Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Microb Cell Fact ; 23(1): 112, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622596

RESUMO

BACKGROUND: Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS: This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l - 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h) - 1 , the lowest rate of 0.3 g (l h) - 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in ß -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION: We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.


Assuntos
Celulase , Hypocreales , Trichoderma , Celulase/metabolismo , Lactose/metabolismo , Reprodutibilidade dos Testes , Biotecnologia , Trichoderma/metabolismo
2.
Microb Cell Fact ; 22(1): 130, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452397

RESUMO

BACKGROUND: Modern genome editing enables rapid construction of genetic variants, which are further developed in Design-Build-Test-Learn cycles. To operate such cycles in high throughput, fully automated screening, including cultivation and analytics, is crucial in the Test phase. Here, we present the required steps to meet these demands, resulting in an automated microbioreactor platform that facilitates autonomous phenotyping from cryo culture to product assay. RESULTS: First, an automated deep freezer was integrated into the robotic platform to provide working cell banks at all times. A mobile cart allows flexible docking of the freezer to multiple platforms. Next, precultures were integrated within the microtiter plate for cultivation, resulting in highly reproducible main cultures as demonstrated for Corynebacterium glutamicum. To avoid manual exchange of microtiter plates after cultivation, two clean-in-place strategies were established and validated, resulting in restored sterile conditions within two hours. Combined with the previous steps, these changes enable a flexible start of experiments and greatly increase the walk-away time. CONCLUSIONS: Overall, this work demonstrates the capability of our microbioreactor platform to perform autonomous, consecutive cultivation and phenotyping experiments. As highlighted in a case study of cutinase-secreting strains of C. glutamicum, the new procedure allows for flexible experimentation without human interaction while maintaining high reproducibility in early-stage screening processes.


Assuntos
Reatores Biológicos , Corynebacterium glutamicum , Humanos , Reatores Biológicos/microbiologia , Reprodutibilidade dos Testes , Biomassa , Corynebacterium glutamicum/metabolismo
3.
Biotechnol Appl Biochem ; 70(3): 1121-1127, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36482798

RESUMO

Microbioreactors have been proven to be a useful tool in high-throughput applications, such as clone screening, synthetic library testing, and media optimization. Most were designed for low cell density applications, where the optical density of the cultures typically does not exceed an OD600 of 10. In microbial applications, where protein is to be expressed, such a scale is not sufficient to produce material for extensive target molecule testing. Here, we present a method for growing high-cell density Escherichia coli cultures in milliliter-scale bioreactors, to produce milligram quantities of target protein. We used a micro-Matrix system with a starting volume of 3 ml per culture. A combination of defined medium, a fed-batch feeding strategy at low temperature, and an advanced self-adapting control algorithm achieved up to 0.7 g of wet cell weight (WCW) in a 5.7 ml final culture volume, which corresponds to 123 g/L WCW. This translates to an estimated protein yield of 1150 mg of target protein per liter final volume.


Assuntos
Reatores Biológicos , Escherichia coli , Fermentação , Escherichia coli/genética , Escherichia coli/metabolismo , Contagem de Células , Meios de Cultura/metabolismo
4.
Sensors (Basel) ; 23(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050808

RESUMO

In recent years, advancements in microfluidic and sensor technologies have led to the development of new methods for monitoring cell growth both in macro- and micro-systems. In this paper, a microfluidic (MF) platform with a microbioreactor and integrated impedimetric sensor is proposed for cell growth monitoring during the cell cultivation process in a scaled-down simulator. The impedimetric sensor with an interdigitated electrode (IDE) design was realized with inkjet printing and integrated into the custom-made MF platform, i.e., the scaled-down simulator. The proposed method, which was integrated into a simple and rapid fabrication MF system, presents an excellent candidate for the scaled-down analyses of cell growths that can be of use in, e.g., optimization of the cultivated meat bioprocess. When applied to MRC-5 cells as a model of adherent mammalian cells, the proposed sensor was able to precisely detect all phases of cell growth (the lag, exponential, stationary, and dying phases) during a 96-h cultivation period with limited available nutrients. By combining the impedimetric approach with image processing, the platform enables the real-time monitoring of biomasses and advanced control of cell growth progress in microbioreactors and scaled-down simulator systems.


Assuntos
Mamíferos , Microfluídica , Animais , Eletrodos
5.
Microb Cell Fact ; 21(1): 78, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35527247

RESUMO

BACKGROUND: Currently, the generation of genetic diversity for microbial cell factories outpaces the screening of strain variants with omics-based phenotyping methods. Especially isotopic labeling experiments, which constitute techniques aimed at elucidating cellular phenotypes and supporting rational strain design by growing microorganisms on substrates enriched with heavy isotopes, suffer from comparably low throughput and the high cost of labeled substrates. RESULTS: We present a miniaturized, parallelized, and automated approach to 13C-isotopic labeling experiments by establishing and validating a hot isopropanol quenching method on a robotic platform coupled with a microbioreactor cultivation system. This allows for the first time to conduct automated labeling experiments at a microtiter plate scale in up to 48 parallel batches. A further innovation enabled by the automated quenching method is the analysis of free amino acids instead of proteinogenic ones on said microliter scale. Capitalizing on the latter point and as a proof of concept, we present an isotopically instationary labeling experiment in Corynebacterium glutamicum ATCC 13032, generating dynamic labeling data of free amino acids in the process. CONCLUSIONS: Our results show that a robotic liquid handler is sufficiently fast to generate informative isotopically transient labeling data. Furthermore, the amount of biomass obtained from a sub-milliliter cultivation in a microbioreactor is adequate for the detection of labeling patterns of free amino acids. Combining the innovations presented in this study, isotopically stationary and instationary automated labeling experiments can be conducted, thus fulfilling the prerequisites for 13C-metabolic flux analyses in high-throughput.


Assuntos
2-Propanol , Corynebacterium glutamicum , 2-Propanol/metabolismo , Aminoácidos/metabolismo , Isótopos de Carbono/metabolismo , Corynebacterium glutamicum/metabolismo , Marcação por Isótopo/métodos
6.
Mar Drugs ; 20(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35736142

RESUMO

Reconsideration of the spectroscopic data for penipacids A-E, first reported in 2013 as the acyclic amidines 1-5 from the South China deep sea sediment-derived fungus Penicillium paneum SD-44, prompted a total synthesis structure revision as the hydrazones 6-10. This revision strongly supported the proposition that penipacids A-B (6-7) were artifact Schiff base adducts of the cryptic (undetected) natural product N-aminoanthranilic acid (11) with diacetone alcohol, induced by excessive exposure to acetone and methanol under acidic handling conditions. Likewise, the revised structures for penipacids C-D (8-9) and E (10) raise the possibility that they may also be artifact Schiff base adducts of 11 and the media constituents pyruvic acid and furfural, respectively. A review of the natural products literature revealed other Schiff base (hydrazone) natural products that might also be viewed as Schiff base adduct artifacts of 11. Having raised the prospect that 11 is an undetected and reactive cryptic natural product, we went on to establish that 11 is not cytotoxic to a range of bacterial, fungal or mammalian (human) cell types. Instead, when added as a supplement to microbial cultivations, 11 can act as a chemical cue/transcriptional regulator, activating and/or enhancing the yield of biosynthetic gene clusters encoding for other natural product chemical defenses. This study demonstrates the value of challenging the structure and artifact status of natural products, as a window into the hidden world of cryptic and highly reactive natural products.


Assuntos
Produtos Biológicos , ortoaminobenzoatos , Bactérias/genética , Bactérias/metabolismo , Produtos Biológicos/química , Humanos , Família Multigênica , Bases de Schiff , Metabolismo Secundário , ortoaminobenzoatos/química
7.
Transfus Med Hemother ; 49(4): 258-267, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36159960

RESUMO

Background: The stem cell niche in human bone marrow provides scaffolds, cellular frameworks and essential soluble cues to support the stemness of hematopoietic stem and progenitor cells (HSPCs). To decipher this complex structure and the corresponding cellular interactions, a number of in vitro model systems have been developed. The cellular microenvironment is of key importance, and mesenchymal stromal cells (MSCs) represent one of the major cellular determinants of the niche. Regulation of the self-renewal and differentiation of HSPCs requires not only direct cellular contact and adhesion molecules, but also various cytokines and chemokines. The C-X-C chemokine receptor type 4/stromal cell-derived factor 1 axis plays a pivotal role in stem cell mobilization and homing. As we have learned in recent years, to realistically simulate the physiological in vivo situation, advanced model systems should be based on niche cells arranged in a three-dimensional (3D) structure. By providing a dynamic rather than static setup, microbioreactor systems offer a number of advantages. In addition, the role of low oxygen tension in the niche microenvironment and its impact on hematopoietic stem cells need to be taken into account and are discussed in this review. Summary: This review focuses on the role of MSCs as a part of the bone marrow niche, the interplay between MSCs and HSPCs and the most important regulatory factors that need to be considered when engineering artificial hematopoietic stem cell niche systems. Conclusion: Advanced 3D model systems using MSCs as niche cells and applying microbioreactor-based technology are capable of simulating the natural properties of the bone marrow niche more closely than ever before.

8.
World J Microbiol Biotechnol ; 39(1): 33, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469174

RESUMO

Pseudomonas fluorescens is considered among the main spoilage microorganisms due to its ability to produce proteases. Food deterioration caused by spoilage microorganisms has a major impact on food quality and the environment. The inactivation of Pseudomonas fluorescens growth and protease production was intensively investigated with the use of Salmide®, A Sodium Chlorite-Based Oxy-halogen Disinfectant. A unique M9 media was also developed to assure sufficient protease productions with different mutants of Pseudomonas fluorescens as a microbioreactor. Mutations were induced by classical whole-cell mutagenesis using N-methyl-N'- nitro-N-nitrosoguanidine (NTG). A dramatic decrease occurred in protease activity when different Salmide concentrations (5, 10, and 15 ppm) were added to the growth culture followed by a complete inhibition concentration (20, 25, 50, and 100 ppm) of Salmide. However, no significant inhibition occurred once it is secreted out of cells. Some mutants were resistant and remains highly stable with high protease production under stressful conditions of Sodium Chlorite-Based Oxy-halogen. The production of the protease showed a linear correlation with the increase in incubation time using a continuous culture bioreactor system and recorded maximum protease activity after 40 h. Our findings would offer alternative antimicrobial procedures for food and industrial sectors.


Assuntos
Pseudomonas fluorescens , Endopeptidases , Peptídeo Hidrolases , Halogênios
9.
Biotechnol Bioeng ; 118(7): 2472-2481, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33738795

RESUMO

Microalgae have shown great potential as a source of biofuels, food, and other bioproducts. More recently, microfluidic devices have been employed in microalgae-related studies. However, at small fluid volumes, the options for controlling flow conditions are more limited and mixing becomes largely reliant on diffusion. In this study, we fabricated magnetic artificial cilia (MAC) and implemented them in millimeter scale culture wells and conducted growth experiments with Scenedesmus subspicatus while actuating the MAC in a rotating magnetic field to create flow and mixing. In addition, surface of MAC was made hydrophilic using plasma treatment and its effect on growth was compared with untreated, hydrophobic MAC. The experiments showed that the growth was enhanced by ten and two times with hydrophobic and hydrophilic MAC, respectively, compared with control groups which contain no MAC. This technique can be used to investigate mixing and flow in small sample volumes, and the enhancement in growth can be beneficial for the throughput of screening studies. Moreover, the methods used for creating and controlling MAC can be easily adopted in labs without microfabrication infrastructures, and they can be mastered by people with little prior experience in microfluidics.


Assuntos
Cílios , Campos Magnéticos , Microalgas/crescimento & desenvolvimento , Scenedesmus/crescimento & desenvolvimento , Magnetismo
10.
Biotechnol Bioeng ; 118(1): 279-293, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936453

RESUMO

Taxadien-5α-hydroxylase and taxadien-5α-ol O-acetyltransferase catalyze the oxidation of taxadiene to taxadien-5α-ol and subsequent acetylation to taxadien-5α-yl-acetate in the biosynthesis of the blockbuster anticancer drug, paclitaxel (Taxol®). Despite decades of research, the promiscuous and multispecific CYP725A4 enzyme remains a major bottleneck in microbial biosynthetic pathway development. In this study, an interdisciplinary approach was applied for the construction and optimization of the early pathway in Saccharomyces cerevisiae, across a range of bioreactor scales. High-throughput microscale optimization enhanced total oxygenated taxane titer to 39.0 ± 5.7 mg/L and total taxane product titers were comparable at micro and minibioreactor scale at 95.4 ± 18.0 and 98.9 mg/L, respectively. The introduction of pH control successfully mitigated a reduction of oxygenated taxane production, enhancing the potential taxadien-5α-ol isomer titer to 19.2 mg/L, comparable with the 23.8 ± 3.7 mg/L achieved at microscale. A combination of bioprocess optimization and increased gas chromatography-mass spectrometry resolution at 1 L bioreactor scale facilitated taxadien-5α-yl-acetate detection with a final titer of 3.7 mg/L. Total oxygenated taxane titers were improved 2.7-fold at this scale to 78 mg/L, the highest reported titer in yeast. Critical parameters affecting the productivity of the engineered strain were identified across a range of scales, providing a foundation for the development of robust integrated bioprocess control systems.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae , Taxoides/metabolismo , Paclitaxel/biossíntese , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
11.
Nanomedicine ; 31: 102311, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011392

RESUMO

A novel biomimetic nanovesicle-loaded supramolecular enzyme-based therapeutics has been developed. Here, using a biomimetic lipid-D-α-tocopherol polyethylene glycol succinate (TPGS) hybrid semi-permeable membrane, cyclodextrin supramolecular docking, metal-ion-aided coordination complexing, we combined multiple functional motifs into a single biomimetic microbioreactor-supramolecular nanovesicle (MiSuNv) that allowed effective transport of arginine deiminase (ADI) to hepatic tumor cells to enhance arginine depletion. We compared two intercalated enzyme-carrying supermolecular motifs mainly comprising of 2-hydroxypropyl-ß-cyclodextrin and sulfobutyl-ether-ß-cyclodextrin, the only two cyclodextrin derivatives approved for injection by the United States Food and Drug Administration. The ADI-specific antitumor effects were enhanced by TPGS (one constituent of MiSuNv, having synergistic antitumor effects), as ADI was separated from adverse external environment by a semi-permeable membrane and sequestered in a favorable internal microenvironment with an optimal pH and metal-ion combination. ADI@MiSuNv contributed to cell cycle arrest, apoptosis and autophagy through the enhanced efficacy of enzyme treatment against Hep3B xenograft tumors in rats.


Assuntos
Terapia Enzimática/métodos , Hidrolases/química , Hidrolases/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/química , Animais , Biomimética/métodos , Humanos , Concentração de Íons de Hidrogênio , Vitamina E/química
12.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467648

RESUMO

Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.


Assuntos
Bioimpressão/métodos , Impressão Tridimensional , Regeneração , Engenharia Tecidual/tendências , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Reatores Biológicos , Técnicas de Cultura de Células , Técnicas de Cultura , Matriz Extracelular/metabolismo , Feminino , Humanos , Hidrogéis/química , Masculino , Nanofibras , Nanopartículas , Ovário/fisiologia , Transdução de Sinais , Testículo/fisiologia
13.
Food Technol Biotechnol ; 59(3): 325-336, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34759764

RESUMO

RESEARCH BACKGROUND: Cellulose is an ingredient of waste materials that can be converted to other valuable substances. This is possible provided that the polymer molecule is degraded to smaller particles and used as a carbon source by microorganisms. Because of the frequently applied methods of pretreatment of lignocellulosic materials, the cellulases derived from thermophilic microorganisms are particularly desirable. EXPERIMENTAL APPROACH: We were looking for cellulolytic microorganisms able to grow at 50 °C and we described their morphological features and biochemical characteristics based on carboxymethyl cellulase (CMCase) activity and the API® ZYM system. The growth curves during incubation at 50 °C were examined using the BioLector® microbioreactor. RESULTS AND CONCLUSIONS: Forty bacterial strains were isolated from fermenting hay, geothermal karst spring, hot spring and geothermal pond at 50 °C. The vast majority of the bacteria were Gram-positive and rod-shaped with the maximum growth temperature of at least 50 °C. We also demonstrated a large diversity of biochemical characteristics among the microorganisms. The CMCase activity was confirmed in 27 strains. Hydrolysis capacities were significant in bacterial strains: BBLN1, BSO6, BSO10, BSO13 and BSO14, and reached 2.74, 1.62, 1.30, 1.38 and 8.02 respectively. Rapid and stable growth was observed, among others, for BBLN1, BSO10, BSO13 and BSO14. The strains fulfilled the selection conditions and were identified based on the 16S rDNA sequences. BBLN1, BSO10, BSO13 were classified as Bacillus licheniformis, whereas BSO14 as Paenibacillus lactis. NOVELTY AND SCIENTIFIC CONTRIBUTION: We described cellulolytic activity and biochemical characteristics of many bacteria isolated from hot environments. We are also the first to report the cellulolytic activity of thermotolerant P. lactis. Described strains can be a source of new thermostable cellulases, which are extremely desirable in various branches of circular bioeconomy.

14.
Biomed Microdevices ; 22(1): 20, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32078073

RESUMO

Cyclo Olefin Polymer (COP) based microbioreactors on a microfluidic chip were produced in house by hot-embossing and thermo-compression bonding methods. The chip allows two different experiments to be performed on trapped cells at the same time. On one side of the chip, red fluorescent protein (RFP) tagged nucleolar Nop56 protein was used to track changes in cell cycle as well as protein synthesis within the yeast cells under the application of the anti-tumor agent hydroxyurea (HU). Simultaneously, on the other side of the chip, the response of yeast cells to the drug metformin, mTOR inhibitor, was investigated to reveal the role of TOR signaling in ribosome biogenesis and cell proliferation. The results of 20 h long experiments are captured by taking brightfield and fluorescent microscopy images of the trapped cells every 9 min. The expression of Nop56 protein of ribosome assembly and synthesis was densely observed during G1 phase of cell cycle, and later towards the end of cell cycle the ribosomal protein expression slowed down. Under HU treatment, the morphology of yeast cells changed, but after cessation of HU, the biomass synthesis rate was sustained as monitored by the cell perimeter. Under metformin treatment, the perimeters of single cells were observed to decrease, implying a decrease in biomass growth; however these cells continued their proliferation during and after the drug application. The relation between ribosome biogenesis and cell cycle was successfully investigated on single cell basis, capturing cell-to-cell variations, which cannot be tracked by regular macroscale bioreactors.


Assuntos
Cicloparafinas/química , Dispositivos Lab-On-A-Chip , Saccharomyces cerevisiae , Análise de Célula Única , Proliferação de Células/efeitos dos fármacos , Hidroxiureia/farmacologia , Metformina/farmacologia , Microscopia de Fluorescência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
15.
Biotechnol Bioeng ; 117(10): 3018-3028, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32568407

RESUMO

Adoptive T-cell therapy (ACT) has emerged as a promising new way to treat systemic cancers such as acute lymphoblastic leukemia. However, the robustness and reproducibility of the manufacturing process remains a challenge. Here, a single-use 24-well microbioreactor (micro-Matrix) was assessed for its use as a high-throughput screening tool to investigate the effect and the interaction of different shaking speeds, dissolved oxygen (DO), and pH levels on the growth and differentiation of primary T cells in a perfusion-mimic process. The full factorial design allowed for the generation of predictive models, which were used to find optimal culture conditions. Agitation was shown to play a fundamental role in the proliferation of T cells. A shaking speed of 200 rpm drastically improved the final viable cell concentration (VCC), while the viability was maintained above 90% throughout the cultivation. VCCs reached a maximum of 9.22 × 106 cells/ml. The distribution of CD8+ central memory T cells (TCM ), was found to be largely unaffected by the shaking speed. A clear interaction between pH and DO (p < .001) was established for the cell growth and the optimal culture conditions were identified for a combination of 200 rpm, 25% DO, and pH of 7.4. The combination of microbioreactor technology and Design of Experiment methodology provides a powerful tool to rapidly gain an understanding of the design space of the T-cell manufacturing process.


Assuntos
Reatores Biológicos/normas , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Imunoterapia Adotiva/métodos , Oxigênio/metabolismo , Linfócitos T/citologia , Humanos , Concentração de Íons de Hidrogênio , Linfócitos T/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(12): E2293-E2302, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265064

RESUMO

Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.


Assuntos
Automação/métodos , Técnicas Biossensoriais/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Organoides/fisiologia , Automação/instrumentação , Técnicas Biossensoriais/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Coração/fisiologia , Humanos , Fígado/química , Fígado/fisiologia , Microfluídica , Modelos Biológicos , Miocárdio , Organoides/química , Organoides/efeitos dos fármacos
17.
Biotechnol Bioeng ; 116(1): 65-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199096

RESUMO

A new disposable, multiphase, microbioreactor (MBR; with a working volume of 550 µl) equipped with online sensors is presented for biotechnological screening research purposes owing to its high-throughput potential. Its design and fabrication, online sensor integration, and operation are described. During aerobic cultivation, sufficient oxygen supply is the most important factor that influences growth and product formation. The MBR is a microbubble column bioreactor (µBC), and the oxygen supply was realized by active pneumatic bubble aeration, ensuring sufficient volumetric liquid-phase mass transfer (k L a) and proper homogenization of the cultivation broth. The µBC was equipped with miniaturized sensors for the pH, dissolved oxygen, optical density and glucose concentration that allowed real-time online monitoring of these process variables during cultivation. The challenge addressed here was the integration of sensors in the limited available space. The MBR was shown to be a suitable screening platform for the cultivation of biological systems. Batch cultivations of Saccharomyces cerevisiae were performed to observe the variation in the process variables over time and to show the robustness and operability of all the online sensors in the MBR.


Assuntos
Produtos Biológicos/metabolismo , Reatores Biológicos/microbiologia , Biotecnologia/métodos , Programas de Rastreamento/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Aerobiose , Meios de Cultura/química , Glucose/análise , Concentração de Íons de Hidrogênio , Oxigênio/análise , Espectrofotometria
18.
Bioprocess Biosyst Eng ; 42(6): 953-961, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30810809

RESUMO

Bioreactors at the microliter scale offer a promising approach to accelerate bioprocess development. Advantages of such microbioreactors include a reduction in the use of expensive reagents. In this study, a chemostat operation mode of a cuvette-based microbubble column bioreactor made of polystyrene (working volume of 550 µL) was demonstrated. Aeration occurs through a nozzle (Ø ≤ 100 µm) and supports submerged whole-cell cultivation of Staphylococcus carnosus. Stationary concentrations of biomass and glucose were determined in the dilution rate regime ranging from 0.12 to 0.80 1/h with a glucose feed concentration of 1 g/L. For the first time, reaction kinetics of S. carnosus were estimated from data obtained from continuous cultivation. The maximal specific growth rate (µmax = 0.824 1/h), Monod constant (KS = 34 × 10- 3gS/L), substrate-related biomass yield coefficient (YX/S = 0.315 gCDW/gS), and maintenance coefficient (mS = 0.0035 gS/(gCDW·h)) were determined. These parameters are now available for further studies in the field of synthetic biology.


Assuntos
Biomassa , Reatores Biológicos/microbiologia , Staphylococcus/crescimento & desenvolvimento
19.
Bioorg Med Chem ; 26(8): 2092-2098, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555418

RESUMO

A microbioreactor immobilized with a synthase-type mutant enzyme, Endo-M-N175Q (glycosynthase) of endo-ß-N-acetylglucosaminidase derived from Mucor hiemalis (Endo-M), was constructed and used for glycoconjugate synthesis. The transglycosylation was performed with a reaction mixture containing an oxazoline derivative of sialo complex-type glycoside (SG), which was prepared from a sialo complex-type glycopeptide SGP derived from hen egg yolk, as a glycosyl donor and N-Fmoc-N-acetylglucosaminyl-l-asparagine [Fmoc-Asn(GlcNAc)-OH] as an acceptor. The reaction mixture was injected into a glycosynthase microbioreactor at a constant flow rate. Highly efficient and nearly stoichiometric transglycosylation occurred in the microbioreactor, and the transglycosylation product was eluted from the other end of the reactor. The glycosynthase microbioreactor was stable and could be used repeatedly for a long time.


Assuntos
Glicoconjugados/biossíntese , Animais , Reatores Biológicos , Galinhas , Cromatografia Líquida de Alta Pressão , Gema de Ovo/metabolismo , Glicoconjugados/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Mucor/enzimologia , Especificidade por Substrato
20.
Biochem Biophys Res Commun ; 484(2): 225-230, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28082203

RESUMO

Since the leading cause of death are cardiac diseases, engineered heart tissue (EHT) is one of the most appealing topics defined in tissue engineering and regenerative medicine fields. The importance of EHT is not only for heart regeneration but also for in vitro developing of cardiology. Cardiomyocytes could grow and commit more naturally in their microenvironment rather than traditional cultivation. Thus, this research tried to develop a set up on-a-chip to produce EHT based on chitosan hydrogel. Micro-bioreactor was hydrodynamically designed and simulated by COMSOL and produced via soft lithography process. Chitosan hydrogel was also prepared, adjusted, and assessed by XRD, FTIR and also its degradation rate and swelling ratio were determined. Finally, hydrogels in which mice cardiac progenitor cells (CPC) were loaded were injected into the micro-device chambers and cultured. Each EHT in every chamber was evaluated separately. Prepared EHTs showed promising results that expanded in them CPCs and work as an integrated syncytium. High cell density culture was the main accomplishment of this study.


Assuntos
Coração , Hidrogéis , Dispositivos Lab-On-A-Chip , Engenharia Tecidual , Animais , Reatores Biológicos , Proliferação de Células , Camundongos , Microscopia Eletrônica de Varredura , Miocárdio/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA