Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 116(8): 801-815, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37231142

RESUMO

A novel moderately halophilic bacterial strain, designated Z330T, was isolated from the egg of a marine invertebrate of the genus Onchidium collected in the South China Sea. The 16S rRNA gene sequence of strain Z330T exhibited the highest similarity value to that of the type strain Paracoccus fistulariae KCTC 22803T (97.6%), Paracoccus seriniphilus NBRC 100798T (97.6%) and Paracoccus aestuarii DSM 19484T (97.6%). Phylogenomic and 16S rRNA phylogenetic analysis showed that strain Z330T was most closely related to P. seriniphilus NBRC 100798T and P. fistulariae KCTC 22803T. Strain Z330T grew optimally at 28-30 °C, pH 7.0-8.0 with the presence of 5.0-7.0% (w/v) NaCl. In addition, growth of strain Z330T occurred at 0.5-16% NaCl, indicated strain Z330T was a moderately halophilic and halotolerant bacterium of genus Paracoccus. The predominant respiratory quinone in strain Z330T was identified as ubiquinone-10. The major polar lipids of strain Z330T were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, glycolipid and six unidentified polar lipids. The major fatty acids of strain Z330T was summed feature 8 (C18:1 ω6c and/or C18:1 ω7c). The draft genome sequence of strain Z330T includes 4,084,570 bp in total (N50 = 174,985 bp) with a medium read coverage of 463.6 × and 83 scaffolds. The DNA G + C content of strain Z330T was 60.5%. In silico DNA-DNA hybridization with the four type strains showed 20.5, 22.3, 20.1 and 20.1% relatedness to Paracoccus fistulariae KCTC 22803T, Paracoccus seriniphilus NBRC 100798T, Paracoccus aestuarii DSM 19484T and Paracoccus denitrificans 1A10901T, respectively. And the average nucleotide identity (ANIb) values between strain Z330T and these four type strains were 76.2, 80.0, 75.8 and 73.8%, respectively, lower than the 95-96% threshold value for dividing prokaryotic species. On the basis of the phenotypic, phylogenetic, phylogenomic and chemotaxonomic properties, a novel species of the genus Paracoccus, Paracoccus onchidii sp. nov. is proposed with the type strain Z330T (= KCTC 92727T = MCCC 1K08325T).


Assuntos
Paracoccus , Fosfolipídeos , Animais , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , DNA Bacteriano/genética , Ácidos Graxos/química , Invertebrados , China , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
2.
Artigo em Inglês | MEDLINE | ID: mdl-36001368

RESUMO

A Gram-stain-positive, moderately halophilic, aerobic, endospore-forming, rod-shaped bacterium, designated strain DP4-553-ST, was isolated from hypersaline sediment collected from the Dalangtan Playa in the Qaidam Basin, Northwest PR China. Growth occurred within 0-21.6% (w/v) NaCl (optimum 7.2%) at pH 5.5-9.0 (optimum pH 7.0) and at 4-45 °C (optimum 37 °C). Phylogeny based on 16S rRNA gene sequences indicated that strain DP4-553-ST belonged to the genus Sediminibacillus, with high 16S rRNA gene sequence similarity to Sediminibacillus halophilus EN8dT (99.5 %), Sediminibacillus terrae JSM 102062T (99.4 %), Virgibacillus senegalensis SK-1T (99.3 %) and Sediminibacillus albus NHBX5T (98.3 %). The G+C content of the chromosomal DNA was 43.6 mol %. The average amino acid identity, average nucleotide identity and digital DNA-DNA hybridization values between strain DP4-553-ST and the four close type strains were 71.2-93.3, 74.0-90.5 and 20.0-41.4 %, respectively. The whole genomic analysis showed that strain DP4-553-ST constituted a different taxon separated from the recognized Sediminibacillus species. The major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0, C16 : 0 and iso-C15 : 0. The type strain contained cell-wall peptidoglycan based on diaminopimelic acid and possessed menaquinone-7 as the major respiratory isoprenoid quinone. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, four unidentified glycolipids, phosphatidylcholine, aminophospholipid, aminolipid and seven unidentified phospholipids. The combined data from phenotypic and genotypic studies demonstrated that strain DP4-553-ST represents a novel species of the genus Sediminibacillus, for which the name Sediminibacillus dalangtanensis sp. nov. is proposed, the type strain is DP4-553-ST (=MCCC 1K03838T= KCTC 43250T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34825883

RESUMO

An aerobic, Gram-stain-positive, endospore-forming, rod-shaped and moderately halophilic strain SKP4-6T, was isolated from shrimp paste (Ka-pi) collected from Samut Sakhon Province, Thailand. Phylogenetic analysis revealed that strain SKP4-6T belonged to the genus Halobacillus and was most closely related to Halobacillus salinus JCM 11546T (98.6 %), Halobacillus locisalis KCTC 3788T (98.6 %) and Halobacillus yeomjeoni KCTC 3957T (98.6 %) based on 16S rRNA gene sequence similarity. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain SKP4-6T and its related species were 18.2-19.3 % and 69.84-84.51 %, respectively, which were lower than the threshold recommended for species delineation. The strain grew optimally at 30-40 °C, at pH 7.0 and with 10-15 % (w/v) NaCl. It contained l-Orn-d-Asp in the cell wall peptidoglycan. The DNA G+C content was 44.8 mol%. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The predominant isoprenoid quinone was MK-7. Phosphatidylglycerol and diphosphatidylglycerol were present as major polar lipids. Based on this polyphasic approach, digital DNA-DNA relatedness and ANI values, strain SKP4-6T represents a novel species of the genus Halobacillus, for which the name Halobacillus fulvus sp. nov. is proposed. The type strain is SKP4-6T (=JCM 32624T=TISTR 2595T).


Assuntos
Microbiologia de Alimentos , Halobacillus , Filogenia , Alimentos Marinhos/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Halobacillus/classificação , Halobacillus/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
4.
Int J Syst Evol Microbiol ; 70(6): 3701-3710, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32416748

RESUMO

A moderately halophilic strain, designated SCU50T, was recovered from a saline soil sample and characterized by a polyphasic approach. The 16S rRNA gene sequence analysis showed that strain SCU50T belonged to the genus Gracilibacillus and was most closely related to Gracilibacillus thailandensis TP2-8T (98.1 % similarity) and Gracilibacillus orientalis XH-63T (97.7 %). Genomic average nucleotide identity and digital DNA-DNA hybridization analyses confirmed the separate species status of the new isolate relative to other recognized Gracilibacillus species. The genome size was about 5.09 Mbp and the DNA G+C content was 36.7 mol%. The strain grew optimally at 10-15 % (w/v) NaCl, pH 6.5-7.5 and 25-30 °C. It contained anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 0 as the dominant fatty acids and menaquinone-7 as the major respiratory quinone. The polar lipid profile was examined and found to comprise diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and one unidentified lipid. The cell-wall peptidoglycan type was A1γ based on meso-diaminopimelic acid. Combining the data from phenotypic, chemotaxonomic, genomic and phylogenetic characterization, it was concluded that strain SCU50T should be assigned as representing a novel species within the genus Gracilibacillus. Thus, a novel taxon named Gracilibacillus salitolerans sp. nov. was first established, with SCU50T (=CGMCC 1.17336T=KCTC 43107T) as the type strain.


Assuntos
Bacillaceae/classificação , Filogenia , Salinidade , Microbiologia do Solo , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Int J Syst Evol Microbiol ; 70(1): 358-363, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31622236

RESUMO

Two Gram-stain-negative, moderately halophilic bacteria, designated strains ECH52T and KHM46, were isolated from the sediment of a grey saltern located in Sinui island at Shinan, Korea. The isolates were aerobic, non-motile, short rods and grew at 15-45 °C (optimum, 37 °C), at pH 6.0-10.0 (optimum, pH 8.0) and with 3-25 % (w/v) NaCl (optimum, 10 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains ECH52T and KHM46 belonged to the genus Aliifodinibius in the family Balneolaceae with sequence similarities of 94.3-98.6 % and showed the highest sequence similarity to Aliifodinibius halophilus 2W32T (98.6 %), A. sediminis YIM J21T (94.7%), A. salicampi KHM44T (94.6 %) and A. roseus YIM D15T (94.3 %). The DNA G+C content of the genomic DNA of strain ECH52T was 40.8 mol%. The predominant isoprenoid quinone was menaquinone-7 (MK-7) and the major cellular fatty acids were iso-C17 : 1ω9c, iso-C15 : 0, and C16 : 1ω7c and/or iso-C15 : 0 2-OH. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified glycolipids and four unidentified lipids. Based on the phylogenetic, phenotypic and chemotaxonomic data, strains ECH52T and KHM46 are considered to represent a novel species of the genus Aliifodinibius , for which the name Aliifodinibius saliphilus sp. nov. is proposed. The type strain is ECH52T (=KACC 19126T=NBRC 112664T).


Assuntos
Bacteroides/classificação , Chlorobi/classificação , Filogenia , Lagoas/microbiologia , Salinidade , Técnicas de Tipagem Bacteriana , Bacteroides/isolamento & purificação , Composição de Bases , Chlorobi/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Microbiologia da Água
6.
J Basic Microbiol ; 58(10): 867-874, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30043998

RESUMO

Nitrile hydrolyzing moderate halophilic bacterium Halomonas sp. IIIMB2797 was isolated from Sambhar Lake, India. Maximum cell biomass and nitrilase production were observed at 60 g L-1 NaCl in the production media which confirms its moderate halophilic nature. Nitrilase of Halomonas sp. IIIMB2797 proved to be inducible in nature as maximum activity was observed when valeronitrile was added in the production media. Whole cells of Halomonas sp. IIIMB2797 exhibited broad substrate affinity towards aromatic and aliphatic nitriles. Optimum pH and temperature for nitrilase activity was observed at 7.0 and 45 °C, respectively. Effect of salinity on nitrilase activity was also studied and maximum activity was observed in presence of 50 g L-1 NaCl in 0.1 M phosphate buffer of pH 7.0. The interesting feature of the study is that whole cells of Halomonas sp. IIIMB2797 exhibited higher nitrilase activities in presence of organic solvents which may be useful in biotransformation of nitriles to corresponding carboxylic acids for industrial applications.


Assuntos
Aminoidrolases/metabolismo , Halomonas/enzimologia , Lagos/microbiologia , Aminoidrolases/química , DNA Bacteriano/genética , Estabilidade Enzimática , Genoma Bacteriano/genética , Halomonas/classificação , Halomonas/genética , Halomonas/isolamento & purificação , Concentração de Íons de Hidrogênio , Índia , Dados de Sequência Molecular , Nitrilas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Cloreto de Sódio , Solventes , Especificidade por Substrato , Temperatura
7.
Can J Microbiol ; 63(7): 596-607, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28329448

RESUMO

In this study, a NhaD-type Na+/H+ antiporter gene designated Ha-nhaD was obtained by selection of genomic DNA from the moderate halophile and alkaliphile Halomonas alkaliphila in Escherichia coli KNabc lacking 3 major Na+/H+ antiporters. The presence of Ha-NhaD conferred tolerance of E. coli KNabc to NaCl up to 0.6 mol·L-1 and to LiCl up to 0.2 mol·L-1 and to an alkaline pH. pH-dependent Na+(Li+)/H+ antiport activity was detected from everted membrane vesicles prepared from E. coli KNabc/pUC-nhaD but not those of KNabc/pUC18. Ha-NhaD exhibited Na+(Li+)/H+ antiport activity over a wide pH range from 7.0 to 9.5, with the highest activity at pH 9.0. Protein sequence alignment and phylogenetic analysis revealed that Ha-NhaD is significantly different from the 7 known NhaD-type Na+/H+ antiporters, including Dw-NhaD, Dl-NhaD, Vp-NhaD, Vc-NhaD, Aa-NhaD, He-NhaD, and Ha-NhaD1. Although Ha-NhaD showed a closer phylogenetic relationship with Ha-NhaD2, a significant difference in pH-dependent activity profile exists between Ha-NhaD and Ha-NhaD2. Taken together, Ha-nhaD encodes a novel pH-dependent NhaD-type Na+/H+ antiporter.


Assuntos
Escherichia coli/fisiologia , Halomonas/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Álcalis , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Filogenia , Plantas Tolerantes a Sal , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética
8.
Arch Microbiol ; 198(10): 1013-1018, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27349661

RESUMO

A novel Gram-stain-positive, coccoid-shaped, facultative anaerobic, motile and halophilic bacterium strain 5MT was isolated from Surajbari in India. Based on the 16S rRNA gene sequence analysis, it was identified as belonging to the genus Marinococcus and was most closely related to Marinococcus luteus KCTC 13214T (99.3 %, sequence similarity), Marinococcus halotolerans KCTC 19045T (99.0 %), Marinococcus halophilus LMG 17439T (98.8 %) and Marinococcus tarijensis LMG 26930T (98.7 %). However, the DNA-DNA relatedness of strain 5MT with M. luteus KCTC 13214T, M. halotolerans KCTC 19045T, M. halophilus LMG 17439T and M. tarijensis LMG 26930T was 42.6 ± 0.8, 48.6 ± 0.8, 40.9 ± 0.8 and 39.8 ± 0.9 %, respectively. Strain 5MT grows optimally at 5 % (w/v) NaCl, pH 7.5-8.5 and 37 °C. The cell-wall peptidoglycan of strain 5MT contains meso-diaminopimelic acid. Polar lipids of the strain 5MT include diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a phospholipid and two unknown lipids. The predominant isoprenoid quinone was MK-7. DNA G+C content was 48.9 mol%, and anteiso-C15:0 (40.9 %) was the predominant fatty acid. The results of phylogenetic, biochemical tests and chemotaxonomic allowed a clear differentiation of strain 5MT from all of its nearest phylogenetic neighbours, which represents a novel member of the genus Marinococcus, for which the name Marinococcus salis sp., nov., is proposed. The type strain is 5MT (=KCTC 33743T = LMG 29101T = CGMCC 1.15385T).


Assuntos
Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Bacillaceae/genética , Bacillaceae/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Índia , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/análise , Áreas Alagadas
9.
Antonie Van Leeuwenhoek ; 109(5): 713-20, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26942918

RESUMO

A Gram-positive, moderately halophilic bacterium, designated strain TGS-15(T), was isolated from the sediment of a solar saltern pond located in Shinan, Korea. Strain TGS-15(T) was found to be a strictly aerobic, non-motile rod which can grow at pH 6.0-10.0 (optimum, pH 9.0), at 20-35 °C (optimum, 28 °C) and at salinities of 1-20 % (w/v) NaCl (optimum, 9 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain TGS-15(T) belongs to the genus Halobacillus, with sequence similarity of 98.5-96.0 % to known type strains, showing high sequence similarity to Halobacillus locisalis MSS-155(T) (98.5 %), Halobacillus faecis IGA7-4(T) (98.2 %) and Halobacillus alkaliphilus FP5(T) (98.0 %), and less than 98.0 % sequence similarity to other currently recognised type strains of the genus. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and an unidentified lipid. The cell wall peptidoglycan was found to be based on L-Orn-D-Asp, the predominant isoprenoid quinone was identified as menaquinone-7 (MK-7) and the major fatty acids were identified as anteiso-C15:0, iso-C15:0, anteiso-C17:0 and C16:1 ω7c alcohol. The DNA G+C content of this novel isolate was determined to be 45.3 mol %. Levels of DNA:DNA relatedness between strain TGS-15(T) and the type strains of 13 other species of the genus ranged from 52 to 9 %. On the basis of the polyphasic analysis conducted in this study, strain TGS-15(T) is concluded to represent a novel species of the genus Halobacillus, for which the name Halobacillus salicampi sp. nov. is proposed. The type strain is TGS-15(T) (=KACC 18264(T) = NBRC 110640(T)).


Assuntos
Sedimentos Geológicos/microbiologia , Halobacillus/classificação , Halobacillus/isolamento & purificação , Lagoas/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Ribossômico/genética , Sedimentos Geológicos/química , Halobacillus/genética , Halobacillus/fisiologia , Fenótipo , Filogenia , República da Coreia , Salinidade , Microbiologia da Água
10.
Food Technol Biotechnol ; 53(2): 136-145, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27904342

RESUMO

The objectives of this study are to optimize the conditions for providing high yield of NaCl-tolerant extracellular protease from Virgibacillus sp. SK37 based on a fish-based medium and to investigate the effects of the key factors (mass per volume ratios of dried anchovy, yeast extract and NaCl, and initial pH of the medium) on the secretion pattern of proteases. Based on the predicted response model, the optimized medium contained 1.81% of dried anchovy, 0.33% of yeast extract and 1.25% of NaCl at pH=7.8. Under these conditions, a 5.3-fold increase in protease production was achieved, compared with the broth containing only 1.2% of dried anchovy (5% of NaCl at pH=7). The cubic regression adequately described the protease production. Protease activity was determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on the synthetic substrate (Suc-Ala-Ala-Pro-Phe-AMC). Proteases of molecular masses of 19, 34, 35 and 44 kDa were secreted in the presence of NaCl, whereas those of 22 and 42 kDa were the main proteases detected in the absence of NaCl. In addition, no secreted proteases were detected when initial pH of the medium was pH=6. The peptide mass fingerprint of the medium cultured with 10% NaCl showed a higher abundance of peptides with lower mass of 500-1000 m/z compared with the medium containing 0% NaCl, indicating the higher proteolytic activity of the high-salt medium. The Virgibacillus sp. SK37 proteases showed a marked preference towards Lys, Arg and Tyr in the presence of NaCl and towards Lys and Arg in the absence of NaCl.

11.
J Phycol ; 50(3): 472-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26988320

RESUMO

Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant strains. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the evolution and ability of the Chroococcidiopsis genus to survive in diverse environments we investigated how salt tolerance varies among 15 strains previously isolated from different locations, and if salt tolerant strains are monophyletic to those isolated from freshwater and land environments. Four markers were sequenced from these 15 strains, the 16S rRNA, rbcL, desC1, and gltX genes. Phylogenetic trees were generated which identified a distinct clade of salt-tolerant strains. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, the strains were grown on a range of sea salt concentrations which demonstrated that the freshwater strains were salt-intolerant whilst the saltwater strains required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.

12.
Front Microbiol ; 13: 1101464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777031

RESUMO

Hypersaline soils are extreme environments that have received little attention until the last few years. Their halophilic prokaryotic population seems to be more diverse than those of well-known aquatic systems. Among those inhabitants, representatives of the family Balneolaceae (phylum Balneolota) have been described to be abundant, but very few members have been isolated and characterized to date. This family comprises the genera Aliifodinibius and Fodinibius along with four others. A novel strain, designated 1BSP15-2V2T, has been isolated from hypersaline soils located in the Odiel Saltmarshes Natural Area (Southwest Spain), which appears to represent a new species related to the genus Aliifodinibius. However, comparative genomic analyses of members of the family Balneolaceae have revealed that the genera Aliifodinibius and Fodinibius belong to a single genus, hence we propose the reclassification of the species of the genus Aliifodinibius into the genus Fodinibius, which was first described. The novel strain is thus described as Fodinibius salsisoli sp. nov., with 1BSP15-2V2T (=CCM 9117T = CECT 30246T) as the designated type strain. This species and other closely related ones show abundant genomic recruitment within 80-90% identity range when searched against several hypersaline soil metagenomic databases investigated. This might suggest that there are still uncultured, yet abundant closely related representatives to this family present in these environments. In-depth in-silico analysis of the metabolism of Fodinibius showed that the biotin biosynthesis pathway was present in the genomes of strain 1BSP15-2V2T and other species of the family Balneolaceae, which could entail major implications in their community role providing this vitamin to other organisms that depend on an exogenous source of this nutrient.

13.
Microbiologyopen ; 10(1): e1160, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650793

RESUMO

Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co-production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB-M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.


Assuntos
Poli-Hidroxialcanoatos/biossíntese , Polissacarídeos Bacterianos/biossíntese , Rhodobacteraceae/metabolismo , Meios de Cultura/química , Frutose/metabolismo , Galactose/metabolismo , Genoma Bacteriano/genética , Glucose/metabolismo , Glicerol/metabolismo , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Sacarose/metabolismo , Vietnã
14.
Front Microbiol ; 10: 607, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967858

RESUMO

In the cation diffusion facilitator (CDF) family, the transported substrates are confined to divalent metal ions, such as Zn2+, Fe2+, and Mn2+. However, this study identifies a novel CDF member designated MceT from the moderate halophile Planococcus dechangensis. MceT functions as a Na+(Li+, K+)/H+ antiporter, together with its capability of facilitated Zn2+ diffusion into cells, which have not been reported in any identified CDF transporters as yet. MceT is proposed to represent a novel CDF group, Na-CDF, which shares significantly distant phylogenetic relationship with three known CDF groups including Mn-CDF, Fe/Zn-CDF, and Zn-CDF. Variation of key function-related residues to "Y44-S48-Q150" in two structural motifs explains a significant discrimination in cation selectivity between Na-CDF group and three major known CDF groups. Functional analysis via site-directed mutagenesis confirms that MceT employs Q150, S158, and D184 for the function of MceT as a Na+(Li+, K+)/H+ antiporter, and retains D41, D154, and D184 for its facilitated Zn2+ diffusion into cells. These presented findings imply that MceT has evolved from its native CDF family function to a Na+/H+ antiporter in an evolutionary strategy of the substitution of key conserved residues to "Q150-S158-D184" motif. More importantly, the discovery of MceT contributes to a typical transporter model of CDF family with the unique structural motifs, which will be utilized to explore the cation-selective mechanisms of secondary transporters.

15.
Front Microbiol ; 9: 807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922240

RESUMO

Arginine-aspartate-aspartate (RDD) family, representing a category of transmembrane proteins containing one highly conserved arginine and two highly conserved aspartates, has been functionally uncharacterized as yet. Here we present the characterization of a member of this family designated RDD from the moderate halophile Halobacillus andaensis NEAU-ST10-40T and report for the first time that RDD should function as a novel Na+(Li+, K+)/H+ antiporter. It's more interesting whether the highly conserved arginine/aspartate residues among the whole family or between RDD and its selected homologs are related to the protein function. Therefore, we analyzed their roles in the cation-transporting activity through site-directed mutagenesis and found that D154, R124, R129, and D158 are indispensable for Na+(Li+, K+)/H+ antiport activity whereas neither R35 nor D42 is involved in Na+(Li+, K+)/H+ antiport activity. As a dual representative of Na+(Li+, K+)/H+ antiporters and RDD family proteins, the characterization of RDD and the analysis of its important residues will positively contribute to the knowledge of the cation-transporting mechanisms of this novel antiporter and the roles of highly conserved arginine/aspartate residues in the functions of RDD family proteins.

16.
Protein J ; 36(3): 228-237, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28425008

RESUMO

Effects of a water-miscible organic solvent, methanol, on the structure and activity of halophilic ß-lactamase derived from Chromohalobacter sp.560 (HaBla), were investigated by means of circular dichroism (CD) measurement and enzymatic activity determination. Beta-lactamase activity was enhanced about 1.2-fold in the presence of 10-20% methanol. CD measurement of HaBla revealed different structures depending on the methanol concentration: native-like active form (Form I) in 10-20% methanol and methanol-induced inactive form at higher concentration (Form II in 40-60% and Form III in 75-80% methanol). Incubation of HaBla with 40% methanol led to the complete loss of activity within ~80 min accompanied by the formation of Form II, whose activity was recovered promptly up to ~80% of full activity upon dilution of the methanol concentration to 10%. In addition, when the protein concentration was sufficiently high (e.g., 0.7 mg/ml), HaBla activity of Form III in 75% methanol could be recovered in the same way (with slightly slower recovery rate), upon dilution of the methanol concentration. In contrast, non-halophilic ß-lactamase from Escherichia coli K12 strain MG1655 (EcBla) was irreversibly denatured in the presence of 40% methanol. HaBla showed remarkable ability to renature from the methanol-induced inactive states.


Assuntos
Chromohalobacter/enzimologia , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Metanol/química , beta-Lactamases/química , Ativação Enzimática , Especificidade da Espécie
17.
Springerplus ; 2: 346, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25538872

RESUMO

The isolation and characterization of a novel halophilic denitrifying marine bacterium is described. The halophilic bacterium, designated as NY-4, was isolated from soil in Yancheng City, China, and identified as Marinobacter hydrocarbonoclasticus by 16S rRNA gene sequence phylogenetic analysis. This organism can grow in NaCl concentrations ranging from 20 to 120 g/L. Optimum growth occurs at 80 g/L NaCl and pH 8.0. The organism can grow on a broad range of carbon sources and demonstrated efficient denitrifying ability (94.2% of nitrate removal and 80.9% of total nitrogen removal in 48 h). During denitrification by NY-4, no NO2 (-)-N was accumulated, N2 was the only gaseous product and no harmful N2O was produced. Because of its rapid denitrification ability, broad carbon use range and ability to grow under high salinity and pH conditions, NY-4 holds promise for the treatment of saline waste waters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA