of K-Ras. Inducible expression of K-RasV12 led to the activation of downstream components, including c-RAF, MEK1, and extracellular signal-regulated kinases (ERKs), whereas expression of K-RasV12/R42 mutant compromised the activation of the RAF/MEK/ERK signaling axis. Expression of K-RasV12/R42 also led to reduced phosphorylation of several other protein kinases, including c-Jun N-terminal kinase (JNK), Chk2, and focal adhesion kinase (FAK). Significantly, K-RasV12/R42 expression inhibited cellular migration and invasion in vitro in multiple cell lines, including transformed pancreatic cells. Given that K-Ras plays a crucial role in mediating oncogenesis in the pancreas, we treated transformed pancreatic cells of both BxPC-3 and MiaPaCa-2 with 2-D08, a small ubiquitin-like modifier (SUMO) E2 inhibitor. Treatment with the compound inhibited cell migration in a concentration-dependent manner, which was correlated with a reduced level of K-Ras sumoylation. Moreover, 2-D08 suppressed expression of ZEB1 (a mesenchymal cell marker) with concomitant induction of ZO-1 (an epithelial cell marker). Combined, our studies strongly suggest that posttranslational modification(s), including sumoylation mediated by Lys-42, plays a crucial role in K-Ras activities in vivo.


Assuntos
Movimento Celular , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonas/farmacologia , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Sumoilação/efeitos dos fármacos , Sumoilação/genética , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
7.
Neurobiol Dis ; 112: 14-23, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29330040

RESUMO

Ubiquitination, a fundamental post-translational modification of intracellular proteins, is enzymatically reversed by deubiquitinase enzymes (deubiquitinases). >90 deubiquitinases have been identified. One of these enzymes, YOD1, possesses deubiquitinase activity and is similar to ovarian tumor domain-containing protein 1, which is associated with regulation of the endoplasmic reticulum (ER)-associated degradation pathway. Indeed, YOD1 is reported to be involved in the ER stress response induced by mislocalization of unfolded proteins in mammalian cells. However, it has remained unclear whether YOD1 is associated with pathophysiological conditions such as mitochondrial damage, impaired proteostasis, and neurodegeneration. We demonstrated that YOD1 possesses deubiquitinating activity and exhibits preference for K48- and K63-linked ubiquitin. Furthermore, YOD1 expression levels increased as a result of various stress conditions. We demonstrated that the neurogenic proteins that cause Huntington disease and Parkinson's disease induced upregulation of YOD1 level. We observed that YOD1 reduced disease cytotoxicity through efficient degradation of mutant proteins, whereas this activity was abolished by catalytically inactive YOD1. Additionally, YOD1 localized to Lewy bodies in Parkinson's disease patients. Collectively, these data suggest that the deubiquitinase YOD1 contributes to pathogenesis of neurodegenerative disease by decreasing ubiquitination of abnormal proteins and their subsequent degradation.


Assuntos
Endopeptidases/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteólise , Tioléster Hidrolases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Endopeptidases/genética , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteostase/fisiologia , Tioléster Hidrolases/genética , Ubiquitina/genética
8.
Biotechnol Lett ; 38(7): 1121-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27023356

RESUMO

OBJECTIVES: To establish a method for microbial transglutaminase (mTG)-mediated PEGylation of proteins at the level of lysine (Lys) residues. RESULTS: Carboxybenzyl-glutaminyl-glycinyl-methoxypolyethylene glycol (CBZ-QG-mPEG) was prepared by introducing carboxybenzyl-glutaminyl-glycine (CBZ-QG) to mPEG amine. The analysis by Fourier transform infrared spectroscopy and SDS-PAGE showed that CBZ-QG-mPEG was successfully synthesized and can be recognized by mTG as an acyl donor to modify therapeutic protein, cytochrome c (cyt c). Finally, under an optimized condition (cyt c 0.5 mg/ml, CBZ-QG-mPEG 11.25 mg/ml, mTG 0.5 mg/ml, 37 °C, 2 h), the PEGylation yield reached 76.5 %. CONCLUSIONS: This is the first study regarding the PEGylation of protein at the level of Lys residues catalyzed by mTG. The novel method could be employed to immobilize active proteins and modify therapeutic proteins.


Assuntos
Citocromos c/metabolismo , Transglutaminases/metabolismo , Lisina/metabolismo , Estrutura Molecular , Polietilenoglicóis/metabolismo
9.
Microorganisms ; 11(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37317172

RESUMO

The main causative agent of pneumonia, Streptococcus pneumoniae, is also responsible for invasive diseases. S. pneumoniae recruits human plasminogen for the invasion and colonization of host tissues. We previously discovered that S. pneumoniae triosephosphate isomerase (TpiA), an enzyme involved in intracellular metabolism that is essential for survival, is released extracellularly to bind human plasminogen and facilitate its activation. Epsilon-aminocaproic acid, a lysine analogue, inhibits this binding, suggesting that the lysine residues in TpiA are involved in plasminogen binding. In this study, we generated site-directed mutant recombinants in which the lysine residue in TpiA was replaced with alanine and analyzed their binding activities to human plasminogen. Results from blot analysis, enzyme-linked immunosorbent assay, and surface plasmon resonance assay revealed that the lysine residue at the C-terminus of TpiA is primarily involved in binding to human plasminogen. Furthermore, we found that TpiA binding to plasminogen through its C-terminal lysine residue was required for the promotion of plasmin activation by activating factors.

10.
Int J Biol Macromol ; 200: 618-625, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045345

RESUMO

Enzymes are the precious gift of nature to humans. The wise utilization of enzymes may reduce energy needs of humans and the Immobilization technique can help a lot in this regard. This aspect overcomes limitations of the enzymes, therefore providing an opportunity to explore enzymatic chemistry further. In the present context, it is quite cumbersome & costly to identify the amino acid of enzymes involved in the covalent mode of Immobilization. In the present study, molecular modeling techniques were used to do this difficult task. The present work used molecular modeling methods to extract information about the immobilization of α-Amylase (E.C.3.2.1.1) on Dialdehyde Cellulose. The Lysine residue is the most probable residue to interact with Dialdehyde Cellulose. In the present work, a total of 23 lysine residues were used to study covalent binding behavior with α-Amylase. It was found that if Lys142 is involved in binding with Dialdehyde Cellulose then binding affinity (-6.1 & -5.9 kcal mol-1), as well as the involvement of amino acids of both free α-Amylase and Lys142 immobilized α-Amylase with the starch substrate, were found to be similar. The technique reported here is used for the identification of amino acid residue for the Immobilization of enzymes.


Assuntos
alfa-Amilases
11.
Oncotarget ; 12(22): 2234-2251, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34733415

RESUMO

DVL proteins are central mediators of the Wnt pathway and relay complex input signals into different branches of the Wnt signaling network. However, molecular mechanism(s) that regulate DVL-mediated relay of Wnt signals still remains unclear. Here, for the first time, we elucidate the functional significance of three DVL-1 lysines (K/Lys) which are subject to post-translational acetylation. We demonstrate that K34 Lys residue in the DIX domain regulates subcellular localization of ß-catenin, thereby influencing downstream Wnt target gene expression. Additionally, we show that K69 (DIX domain) and K285 (PDZ domain) regulate binding of DVL-1 to Wnt target gene promoters and modulate expression of Wnt target genes including CMYC, OCT4, NANOG, and CCND1, in cell line models and xenograft tumors. Finally, we report that conserved DVL-1 lysines modulate various oncogenic functions such as cell migration, proliferation, cell-cycle progression, 3D-spheroid formation and in-vivo tumor growth in breast cancer models. Collectively, these findings highlight the importance of DVL-1 domain-specific lysines which were recently shown to be acetylated and characterize their influence on Wnt signaling. These site-specific modifications may be subject to regulation by therapeutics already in clinical use (lysine deacetylase inhibitors such as Panobinostat and Vorinostat) or may possibly have prognostic utility in translational efforts that seek to modulate dysfunctional Wnt signaling.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33382013

RESUMO

Many pyrrolizidine alkaloids (PAs), an important class of natural products, are hepatotoxic and carcinogenic. Increased attention has been paid to PA poisoning cases worldwide. Generally, most PAs themselves are not toxic. However, reactive intermediates formed from PAs by metabolic oxidation have been linked to toxicity and carcinogenesis. PAs themselves are generally not toxic, and their reactive metabolites resulting from metabolic oxidation are considered to be an essential responsible for PA toxicities. Protein modification by the electrophilic metabolites is proposed to play a key role in PA-induced cytotoxicity. The present study investigated the interaction of lysine residues of proteins with reactive metabolites of toxic PAs. Antibodies selectively recognizing lysine-based protein adduction were prepared and characterized. ELISA and immunoblot methods, in the presence and absence of synthetic model PA adducts, were used to test specific binding of the antibodies to modified lysine residues of BSA and to hepatic proteins extracted from mice treated with retrorsine. The lysine residue adduction was also detected in the tissues of retrorsine-treated mice by use of an immunohistochemical approach. In conclusion, the prepared antibodies selectively recognized the lysine adducts and may be used for the investigation of mechanisms of toxic action of PAs.


Assuntos
Lisina , Alcaloides de Pirrolizidina/toxicidade , Animais , Carcinógenos , Testes Imunológicos , Fígado , Camundongos , Proteínas , Pirróis
13.
BMC Mol Cell Biol ; 20(Suppl 2): 57, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31856704

RESUMO

BACKGROUND: The biological process known as post-translational modification (PTM) is a condition whereby proteomes are modified that affects normal cell biology, and hence the pathogenesis. A number of PTMs have been discovered in the recent years and lysine phosphoglycerylation is one of the fairly recent developments. Even with a large number of proteins being sequenced in the post-genomic era, the identification of phosphoglycerylation remains a big challenge due to factors such as cost, time consumption and inefficiency involved in the experimental efforts. To overcome this issue, computational techniques have emerged to accurately identify phosphoglycerylated lysine residues. However, the computational techniques proposed so far hold limitations to correctly predict this covalent modification. RESULTS: We propose a new predictor in this paper called Bigram-PGK which uses evolutionary information of amino acids to try and predict phosphoglycerylated sites. The benchmark dataset which contains experimentally labelled sites is employed for this purpose and profile bigram occurrences is calculated from position specific scoring matrices of amino acids in the protein sequences. The statistical measures of this work, such as sensitivity, specificity, precision, accuracy, Mathews correlation coefficient and area under ROC curve have been reported to be 0.9642, 0.8973, 0.8253, 0.9193, 0.8330, 0.9306, respectively. CONCLUSIONS: The proposed predictor, based on the feature of evolutionary information and support vector machine classifier, has shown great potential to effectively predict phosphoglycerylated and non-phosphoglycerylated lysine residues when compared against the existing predictors. The data and software of this work can be acquired from https://github.com/abelavit/Bigram-PGK.


Assuntos
Biologia Computacional/métodos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Algoritmos , Sequência de Aminoácidos , Glicólise , Lisina/química , Matrizes de Pontuação de Posição Específica , Reprodutibilidade dos Testes , Software , Máquina de Vetores de Suporte
14.
Mol Plant Pathol ; 20(4): 599-608, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548752

RESUMO

Magnaporthe oryzae is an important fungal pathogen of both rice and wheat. However, how M. oryzae effectors modulate plant immunity is not fully understood. Previous studies have shown that the M. oryzae effector AvrPiz-t targets the host ubiquitin-proteasome system to manipulate plant defence. In return, two rice ubiquitin E3 ligases, APIP6 and APIP10, ubiquitinate AvrPiz-t for degradation. To determine how lysine residues contribute to the stability and function of AvrPiz-t, we generated double (K1,2R-AvrPiz-t), triple (K1,2,3R-AvrPiz-t) and lysine-free (LF-AvrPiz-t) mutants by mutating lysines into arginines in AvrPiz-t. LF-AvrPiz-t showed the highest protein accumulation when transiently expressed in rice protoplasts. When co-expressed with APIP10 in Nicotiana benthamiana, LF-AvrPiz-t was more stable than AvrPiz-t and was less able to degrade APIP10. The avirulence of LF-AvrPiz-t on Piz-t:HA plants was less than that of AvrPiz-t, which led to resistance reduction and lower accumulation of the Piz-t:HA protein after inoculation with the LF-AvrPiz-t-carrying isolate. Chitin- and flg22-induced production of reactive oxygen species (ROS) was higher in LF-AvrPiz-t than in AvrPiz-t transgenic plants. In addition, LF-AvrPiz-t transgenic plants were less susceptible than AvrPiz-t transgenic plants to a virulent isolate. Furthermore, both AvrPiz-t and LF-AvrPiz-t interacted with OsRac1, but the suppression of OsRac1-mediated ROS generation by LF-AvrPiz-t was significantly lower than that by AvrPiz-t. Together, these results suggest that the lysine residues of AvrPiz-t are required for its avirulence and virulence functions in rice.


Assuntos
Proteínas Fúngicas/metabolismo , Lisina/química , Magnaporthe/imunologia , Magnaporthe/patogenicidade , Oryza/metabolismo , Oryza/microbiologia , Resistência à Doença/imunologia , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Magnaporthe/metabolismo , Oryza/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo
15.
Genom Data ; 8: 85-90, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27222806

RESUMO

BACKGROUND: Due to the widespread resistance of Plasmodium falciparum to chloroquine drug, artemisinin-based combination therapy (ACT) has been recommended as the first-line treatment. This study aims to evaluate the extent of chloroquine resistance in P. falciparum infection after the introduction of ACT. This study was carried out based on the mutation analysis in P. falciparum chloroquine resistant transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes. Identification of these molecular markers plays a significant role in monitoring and assessment of drug resistance as well as in designing an effective antimalarial drug policy in India. METHODS: Sixty blood samples were collected from patients infected with P. falciparum from JIPMER, Puducherry and MKCG Medical College, Odisha. Polymerase chain reaction-restriction fragment length polymorphism was performed, targeting the point mutation of K76T in pfcrt and N86Y in pfmdr1 gene. The PCR products were sequenced, genotyped and further analysed for amino acid changes in these codons. RESULTS: The frequency of pfcrt mutation at 76th position was dominant for mutant T allele with 56.7% and wild type K, 43.3%. Majority of pfmdr1 86 allele were wild type, with N (90%) and mutant, Y (10%). Additionally, we found three haplotypes for CQ resistance, SVMNT, CVIET and CVIKT in association with the pfcrt gene. However, a poorly studied SNP in pfmdr1 gene (Y184F) associated with CQ resistance showed high frequency (70%) in P. falciparum isolates. CONCLUSIONS: The point mutation K76T of pfcrt is high in P. falciparum suggesting a sustained high CQ resistance even after five years of the introduction of ACTs for antimalarial therapy. The present study suggests a strong association of CQ resistance with pfcrt T76, but not with the pfmdr1 Y86 mutation. However, sequence analysis showed that Y184F mutation on pfmdr1 gene was found to be associated with high resistance. Also, a new pfcrt haplotype 'CVIKT' associated with CQ resistance was found to be present in Indian strains of P. falciparum. The data obtained from this study helps in continuous monitoring of drug resistance in malaria and also suggests the need for careful usage of CQ in Plasmodium vivax malarial treatment.

16.
Acta Pharm Sin B ; 5(5): 378-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26579469

RESUMO

Hypoxia-inducible factor-1 (HIF-1) has been recognized as an important cancer drug target. Many recent studies have provided convincing evidences of strong correlation between elevated levels of HIF-1 and tumor metastasis, angiogenesis, poor patient prognosis as well as tumor resistance therapy. It was found that hypoxia (low O2 levels) is a common character in many types of solid tumors. As an adaptive response to hypoxic stress, hypoxic tumor cells activate several survival pathways to carry out their essential biological processes in different ways compared with normal cells. Recent advances in cancer biology at the cellular and molecular levels highlighted the HIF-1α pathway as a crucial survival pathway for which novel strategies of cancer therapy could be developed. However, targeting the HIF-1α pathway has been a challenging but promising progresses have been made in the past twenty years. This review summarizes the role and regulation of the HIF-1α in cancer, and recent therapeutic approaches targeting this important pathway.

17.
J Nutr Biochem ; 25(2): 170-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24445041

RESUMO

The antioxidant (AOX) defense system is critical for combating whole-body oxidative stress, and the present study aimed to determine the consequences of a maternal high-fat (HF) diet on neonatal hepatic lipid accumulation, oxidative stress, the expression of AOX genes, as well as epigenetic histone modifications within Pon1, an AOX enzyme. Hepatic thiobarbituric acid reactive substances were significantly increased and nonesterified fatty acids decreased in offspring of HF-fed dams, while triglycerides increased in male but not female HF offspring when compared to controls (C). Pon1, Pon2, Pon3 and Sod2 were significantly increased in offspring of HF-fed dams when compared to C. However, the increase in Pon1 and Pon3 was only significant in male but not female offspring. When compared to C, the hepatic Pon1 promoter of male and female HF offspring had significantly more acetylated histone H4 as well as dimethylated histone H3 at lysine residue 4, which are both involved in transcriptional activation. Trimethylation of histone H3 at lysine residue 9, which is involved in transcriptional repression, was only associated with genes in females. Results from the present study reveal that a maternal HF diet affects hepatic metabolism in the neonate in a gender-specific manner, and these differences, in association with epigenetic modification of histones, may contribute to the known gender differences in oxidative balance.


Assuntos
Arildialquilfosfatase/genética , Dieta Hiperlipídica , Histonas/metabolismo , Fígado/metabolismo , Regiões Promotoras Genéticas , Animais , Animais Recém-Nascidos , Sequência de Bases , Primers do DNA , Feminino , Masculino , Gravidez , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA