Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Cell ; 171(1): 179-187.e10, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890085

RESUMO

Expression of many disease-related aggregation-prone proteins results in cytotoxicity and the formation of large intracellular inclusion bodies. To gain insight into the role of inclusions in pathology and the in situ structure of protein aggregates inside cells, we employ advanced cryo-electron tomography methods to analyze the structure of inclusions formed by polyglutamine (polyQ)-expanded huntingtin exon 1 within their intact cellular context. In primary mouse neurons and immortalized human cells, polyQ inclusions consist of amyloid-like fibrils that interact with cellular endomembranes, particularly of the endoplasmic reticulum (ER). Interactions with these fibrils lead to membrane deformation, the local impairment of ER organization, and profound alterations in ER membrane dynamics at the inclusion periphery. These results suggest that aberrant interactions between fibrils and endomembranes contribute to the deleterious cellular effects of protein aggregation. VIDEO ABSTRACT.


Assuntos
Doença de Huntington/patologia , Corpos de Inclusão/patologia , Neurônios/patologia , Neurônios/ultraestrutura , Peptídeos/metabolismo , Amiloide/química , Animais , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Corpos de Inclusão/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mutação , Agregação Patológica de Proteínas , Tomografia/métodos
2.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38178639

RESUMO

AIM: The purpose of this study is to assess the in vitro antimicrobial and anti-biofilm effects of the anti-protozoal agent tafenoquine (TAF) on Enterococcus and elucidate its underlying mode of action. METHODS AND RESULTS: The present work investigated the susceptibility of TAF on 3 type strains and 11 clinical isolates of enterococci. The results indicated that TAF exhibited powerful antimicrobial activity against both of Enterococcus faecalis and Enterococcus faecium with minimum inhibitory and bactericidal concentrations ranging from 8 to 16 µg ml-1. Meanwhile, biofilm inhibition and eradication assays showed that TAF exhibited potent anti-biofilm activity against E. faecalis ATCC 29212 and E. faecium ATCC 19434. Ultra-microscopic observations revealed significant changes in bacterial morphology and structure caused by TAF, particularly for the disruption of plasma membrane. Mechanistic investigations also revealed that TAF altered both membrane permeability and potential while also impacting adenosine triphosphate production as well as reactive oxygen species generation. In addition, no detectable cytotoxicity of TAF on human cells was observed at concentrations near the minimal inhibitory concentration. CONCLUSIONS: In summary, this study confirmed that TAF could effectively inhibit Enterococcus as well as its biofilm formation.


Assuntos
Aminoquinolinas , Anti-Infecciosos , Enterococcus faecium , Humanos , Enterococcus , Antibacterianos/farmacologia , Enterococcus faecalis , Biofilmes , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
3.
Bioorg Chem ; 147: 107334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583251

RESUMO

Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria. The bromophenyl dimeric guanidinium peptoid compound 10j showed excellent activity against S. aureus 38 and E. coli K12 with MIC of 0.8 µg mL-1 and 6.2 µg mL-1, respectively. Further investigation into the mechanism of action revealed that the antibacterial effect might be attributed to the disruption of bacterial cell membranes, as suggested by tethered bilayer lipid membranes (tBLMs) and cytoplasmic membrane permeability studies. Notably, these promising antibacterial agents exhibited negligible toxicity against mammalian red blood cells. Additionally, the study explored the potential of 12 active compounds to disrupt established biofilms of S. aureus 38. The most effective biofilm disruptors were ethyl and octyl-naphthyl guanidinium peptoids (10c and 10 k). These compounds 10c and 10 k disrupted the established biofilms of S. aureus 38 with 51 % at 4x MIC (MIC = 17.6 µg mL-1 and 11.2 µg mL-1) and 56 %-58 % at 8x MIC (MIC = 35.2 µg mL-1 and 22.4 µg mL-1) respectively. Overall, this research contributes insights into the design principles of cationic dimeric peptoids and their antibacterial activity, with implications for the development of new antibacterial compounds.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Peptoides , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Peptoides/química , Peptoides/farmacologia , Peptoides/síntese química , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Dimerização , Escherichia coli/efeitos dos fármacos , Humanos , Eritrócitos/efeitos dos fármacos
4.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198527

RESUMO

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , Peptídeos , Amiloide/química , Antibacterianos/farmacologia , Hemoglobinas
5.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688047

RESUMO

The mosquito protein AEG12 is up-regulated in response to blood meals and flavivirus infection though its function remained elusive. Here, we determine the three-dimensional structure of AEG12 and describe the binding specificity of acyl-chain ligands within its large central hydrophobic cavity. We show that AEG12 displays hemolytic and cytolytic activity by selectively delivering unsaturated fatty acid cargoes into phosphatidylcholine-rich lipid bilayers. This property of AEG12 also enables it to inhibit replication of enveloped viruses such as Dengue and Zika viruses at low micromolar concentrations. Weaker inhibition was observed against more distantly related coronaviruses and lentivirus, while no inhibition was observed against the nonenveloped virus adeno-associated virus. Together, our results uncover the mechanistic understanding of AEG12 function and provide the necessary implications for its use as a broad-spectrum therapeutic against cellular and viral targets.


Assuntos
Antivirais/metabolismo , Hemolíticos/metabolismo , Proteínas de Insetos/metabolismo , Lipídeos , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Culicidae , Eritrócitos/efeitos dos fármacos , Ácidos Graxos Insaturados/metabolismo , Hemolíticos/química , Hemolíticos/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Ligantes , Lipídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Envelope Viral/metabolismo , Vírus/efeitos dos fármacos , Vírus/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38806110

RESUMO

From review of the very few topical studies to date, we conclude that while effects are variable, microplastics can induce direct ionoregulatory disturbances in freshwater fish and invertebrates. However, the intensity depends on microplastic type, size, concentration, and exposure regime. More numerous are studies where indirect inferences about possible ionoregulatory effects can be drawn; these indicate increased mucus production, altered breathing, histopathological effects on gill structure, oxidative stress, and alterations in molecular pathways. All of these could have negative effects on ionoregulatory homeostasis. However, previous research has suffered from a lack of standardized reporting of microplastic characteristics and exposure conditions. Often overlooked is the fact that microplastics are dynamic contaminants, changing over time through degradation and fragmentation and subsequently exhibiting altered surface chemistry, notably an increased presence and diversity of functional groups. The same functional groups characterized on microplastics are also present in dissolved organic matter, often termed dissolved organic carbon (DOC), a class of substances for which we have a far greater understanding of their ionoregulatory actions. We highlight instances in which the effects of microplastic exposure resemble those of DOC exposure. We propose that in future microplastic investigations, in vivo techniques that have proven useful in understanding the ionoregulatory effects of DOC should be used including measurements of transepithelial potential, net and unidirectional radio-isotopic ion flux rates, and concentration kinetic analyses of uptake transport. More sophisticated in vitro approaches using cultured gill epithelia, Ussing chamber experiments on gill surrogate membranes, and scanning ion selective electrode techniques (SIET) may also prove useful. Finally, in future studies we advocate for minimum reporting requirements of microplastic properties and experimental conditions to help advance this important emerging field.


Assuntos
Peixes , Água Doce , Brânquias , Invertebrados , Microplásticos , Poluentes Químicos da Água , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Microplásticos/toxicidade , Peixes/fisiologia , Peixes/metabolismo , Poluentes Químicos da Água/toxicidade , Invertebrados/efeitos dos fármacos , Invertebrados/fisiologia
7.
Small ; 19(31): e2207385, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36799145

RESUMO

The emergence and global spread of bacterial resistance to conventionally used antibiotics have highlighted the urgent need for new antimicrobial agents that might replace antibiotics. Currently, nanomaterials hold considerable promise as antimicrobial agents in anti-inflammatory therapy. Due to their distinctive functional physicochemical characteristics and exceptional biocompatibility, carbon dots (CDs)-based composites have attracted a lot of attention in the context of these antimicrobial nanomaterials. Here, a thorough assessment of current developments in the field of antimicrobial CDs-based composites is provided, starting with a brief explanation of the general synthesis procedures, categorization, and physicochemical characteristics of CDs-based composites. The many processes driving the antibacterial action of these composites are then thoroughly described, including physical destruction, oxidative stress, and the incorporation of antimicrobial agents. Finally, the obstacles that CDs-based composites now suffer in combating infectious diseases are outlined and investigated, along with the potential applications of antimicrobial CDs-based composites.


Assuntos
Anti-Infecciosos , Nanoestruturas , Pontos Quânticos , Carbono , Antibacterianos/farmacologia
8.
Chemistry ; 29(23): e202203860, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36722398

RESUMO

A de novo designed class of peptide-based fluoropolymers composed of fluorinated aliphatic amino acids as main components is reported. Structural characterization provided insights into fluorine-induced alterations on ß-strand to α-helix transition upon an increase in SDS content and revealed the unique formation of PPII structures for trifluorinated fluoropeptides. A combination of circular dichroism, fluorescence-based leaking assays and surface enhanced infrared absorption spectroscopy served to examine the insertion and folding processes into unilamellar vesicles. While partitioning into lipid bilayers, the degree of fluorination conducts a decrease in α-helical content. Furthermore, this study comprises a report on the proteolytic stability of peptides exclusively built up by fluorinated amino acids and proved all sequences to be enzymatically degradable despite the degree of fluorination. Herein presented fluoropeptides as well as the distinctive properties of these artificial and polyfluorinated foldamers with enzyme-degradable features will play a crucial role in the future development of fluorinated peptide-based biomaterials.


Assuntos
Aminoácidos , Peptídeos , Peptídeos/química , Aminoácidos/química , Peptídeo Hidrolases , Bicamadas Lipídicas/química , Proteólise , Dicroísmo Circular , Dobramento de Proteína
9.
Bioorg Chem ; 136: 106538, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37079988

RESUMO

In spite of several attempts to develop newer pharmacophores as potential antimicrobial agents, the benzimidazole scaffold is still considered as one of the most sought after structural component towards the design of compounds that act against a wide spectrum of microbes. Herein, we report the design and synthesis of a new structural class of 4-(1,3-thiazol-2-yl)morpholine-benzimidazole hybrids as antimicrobial agents. The most potent analog, 6g shows IC50 of 1.3 µM, 2.7 µM, 10.8 µM, 5.4 µM and 10.8 µM against Cryptococcus neoformans, Candida albicans, Candida parapsilosis, Escherichia coli and Staphylococcus aureus, respectively. Interestingly 6g exhibits selectivity towards the cryptococcal cells with fungicidal behavior. Propidium iodide uptake study shows permeabilization of pathogenic cells in the presence of 6g. Flow cytometric analysis confirms that cell death is predominantly due to apoptosis. Moreover, electron microscopic analysis specifies that it shrinks, disrupts and initiate pore(s) formation in the cell membrane leading to cell lysis.


Assuntos
Anti-Infecciosos , Criptococose , Cryptococcus neoformans , Humanos , Benzimidazóis/farmacologia , Candida albicans , Morfolinas , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia
10.
Bioorg Chem ; 138: 106679, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329812

RESUMO

Cryptococcus neoformans is an important opportunistic human fungal pathogen that causes cryptococcosis in immunocompromised patients. However, the number of drugs for the treatment of cryptococcosis is restricted, and the development of novel antifungal drugs and innovative strategies for the treatment of cryptococcosis is urgently needed. In this study, we validated that DvAMP is a novel antimicrobial peptide with antimicrobial activity and that it was obtained by pre-screening from the UniProt database of more than three million unknown functional sequences based on the quantitative structure-activity relationships (QSARs) protocol (http://www.chemoinfolab.com/antifungal). The peptide exhibited satisfactory biosafety and physicochemical properties, and relatively rapid fungicidal activity against C. neoformans. Meanwhile, DvAMP was able to inhibit the static biofilm of C. neoformans and cause a reduction in the thickness of the capsule. In addition, DvAMP exerts antifungal effects through membrane-mediated mechanisms (membrane permeability and depolarization) and mitochondrial dysfunction, involving a hybrid multi-hit mechanism. Furthermore, by using the C. neoformans-Galleria mellonella infection model, we demonstrated that DvAMP has significant therapeutic effects in vivo and that it significantly reduces the mortality and fungal burden of infected larvae. These results suggest that DvAMP may be a potential antifungal drug candidate for the treatment of cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Mariposas , Animais , Humanos , Antifúngicos/química , Peptídeos Antimicrobianos , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Testes de Sensibilidade Microbiana
11.
Foodborne Pathog Dis ; 20(7): 294-302, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347934

RESUMO

Staphylococcus aureus can cause bacterial food intoxication and seriously affect human health. Tea polyphenols (TP) are a kind of natural, safe, and broad-spectrum bacteriostatic substances, with a wide range of bacteriostatic effects. In the study, we explored the possible bacteriostatic mode of TP. The minimum inhibitory concentration of TP against S. aureus was 64 µg/mL. Protein, DNA, and K+ leak experiments, fluorescence microscopy, and transmission electron microscopy suggested that TP disrupt cell membranes, leading to intracellular component loss. By studying the effect of TP on the toxicity of S. aureus, it was found that the expression levels of two toxin genes, coa and spa, were downregulated by 2.37 and 32.6, respectively. Furthermore, after treatment with TP, a large number of reactive oxygen species (ROS) were propagated and released, leading to oxidative stress in cells. We speculated that the bacteriostatic mechanism of TP may be through the destruction of the cell membrane and ROS-mediated oxidative stress. Meanwhile, the hemolysis activity proved the safety of TP. Our results suggested that TP may be a potential antimicrobial agent for food.


Assuntos
Polifenóis , Staphylococcus aureus , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Polifenóis/farmacologia , Chá , Membrana Celular
12.
Arch Pharm (Weinheim) ; 356(4): e2200576, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36592413

RESUMO

Cryptococcus neoformans, an opportunistic fungal pathogen, causes cryptococcosis in immunocompromised persons. A series of modified L-histidines-containing peptides are synthesized that exhibit promising activity against C. neoformans. Analog 11d [L-His(2-adamantyl)-L-Trp-L-His(2-phenyl)-OMe] produced potency with an IC50 of 3.02 µg/ml (MIC = 5.49 µg/ml). This peptide is noncytotoxic and nonhaemolytic at the MIC and displays synergistic effects with amphotericin B at subinhibitory concentration. Mechanistic investigation of 11d using microscopic tools indicates cell wall and membrane disruption of C. neoformans, while flow cytometric analysis confirms cell death by apoptosis. This study indicates that 11d exhibits antifungal potential and acts via the rapid onset of action.


Assuntos
Criptococose , Cryptococcus neoformans , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Antifúngicos/farmacologia , Peptídeos/farmacologia , Anfotericina B/farmacologia , Criptococose/microbiologia
13.
Arch Pharm (Weinheim) ; 356(9): e2300175, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421212

RESUMO

Four new ruthenium polypyridyl complexes with prenyl groups, [Ru(bpy)2 (MHIP)](PF6 )2 (Ru(II)-1), [Ru(dtb)2 (MHIP)](PF6 )2 (Ru(II)-2), [Ru(dmb)2 (MHIP)](PF6 )2 (Ru(II)-3), and [Ru(dmob)2 (MHIP)](PF6 )2 (Ru(II)-4) (bpy = 2,2'-bipyridine, dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dmob = 4,4'-dimethoxy-2,2'-bipyridine, and MHIP = 2-(2,6-dimethylhepta-1,5-dien-1-yl)-1H-imidazo[4,f][1,10]phenanthroline), were synthesized and characterized. Their antibacterial activities against Staphylococcus aureus were assessed, and the minimum inhibition concentration (MIC) value of Ru(II)-2 against S. aureus was only 0.5 µg/mL, showing the best antibacterial activity among them. S. aureus could be quickly killed by Ru(II)-2 in 30 min and Ru(II)-2 displayed an obvious inhibitive effect on the formation of a biofilm, which was essential to avoid the development of drug-resistance. Meanwhile, Ru(II)-2 exhibited a stable MIC value against antibiotic-resistant bacteria. The antibacterial mechanism of Ru(II)-2 was probably related to depolarization of the cell membrane, and a change of permeability was associated with the formation of reactive oxygen species, leading to leakage of nucleic acid and bacterial death. Furthermore, Ru(II)-2 hardly showed toxicity to mammalian cells and the Galleria mellonella worm. Finally, murine infection studies also illustrated that Ru(II)-2 was highly effective against S. aureus in vivo.


Assuntos
Rutênio , Staphylococcus aureus , Animais , Camundongos , Antibacterianos/farmacologia , Rutênio/farmacologia , Relação Estrutura-Atividade , 2,2'-Dipiridil/farmacologia , DNA , Mamíferos/metabolismo
14.
Drug Dev Res ; 84(3): 514-526, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757096

RESUMO

Availability of a limited number of antifungal drugs created a necessity to develop new antifungals with distinct mode of action. Investigation on a new series of peptides led us to identify Boc-His-Trp-His[1-(4-tert-butylphenyl)] (10g) as the most promising inhibitor exhibiting IC50 value of 4.4 µg/mL against Cryptococcus neoformans. Analog 10g exhibit high selectivity to fungal cells and was nonhemolytic and noncytotoxic at its minimum inhibitory concentration. 10g produced fungicidal effect on growing cryptococcal cells and displayed synergistic effect with amphotericin B. Overall cationic character of 10g resulted in interaction with negatively charged fungal membrane while hydrophobicity enhanced penetration inside the cryptococcal cells causing hole(s) formation and disruption to the membrane as evident by the scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy analyses. Flow cytometric investigation revealed rapid death of fungal cells by apopotic pathway.


Assuntos
Aminoácidos , Antifúngicos , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Peptídeos/farmacologia , Membrana Celular , Testes de Sensibilidade Microbiana
15.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175626

RESUMO

For decades, the ability of detergents to solubilize biological membranes has been utilized in biotechnological manufacturing to disrupt the lipid envelope of potentially contaminating viruses and thus enhance the safety margins of plasma- and cell-derived drugs. This ability has been linked to detergent micelles, which are formed if the concentration of detergent molecules exceeds the critical micelle concentration (CMC). Traditionally, the CMC of detergents is determined in deionized water (ddH2O), i.e., a situation considerably different from the actual situation of biotechnological manufacturing. This study compared, for five distinct detergents, the CMC in ddH2O side-by-side with two biopharmaceutical process intermediates relevant to plasma-derived (Immunoglobulin) and cell-derived (monoclonal antibody) products, respectively. Depending on the matrix, the CMC of detergents changed by a factor of up to ~4-fold. Further, the CMC in biotechnological matrices did not correlate with antiviral potency, as Triton X-100 (TX-100) and similar detergents had comparatively higher CMCs than polysorbate-based detergents, which are known to be less potent in terms of virus inactivation. Finally, it was demonstrated that TX-100 and similar detergents also have virus-inactivating properties if applied below the CMC. Thus, the presence of detergent micelles might not be an absolute prerequisite for the disruption of virus envelopes.


Assuntos
Detergentes , Vírus , Detergentes/farmacologia , Micelas , Inativação de Vírus , Octoxinol/farmacologia
16.
Biotechnol Bioeng ; 119(11): 3007-3021, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35900072

RESUMO

Cell lysis is an essential step in many studies related to biology and medicine. Based on the scale and medium that cell lysis is carried out, there are three main types of the cell lysis: (1) lysis of the cells in the surrounding environment, (2) lysis of the isolated or cultured cells, and (3) single cell lysis. Conventionally, several cell lysis methods have been developed, such as freeze-thawing, bead beating, incursion in liquid nitrogen, sonication, and enzymatic and chemical-based approaches. In recent years, various novel technologies have been employed to develop new methods of cell lysis. The aim of studies in this field is to introduce more precise and efficient tools or to reduce the costs of cell lysis procedures. Nanostructure-based lysis methods, acoustic oscillation, electrical current, irradiation, bacteria-mediated cell lysis, magnetic ionic liquids, bacteriophage genes, monolith columns, hydraulic forces, and steam explosion are some examples of newly developed cell lysis methods. Besides the significant advances in this field, there are still many challenges and tools must be further improved.


Assuntos
Líquidos Iônicos , Vapor , Nitrogênio
17.
J Pept Sci ; 28(7): e3402, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34994038

RESUMO

Antimicrobial peptides have received increased attention due to the increasing prevalence of antibiotic-resistant bacteria. However, the development of antimicrobial peptides for clinical applications remains a huge challenge. SPA ([D-rg1 , D-Trp5,7,9 , Leu11 ]SP), an analog of substance P, is a broad-spectrum neuropeptide antagonist. In this study, we found that SPA could efficiently kill Gram-positive and Gram-negative bacteria by membrane disruption, similar to antimicrobial peptides. In addition, SPA showed high killing activity toward bacteria rather than mammalian cells. Our results also demonstrated that SPA could significantly decrease the expression of proinflammatory cytokines and rescue mice from lethal septic shock induced by lipopolysaccharide (LPS). The impressive therapeutic potential of SPA, as indicated in this study, makes it a good template for developing effective antibiotics. Meanwhile, our study provides a new idea for developing multifunctional therapeutic agents to combat bacterial infections.


Assuntos
Anti-Infecciosos , Anti-Inflamatórios , Neuropeptídeos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Camundongos , Testes de Sensibilidade Microbiana , Neuropeptídeos/antagonistas & inibidores
18.
Bioorg Chem ; 127: 106002, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35816873

RESUMO

The quest for new class of peptide-based antibiotics has steered this research towards the design and synthesis of short sequences possessing modified amphiphilic histidine along with hydrophobic tryptophan residues. The new structural class of dipeptides Trp-His(1-Bn)-OMe/NHBn and tripeptides His(1-Bn)-Trp-His(1-Bn)-OMe/NHBn demonstrated promising antifungal and antibacterial activities with membrane lytic action. The illustration of desirable hydrophilic-lipophilic balance appeared in the dipeptide Trp-His[1-(3,5-di-tert-butylbenzyl)]-NHBn (13d) that produced the most promising antifungal activity with IC50 value of 2.10 µg/mL and MIC = 3.81 µg/mL against C. neoformans and antibacterial activity against E. faecalis and S. aureus with identical IC50 value of 4.40 µg/mL and MIC of 8.0 µg/mL. Peptide 13d did not exhibit cytotoxicity and hemolysis at the MIC value and above. This quintessence amphiphilicity was further corroborated by the mechanistic elucidations, which revealed that, peptide act by utilizing charge and hydrophobicity as the primary characteristic tools. Owing to their fundamental affinity, the negatively charged fungal membrane is enacted upon by the positively charged peptide, whereas the intrinsic hydrophobicity of the peptide allowed penetration into the lipophillic core of the fungal cell membrane. Consequently, the integrity of cell membrane is compromised leading to increased fluidity. The membrane eventually disintegrates thereby creating a hollow pore and appearance of a doughnut into the cell when visualized under SEM. The cell death mechanism and damage to the cell wall and intracellular organelles have been elucidated with the help of flow cytometry, TEM and CLSM studies.


Assuntos
Antifúngicos , Cryptococcus neoformans , Antibacterianos/química , Antifúngicos/química , Dipeptídeos/química , Testes de Sensibilidade Microbiana , Peptídeos/química , Staphylococcus aureus
19.
Sensors (Basel) ; 22(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35632121

RESUMO

There is extensive interest in developing real-time biosensing strategies to characterize the membrane-disruptive properties of antimicrobial lipids and surfactants. Currently used biosensing strategies mainly focus on tracking membrane morphological changes such as budding and tubule formation, while there is an outstanding need to develop a label-free biosensing strategy to directly evaluate the molecular-level mechanistic details by which antimicrobial lipids and surfactants disrupt lipid membranes. Herein, using electrochemical impedance spectroscopy (EIS), we conducted label-free biosensing measurements to track the real-time interactions between three representative compounds-glycerol monolaurate (GML), lauric acid (LA), and sodium dodecyl sulfate (SDS)-and a tethered bilayer lipid membrane (tBLM) platform. The EIS measurements verified that all three compounds are mainly active above their respective critical micelle concentration (CMC) values, while also revealing that GML induces irreversible membrane damage whereas the membrane-disruptive effects of LA are largely reversible. In addition, SDS micelles caused membrane solubilization, while SDS monomers still caused membrane defect formation, shedding light on how antimicrobial lipids and surfactants can be active in, not only micellar form, but also as monomers in some cases. These findings expand our mechanistic knowledge of how antimicrobial lipids and surfactants disrupt lipid membranes and demonstrate the analytical merits of utilizing the EIS sensing approach to comparatively evaluate membrane-disruptive antimicrobial compounds.


Assuntos
Anti-Infecciosos , Bicamadas Lipídicas , Antibacterianos , Espectroscopia Dielétrica , Bicamadas Lipídicas/química , Micelas , Tensoativos/química
20.
Nano Lett ; 21(5): 1992-2000, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33616397

RESUMO

One major frustration in developing antibiotics is that bacteria can quickly develop resistance that would require an entirely new cycle of research and clinical testing to overcome. Although plenty of bactericidal nanomaterials have been developed against increasingly severe superbugs, few reports have studied the resistance to these nanomaterials. Herein, we show that antibacterial 4,6-diamino-2-pyrimidine thiol (DAPT)-capped gold nanoparticles (AuDAPTs) can induce a 16-fold increased minimum inhibitory concentration (MIC) of E. coli only after very long term exposure (183 days), without developing cross-resistance to commercialized antibiotics. Strikingly, we recovered the bactericidal activities of AuDAPTs to the resistant strain by tuning the sizes of AuDAPTs without employing new chemicals. Such slow, easy-to-handle resistance induced by AuDAPTs is unprecedented compared to traditional antibiotics or other nanomaterials. In addition to the novel antibacterial activities and biocompatibilities, our approach will accelerate the development of gold nanomaterial-based therapeutics against multi-drug-resistant (MDR) bacterial infections.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Escherichia coli , Ouro , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA