Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Biol Chem ; 300(9): 107679, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154912

RESUMO

Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.


Assuntos
Biossíntese de Proteínas , RNA de Transferência , RNA de Transferência/metabolismo , RNA de Transferência/genética , Humanos , Animais , Ribossomos/metabolismo , Códon/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
2.
Mol Ther ; 32(2): 352-371, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38104240

RESUMO

Missense mutations account for approximately 50% of pathogenic mutations in human genetic diseases, and most lack effective treatments. Gene therapies, gene editing, and RNA therapies, including transfer RNA (tRNA) modalities, are common strategies for genetic disease treatments. However, reported tRNA therapies are for nonsense mutations only. It has not been explored how tRNAs can be engineered to correct missense mutations. Here, we describe missense-correcting tRNAs (mc-tRNAs) as a potential therapeutic for correcting pathogenic missense mutations. Mc-tRNAs are engineered tRNAs charged with one amino acid, but read codons of another in translation. We first developed a series of fluorescent protein-based reporters that indicate the successful correction of missense mutations via restoration of fluorescence. We engineered mc-tRNAs that effectively corrected serine and arginine missense mutations in the reporters and confirmed the amino acid substitution by mass spectrometry and mc-tRNA expression by sequencing. We examined the transcriptome response to mc-tRNA expression and found some mc-tRNAs induced minimum transcriptomic changes. Furthermore, we applied an mc-tRNA to rescue a pathogenic CAPN3 Arg-to-Gln mutant involved in LGMD2A. These results establish a versatile pipeline for mc-tRNA engineering and demonstrate the potential of mc-tRNA as an alternative therapeutic platform for the treatment of genetic disorders.


Assuntos
Mutação de Sentido Incorreto , RNA de Transferência , Humanos , RNA de Transferência/genética , Códon , Mutação , Aminoácidos
3.
J Biol Chem ; 299(8): 104974, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380073

RESUMO

The notion that errors in protein synthesis are universally harmful to the cell has been questioned by findings that suggest such mistakes may sometimes be beneficial. However, how often these beneficial mistakes arise from programmed changes in gene expression as opposed to reduced accuracy of the translation machinery is still unclear. A new study published in JBC shows that some bacteria have beneficially evolved the ability to mistranslate specific parts of the genetic code, a trait that allows improved antibiotic resistance.


Assuntos
Biossíntese de Proteínas , RNA de Transferência , Bactérias/genética , Código Genético , Biossíntese de Proteínas/genética , RNA de Transferência/genética
4.
J Biol Chem ; 299(7): 104852, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224963

RESUMO

The correct coupling of amino acids with transfer RNAs (tRNAs) is vital for translating genetic information into functional proteins. Errors during this process lead to mistranslation, where a codon is translated using the wrong amino acid. While unregulated and prolonged mistranslation is often toxic, growing evidence suggests that organisms, from bacteria to humans, can induce and use mistranslation as a mechanism to overcome unfavorable environmental conditions. Most known cases of mistranslation are caused by translation factors with poor substrate specificity or when substrate discrimination is sensitive to molecular changes such as mutations or posttranslational modifications. Here we report two novel families of tRNAs, encoded by bacteria from the Streptomyces and Kitasatospora genera, that adopted dual identities by integrating the anticodons AUU (for Asn) or AGU (for Thr) into the structure of a distinct proline tRNA. These tRNAs are typically encoded next to a full-length or truncated version of a distinct isoform of bacterial-type prolyl-tRNA synthetase. Using two protein reporters, we showed that these tRNAs translate asparagine and threonine codons with proline. Moreover, when expressed in Escherichia coli, the tRNAs cause varying growth defects due to global Asn-to-Pro and Thr-to-Pro mutations. Yet, proteome-wide substitutions of Asn with Pro induced by tRNA expression increased cell tolerance to the antibiotic carbenicillin, indicating that Pro mistranslation can be beneficial under certain conditions. Collectively, our results significantly expand the catalog of organisms known to possess dedicated mistranslation machinery and support the concept that mistranslation is a mechanism for cellular resiliency against environmental stress.


Assuntos
Código Genético , Biossíntese de Proteínas , RNA de Transferência , Humanos , Aminoácidos/metabolismo , Códon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Prolina/metabolismo , Biossíntese de Proteínas/genética , Proteínas/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Treonina/metabolismo , Streptomyces/genética , Mutação , Proteoma
5.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283551

RESUMO

Mistranslation-the erroneous incorporation of amino acids into nascent proteins-is a source of protein variation that is orders of magnitude more frequent than DNA mutation. Like other sources of nongenetic variation, it can affect adaptive evolution. We study the evolutionary consequences of mistranslation with experimental data on mistranslation rates applied to three empirical adaptive landscapes. We find that mistranslation generally flattens adaptive landscapes by reducing the fitness of high fitness genotypes and increasing that of low fitness genotypes, but it does not affect all genotypes equally. Most importantly, it increases genetic variation available to selection by rendering many neutral DNA mutations nonneutral. Mistranslation also renders some beneficial mutations deleterious and vice versa. It increases the probability of fixation of 3-8% of beneficial mutations. Even though mistranslation increases the incidence of epistasis, it also allows populations evolving on a rugged landscape to evolve modestly higher fitness. Our observations show that mistranslation is an important source of nongenetic variation that can affect adaptive evolution on fitness landscapes in multiple ways.


Assuntos
Evolução Molecular , Aptidão Genética , Mutação , Genótipo , Modelos Genéticos , Epistasia Genética
6.
RNA Biol ; 21(1): 1-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38629491

RESUMO

Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.


Assuntos
Aminoacil-tRNA Sintetases , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Anticódon/genética , Leucina/genética , RNA de Transferência de Leucina/genética , Código Genético , Códon , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Alanina/genética , Mamíferos/genética
7.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34413202

RESUMO

Inaccurate expression of the genetic code, also known as mistranslation, is an emerging paradigm in microbial studies. Growing evidence suggests that many microbial pathogens can deliberately mistranslate their genetic code to help invade a host or evade host immune responses. However, discovering different capacities for deliberate mistranslation remains a challenge because each group of pathogens typically employs a unique mistranslation mechanism. In this study, we address this problem by studying duplicated genes of aminoacyl-transfer RNA (tRNA) synthetases. Using bacterial prolyl-tRNA synthetase (ProRS) genes as an example, we identify an anomalous ProRS isoform, ProRSx, and a corresponding tRNA, tRNAProA, that are predominately found in plant pathogens from Streptomyces species. We then show that tRNAProA has an unusual hybrid structure that allows this tRNA to mistranslate alanine codons as proline. Finally, we provide biochemical, genetic, and mass spectrometric evidence that cells which express ProRSx and tRNAProA can translate GCU alanine codons as both alanine and proline. This dual use of alanine codons creates a hidden proteome diversity due to stochastic Ala→Pro mutations in protein sequences. Thus, we show that important plant pathogens are equipped with a tool to alter the identity of their sense codons. This finding reveals the initial example of a natural tRNA synthetase/tRNA pair for dedicated mistranslation of sense codons.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Códon , Escherichia coli/metabolismo , Código Genético , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/metabolismo , Streptomyces/metabolismo , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Prolina/genética , Prolina/metabolismo , Aminoacil-RNA de Transferência/genética , Homologia de Sequência , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Especificidade por Substrato
8.
RNA Biol ; 20(1): 791-804, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776539

RESUMO

Transfer RNAs (tRNAs) maintain translation fidelity through accurate charging by their cognate aminoacyl-tRNA synthetase and codon:anticodon base pairing with the mRNA at the ribosome. Mistranslation occurs when an amino acid not specified by the genetic message is incorporated into proteins and has applications in biotechnology, therapeutics and is relevant to disease. Since the alanyl-tRNA synthetase uniquely recognizes a G3:U70 base pair in tRNAAla and the anticodon plays no role in charging, tRNAAla variants with anticodon mutations have the potential to mis-incorporate alanine. Here, we characterize the impact of the 60 non-alanine tRNAAla anticodon variants on the growth of Saccharomyces cerevisiae. Overall, 36 tRNAAla anticodon variants decreased growth in single- or multi-copy. Mass spectrometry analysis of the cellular proteome revealed that 52 of 57 anticodon variants, not decoding alanine or stop codons, induced mistranslation when on single-copy plasmids. Variants with G/C-rich anticodons resulted in larger growth deficits than A/U-rich variants. In most instances, synonymous anticodon variants impact growth differently, with anticodons containing U at base 34 being the least impactful. For anticodons generating the same amino acid substitution, reduced growth generally correlated with the abundance of detected mistranslation events. Differences in decoding specificity, even between synonymous anticodons, resulted in each tRNAAla variant mistranslating unique sets of peptides and proteins. We suggest that these differences in decoding specificity are also important in determining the impact of tRNAAla anticodon variants.


Assuntos
Anticódon , RNA de Transferência de Alanina , Anticódon/genética , RNA de Transferência de Alanina/metabolismo , RNA de Transferência/metabolismo , Códon , Alanina/genética , Alanina/metabolismo , Biossíntese de Proteínas
9.
Biol Pharm Bull ; 46(12): 1676-1682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044091

RESUMO

Galectin-2 (Gal-2) is an animal lectin with specificity for ß-galactosides. It is predominantly expressed and suggested to play a protective function in the gastrointestinal tract; therefore, it can be used as a protein drug. Recombinant proteins have been expressed using Escherichia coli and used to study the function of Gal-2. The recombinant human Gal-2 (hGal-2) protein purified via affinity chromatography after being expressed in E. coli was not completely homogeneous. Mass spectrometry confirmed that some recombinant Gal-2 were phosphogluconoylated. In contrast, the recombinant mouse Gal-2 (mGal-2) protein purified using affinity chromatography after being expressed in E. coli contained a different form of Gal-2 with a larger molecular weight. This was due to mistranslating the original mGal-2 stop codon TGA to tryptophan (TGG). In this report, to obtain a homogeneous Gal-2 protein for further studies, we attempted the following methods: for hGal-2, 1) replacement of the lysine (Lys) residues, which was easily phosphogluconoylated with arginine (Arg) residues, and 2) addition of histidine (His)-tag on the N-terminus of the recombinant protein and cleavage with protease after expression; for mGal-2, 3) changing the stop codon from TGA to TAA, which is commonly used in E. coli. We obtained an almost homogeneous recombinant Gal-2 protein (human and mouse). These results have important implications for using Gal-2 as a protein drug.


Assuntos
Escherichia coli , Galectina 2 , Camundongos , Animais , Humanos , Galectina 2/química , Escherichia coli/genética , Escherichia coli/metabolismo , Códon de Terminação/metabolismo , Proteínas Recombinantes/metabolismo , Processamento de Proteína Pós-Traducional
10.
Proc Natl Acad Sci U S A ; 117(30): 17924-17931, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661175

RESUMO

Antibiotic resistance frequently evolves through fitness trade-offs in which the genetic alterations that confer resistance to a drug can also cause growth defects in resistant cells. Here, through experimental evolution in a microfluidics-based turbidostat, we demonstrate that antibiotic-resistant cells can be efficiently inhibited by amplifying the fitness costs associated with drug-resistance evolution. Using tavaborole-resistant Escherichia coli as a model, we show that genetic mutations in leucyl-tRNA synthetase (that underlie tavaborole resistance) make resistant cells intolerant to norvaline, a chemical analog of leucine that is mistakenly used by tavaborole-resistant cells for protein synthesis. We then show that tavaborole-sensitive cells quickly outcompete tavaborole-resistant cells in the presence of norvaline due to the amplified cost of the molecular defect of tavaborole resistance. This finding illustrates that understanding molecular mechanisms of drug resistance allows us to effectively amplify even small evolutionary vulnerabilities of resistant cells to potentially enhance or enable adaptive therapies by accelerating posttreatment competition between resistant and susceptible cells.


Assuntos
Evolução Biológica , Resistência a Medicamentos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Variação Genética , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
11.
Mol Biol Evol ; 38(11): 4792-4804, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34255074

RESUMO

Translational errors during protein synthesis cause phenotypic mutations that are several orders of magnitude more frequent than DNA mutations. Such phenotypic mutations may affect adaptive evolution through their interactions with DNA mutations. To study how mistranslation may affect the adaptive evolution of evolving proteins, we evolved populations of green fluorescent protein (GFP) in either high-mistranslation or low-mistranslation Escherichia coli hosts. In both hosts, we first evolved GFP under purifying selection for the ancestral phenotype green fluorescence, and then under directional selection toward the new phenotype yellow fluorescence. High-mistranslation populations evolved modestly higher yellow fluorescence during each generation of evolution than low-mistranslation populations. We demonstrate by high-throughput sequencing that elevated mistranslation reduced the accumulation of deleterious DNA mutations under both purifying and directional selection. It did so by amplifying the fitness effects of deleterious DNA mutations through negative epistasis with phenotypic mutations. In contrast, mistranslation did not affect the incidence of beneficial mutations. Our findings show that phenotypic mutations interact epistatically with DNA mutations. By reducing a population's mutation load, mistranslation can affect an important determinant of evolvability.


Assuntos
Epistasia Genética , Evolução Molecular , DNA , Escherichia coli/genética , Mutação , Seleção Genética
12.
Mol Biol Evol ; 38(10): 4301-4309, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34043802

RESUMO

The standard genetic code (SGC) has been extensively analyzed for the biological ramifications of its nonrandom structure. For instance, mismatch errors due to point mutation or mistranslation have an overall smaller effect on the amino acid polar requirement under the SGC than under random genetic codes (RGCs). A similar observation was recently made for frameshift errors, prompting the assertion that the SGC has been shaped by natural selection for frameshift-robustness-conservation of certain amino acid properties upon a frameshift mutation or translational frameshift. However, frameshift-robustness confers no benefit because frameshifts usually create premature stop codons that cause nonsense-mediated mRNA decay or production of nonfunctional truncated proteins. We here propose that the frameshift-robustness of the SGC is a byproduct of its mismatch-robustness. Of 564 amino acid properties considered, the SGC exhibits mismatch-robustness in 93-133 properties and frameshift-robustness in 55 properties, respectively, and that the latter is largely a subset of the former. For each of the 564 real and 564 randomly constructed fake properties of amino acids, there is a positive correlation between mismatch-robustness and frameshift-robustness across one million RGCs; this correlation arises because most amino acid changes resulting from a frameshift are also achievable by a mismatch error. Importantly, the SGC does not show significantly higher frameshift-robustness in any of the 55 properties than RGCs of comparable mismatch-robustness. These findings support that the frameshift-robustness of the SGC need not originate through direct selection and can instead be a site effect of its mismatch-robustness.


Assuntos
Evolução Molecular , Mutação da Fase de Leitura , Códon , Código Genético , Modelos Genéticos , Seleção Genética
13.
RNA Biol ; 19(1): 221-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167412

RESUMO

High-fidelity translation was considered a requirement for living cells. The frozen accident theory suggested that any deviation from the standard genetic code should result in the production of so much mis-made and non-functional proteins that cells cannot remain viable. Studies in bacterial, yeast, and mammalian cells show that significant levels of mistranslation (1-10% per codon) can be tolerated or even beneficial under conditions of oxidative stress. Single tRNA mutants, which occur naturally in the human population, can lead to amino acid mis-incorporation at a codon or set of codons. The rate or level of mistranslation can be difficult or impossible to measure in live cells. We developed a novel red fluorescent protein reporter that is sensitive to serine (Ser) mis-incorporation at proline (Pro) codons. The mCherry Ser151Pro mutant is efficiently produced in Escherichia coli but non-fluorescent. We demonstrated in cells and with purified mCherry protein that the fluorescence of mCherry Ser151Pro is rescued by two different tRNASer gene variants that were mutated to contain the Pro (UGG) anticodon. Ser mis-incorporation was confirmed by mass spectrometry. Remarkably, E. coli tolerated mistranslation rates of ~10% per codon with negligible reduction in growth rate. Conformational sampling simulations revealed that the Ser151Pro mutant leads to significant changes in the conformational freedom of the chromophore precursor, which is indicative of a defect in chromophore maturation. Together our data suggest that the mCherry Ser151 mutants may be used to report Ser mis-incorporation at multiple other codons, further expanding the ability to measure mistranslation in living cells.


Assuntos
Substituição de Aminoácidos , Técnicas Biossensoriais , Expressão Gênica , Genes Reporter , Proteínas Luminescentes/genética , Serina/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Imunofluorescência , Humanos , Proteínas Luminescentes/metabolismo , Espectrometria de Massas , Mutação , Imagem Óptica/métodos , Biossíntese de Proteínas , RNA de Transferência/genética , Serina/metabolismo
14.
Trends Genet ; 34(3): 218-231, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29352613

RESUMO

Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity.


Assuntos
Mutação , Doenças do Sistema Nervoso/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Animais , Humanos , Modelos Genéticos , Saccharomyces cerevisiae/genética , Aminoacilação de RNA de Transferência/genética
15.
J Evol Biol ; 34(8): 1302-1315, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145657

RESUMO

Darwinian evolution preferentially follows mutational pathways whose individual steps increase fitness. Alternative pathways with mutational steps that do not increase fitness are less accessible. Here, we show that mistranslation, the erroneous incorporation of amino acids into nascent proteins, can increase the accessibility of such alternative pathways and, ultimately, of high fitness genotypes. We subject populations of the beta-lactamase TEM-1 to directed evolution in Escherichia coli under both low- and high-mistranslation rates, selecting for high activity on the antibiotic cefotaxime. Under low mistranslation rates, different evolving TEM-1 populations ascend the same high cefotaxime-resistance peak, which requires three canonical DNA mutations. In contrast, under high mistranslation rates they ascend three different high cefotaxime-resistance genotypes, which leads to higher genotypic diversity among populations. We experimentally reconstruct the adaptive DNA mutations and the potential evolutionary paths to these high cefotaxime-resistance genotypes. This reconstruction shows that some of the DNA mutations do not change fitness under low mistranslation, but cause a significant increase in fitness under high-mistranslation, which helps increase the accessibility of different high cefotaxime-resistance genotypes. In addition, these mutations form a network of pairwise epistatic interactions that leads to mutually exclusive evolutionary trajectories towards different high cefotaxime-resistance genotypes. Our observations demonstrate that protein mistranslation and the phenotypic mutations it causes can alter the evolutionary exploration of fitness landscapes and reduce the predictability of evolution.


Assuntos
Evolução Molecular , Modelos Genéticos , Antibacterianos , Cefotaxima/farmacologia , Epistasia Genética , Escherichia coli/genética , Mutação
16.
RNA Biol ; 18(3): 316-339, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32900285

RESUMO

As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.


Assuntos
Regulação da Expressão Gênica , RNA de Transferência/genética , Animais , Evolução Molecular , Código Genético , Humanos , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Dobramento de RNA , Processamento Pós-Transcricional do RNA , Splicing de RNA , Transporte de RNA , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Relação Estrutura-Atividade , Transcrição Gênica , Aminoacilação de RNA de Transferência
17.
Proc Natl Acad Sci U S A ; 115(33): 8346-8351, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061400

RESUMO

In this paper, we report an example of the engineered expression of tetrameric ß-galactosidase (ß-gal) containing varying numbers of active monomers. Specifically, by combining wild-type and single-nucleotide polymorphism plasmids at varying ratios, tetrameric ß-gal was expressed in vitro with one to four active monomers. The kinetics of individual enzyme molecules revealed four distinct populations, corresponding to the number of active monomers in the enzyme. Using single-molecule-level enzyme kinetics, we were able to measure an accurate in vitro mistranslation frequency (5.8 × 10-4 per base). In addition, we studied the kinetics of the mistranslated ß-gal at the single-molecule level.


Assuntos
Multimerização Proteica , Subunidades Proteicas/fisiologia , beta-Galactosidase/fisiologia , Cinética , Plasmídeos , Polimorfismo de Nucleotídeo Único , Biossíntese de Proteínas , beta-Galactosidase/biossíntese , beta-Galactosidase/química , beta-Galactosidase/genética
18.
Proc Natl Acad Sci U S A ; 115(49): E11505-E11512, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455292

RESUMO

Intracellular organisms, such as obligate parasites and endosymbionts, typically possess small genomes due to continuous genome decay caused by an environment with alleviated natural selection. Previously, a few species with highly reduced genomes, including the intracellular pathogens Mycoplasma and Microsporidia, have been shown to carry degenerated editing domains in aminoacyl-tRNA synthetases. These defects in the protein synthesis machinery cause inaccurate translation of the genetic code, resulting in significant statistical errors in protein sequences that are thought to help parasites to escape immune response of a host. In this study we analyzed 10,423 complete bacterial genomes to assess conservation of the editing domains in tRNA synthetases, including LeuRS, IleRS, ValRS, ThrRS, AlaRS, and PheRS. We found that, while the editing domains remain intact in free-living species, they are degenerated in the overwhelming majority of host-restricted bacteria. Our work illustrates that massive genome erosion triggered by an intracellular lifestyle eradicates one of the most fundamental components of a living cell: the system responsible for proofreading of amino acid selection for protein synthesis. This finding suggests that inaccurate translation of the genetic code might be a general phenomenon among intercellular organisms with reduced genomes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Sequência de Aminoácidos , Aminoácidos , Sequência Conservada , Regulação Bacteriana da Expressão Gênica/fisiologia , Biossíntese de Proteínas , Domínios Proteicos , Edição de RNA
19.
Proc Natl Acad Sci U S A ; 115(27): E6245-E6253, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915081

RESUMO

Microsporidia are parasitic fungi-like organisms that invade the interior of living cells and cause chronic disorders in a broad range of animals, including humans. These pathogens have the tiniest known genomes among eukaryotic species, for which they serve as a model for exploring the phenomenon of genome reduction in obligate intracellular parasites. Here we report a case study to show an apparent effect of overall genome reduction on the primary structure and activity of aminoacyl-tRNA synthetases, indispensable cellular proteins required for protein synthesis. We find that most microsporidian synthetases lack regulatory and eukaryote-specific appended domains and have a high degree of sequence variability in tRNA-binding and catalytic domains. In one synthetase, LeuRS, an apparent sequence degeneration annihilates the editing domain, a catalytic center responsible for the accurate selection of leucine for protein synthesis. Unlike accurate LeuRS synthetases from other eukaryotic species, microsporidian LeuRS is error-prone: apart from leucine, it occasionally uses its near-cognate substrates, such as norvaline, isoleucine, valine, and methionine. Mass spectrometry analysis of the microsporidium Vavraia culicis proteome reveals that nearly 6% of leucine residues are erroneously replaced by other amino acids. This remarkably high frequency of mistranslation is not limited to leucine codons and appears to be a general property of protein synthesis in microsporidian parasites. Taken together, our findings reveal that the microsporidian protein synthesis machinery is editing-deficient, and that the proteome of microsporidian parasites is more diverse than would be anticipated based on their genome sequences.


Assuntos
Aminoacil-tRNA Sintetases , Proteínas Fúngicas , Genoma Fúngico , Microsporida , Biossíntese de Proteínas/fisiologia , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Microsporida/genética , Microsporida/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
20.
J Biol Chem ; 294(14): 5294-5308, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30643023

RESUMO

Perfectly accurate translation of mRNA into protein is not a prerequisite for life. Resulting from errors in protein synthesis, mistranslation occurs in all cells, including human cells. The human genome encodes >600 tRNA genes, providing both the raw material for genetic variation and a buffer to ensure that resulting translation errors occur at tolerable levels. On the basis of data from the 1000 Genomes Project, we highlight the unanticipated prevalence of mistranslating tRNA variants in the human population and review studies on synthetic and natural tRNA mutations that cause mistranslation or de-regulate protein synthesis. Although mitochondrial tRNA variants are well known to drive human diseases, including developmental disorders, few studies have revealed a role for human cytoplasmic tRNA mutants in disease. In the context of the unexpectedly large number of tRNA variants in the human population, the emerging literature suggests that human diseases may be affected by natural tRNA variants that cause mistranslation or de-regulate tRNA expression and nucleotide modification. This review highlights examples relevant to genetic disorders, cancer, and neurodegeneration in which cytoplasmic tRNA variants directly cause or exacerbate disease and disease-linked phenotypes in cells, animal models, and humans. In the near future, tRNAs may be recognized as useful genetic markers to predict the onset or severity of human disease.


Assuntos
Citoplasma , Variação Genética , Genoma Humano , Neoplasias , Doenças Neurodegenerativas , RNA Neoplásico , RNA de Transferência , Animais , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Biossíntese de Proteínas , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA