Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012823

RESUMO

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Assuntos
Neurônios , Optogenética , Silício , Animais , Silício/química , Neurônios/fisiologia , Camundongos , Optogenética/métodos , Cálcio/metabolismo , Luz , Encéfalo/fisiologia
2.
Exp Brain Res ; 241(6): 1599-1610, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142781

RESUMO

Motoneuron excitability is possible to measure using H-reflex and V-wave responses. However, it is not known how the motor control is organized, how the H-reflex and V-wave responses modulate and how repeatable these are during dynamic balance perturbations. To assess the repeatability, 16 participants (8 men, 8 women) went through two, identical measurement sessions with ~ 48 h intervals, where maximal isometric plantar flexion (IMVC) and dynamic balance perturbations in horizontal, anterior-posterior direction were performed. Soleus muscle (SOL) neural modulation during balance perturbations were measured at 40, 70, 100 and 130 ms after ankle movement by using both H-reflex and V-wave methods. V-wave, which depicts the magnitude of efferent motoneuronal output (Bergmann et al. in JAMA 8:e77705, 2013), was significantly enhanced as early as 70 ms after the ankle movement. Both the ratio of M-wave-normalized V-wave (0.022-0.076, p < 0.001) and H-reflex (0.386-0.523, p < 0.001) increased significantly at the latency of 70 ms compared to the latency of 40 ms and remained at these levels at latter latencies. In addition, M-wave normalized V-wave/H-reflex ratio increased from 0.056 to 0.179 (p < 0.001). The repeatability of V-wave demonstrated moderate-to-substantial repeatability (ICC = 0.774-0.912) whereas the H-reflex was more variable showing fair-to-substantial repeatability (ICC = 0.581-0.855). As a conclusion, V-wave was enhanced already at 70 ms after the perturbation, which may indicate that increased activation of motoneurons occurred due to changes in descending drive. Since this is a short time-period for voluntary activity, some other, potentially subcortical responses might be involved for V-wave increment rather than voluntary drive. Our results addressed the usability and repeatability of V-wave method during dynamic conditions, which can be utilized in future studies.


Assuntos
Reflexo H , Músculo Esquelético , Masculino , Humanos , Feminino , Eletromiografia/métodos , Reflexo H/fisiologia , Músculo Esquelético/fisiologia , Neurônios Motores/fisiologia , Extremidade Inferior , Contração Muscular/fisiologia
3.
Cell Mol Neurobiol ; 38(4): 883-890, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29103093

RESUMO

The autonomic nervous system affects the gustatory responses in animals. Frog glossopharyngeal nerve (GPN) contains the parasympathetic nerve. We checked the effects of electrical stimulation (ES) of the parasympathetic nerves on the gustatory neural responses. The gustatory neural impulses of the GPNs were recorded using bipolar AgCl wires under normal blood circulation and integrated with a time constant of 1 s. Electrical stimuli were applied to the proximal side of the GPN with a pair of AgCl wires. The parasympathetic nerves of the GPN were strongly stimulated for 10 s with 6 V at 30 Hz before taste stimulation. The integrated neural responses to 0.5 M NaCl, 2.5 mM CaCl2, water, and 1 M sucrose were enhanced to 130-140% of the controls. On the other hand, the responses for 1 mM Q-HCl and 0.3 mM acetic acid were not changed by the preceding applied ES. After hexamethonium (a blocker of nicotinic ACh receptor) was intravenously injected, ES of the parasympathetic nerve did not modulate the responses for all six taste stimuli. The mechanism for enhancement of the gustatory neural responses is discussed.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Animais , Sistema Nervoso Autônomo/fisiologia , Estimulação Elétrica/métodos , Sistema Nervoso Parassimpático/fisiologia , Rana catesbeiana , Paladar
4.
Indian Pacing Electrophysiol J ; 17(5): 146-149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29192591

RESUMO

A 79-year-old woman who underwent catheter ablation for paroxysmal atrial fibrillation presented with Torsades de Pointes (TdP). Aggravation of prolonged QT interval which is most likely due to neural modulation by catheter ablation, played major role in the initiation of TdP. The patient was successfully treated with isoproterenol during acute stage and discharged after stabilization without implantation of permanent pacemaker or implantable cardioverter defibrillator.

5.
CNS Neurosci Ther ; 30(2): e14615, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358054

RESUMO

Neurological and psychiatric diseases can lead to motor, language, emotional disorder, and cognitive, hearing or visual impairment By decoding the intention of the brain in real time, the Brain-computer interface (BCI) can first assist in the diagnosis of diseases, and can also compensate for its damaged function by directly interacting with the environment; In addition, provide output signals in various forms, such as actual motion, tactile or visual feedback, to assist in rehabilitation training; Further intervention in brain disorders is achieved by close-looped neural modulation. In this article, we envision the future BCI digital prescription system for patients with different functional disorders and discuss the key contents in the prescription the brain signals, coding and decoding protocols and interaction paradigms, and assistive technology. Then, we discuss the details that need to be specially included in the digital prescription for different intervention technologies. The third part summarizes previous examples of intervention, focusing on how to select appropriate interaction paradigms for patients with different functional impairments. For the last part, we discussed the indicators and influencing factors in evaluating the therapeutic effect of BCI as intervention.


Assuntos
Encefalopatias , Interfaces Cérebro-Computador , Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/terapia , Encéfalo , Eletroencefalografia/métodos
6.
ACS Appl Mater Interfaces ; 16(33): 43199-43211, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39120580

RESUMO

Spinal cord injury poses considerable challenges, particularly in diaphragm paralysis. To address limitations in existing diaphragm pacing technologies, we report an implantable, self-driven diaphragm pacing system based on a microvibration triboelectric nanogenerator (MV-TENG). Leveraging the efficient MV-TENG, the system harvests micromechanical energy and converts this energy into pulses for phrenic nerve stimulation. In vitro tests confirm a stable MV-TENG output, while subcutaneous implantation of the device in rats results in a constant amplitude over 4 weeks with remarkable energy-harvesting efficacy. The system effectively induces diaphragmatic motor-evoked potentials, triggering contractions of the diaphragm. This proof-of-concept system has potential clinical applications in implantable phrenic nerve stimulation, presenting a novel strategy for advancing next-generation diaphragm pacing devices.


Assuntos
Diafragma , Nervo Frênico , Nervo Frênico/fisiologia , Animais , Diafragma/fisiologia , Diafragma/inervação , Ratos , Ratos Sprague-Dawley , Nanotecnologia/instrumentação , Terapia por Estimulação Elétrica/instrumentação , Masculino
7.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627064

RESUMO

Infrared neural stimulation (INS) is a promising area of interest for the clinical application of a neuromodulation method. This is in part because of its low invasiveness, whereby INS modulates the activity of the neural tissue mainly through temperature changes. Additionally, INS may provide localized brain stimulation with less tissue damage. The inferior colliculus (IC) is a crucial auditory relay nucleus and a potential target for clinical application of INS to treat auditory diseases and develop artificial hearing devices. Here, using continuous INS with low to high-power density, we demonstrate the laminar modulation of neural activity in the mouse IC in the presence and absence of sound. We investigated stimulation parameters of INS to effectively modulate the neural activity in a facilitatory or inhibitory manner. A mathematical model of INS-driven brain tissue was first simulated, temperature distributions were numerically estimated, and stimulus parameters were selected from the simulation results. Subsequently, INS was administered to the IC of anesthetized mice, and the modulation effect on the neural activity was measured using an electrophysiological approach. We found that the modulatory effect of INS on the spontaneous neural activity was bidirectional between facilitatory and inhibitory effects. The modulatory effect on sound-evoked responses produced only an inhibitory effect to all examined stimulus intensities. Thus, this study provides important physiological evidence on the response properties of IC neurons to INS. Overall, INS can be used for the development of new therapies for neurological disorders and functional support devices for auditory central processing.


Assuntos
Colículos Inferiores , Raios Infravermelhos , Animais , Colículos Inferiores/fisiologia , Camundongos , Masculino , Estimulação Luminosa/métodos , Estimulação Acústica/métodos , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Potenciais Evocados Auditivos/fisiologia
8.
J Neural Eng ; 21(4)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959877

RESUMO

Objective. Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigations into the neural mechanisms governing amygdaloid motor movement and inhibition. This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between 'Go' and 'No-go' trials of an arm-reaching task.Approach. Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a direct reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-correctedZtests were used to assess significant modulations of beta power between the Response and fixation (baseline) phases in the 'Go' and 'No-go' conditions.Main results. In the 'Go' condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p⩽ 0.0499). In the 'No-go' condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the response phase (p⩽ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the 'Go' and 'No-go' conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders.Significance.This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.


Assuntos
Tonsila do Cerebelo , Braço , Ritmo beta , Desempenho Psicomotor , Humanos , Tonsila do Cerebelo/fisiologia , Masculino , Feminino , Adulto , Ritmo beta/fisiologia , Desempenho Psicomotor/fisiologia , Braço/fisiologia , Adulto Jovem , Movimento/fisiologia , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/métodos
9.
ACS Nano ; 17(16): 15796-15809, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37530448

RESUMO

Electrical deep brain stimulation (DBS) is a top priority for pharmacoresistant epilepsy treatment, while less-invasive wireless DBS is an urgent priority but challenging. Herein, we developed a conceptual wireless DBS platform to realize local electric stimulation via 1D-structured magnetoelectric Fe3O4@BaTiO3 nanochains (FBC). The FBC was facilely synthesized via magnetic-assisted interface coassembly, possessing a higher electrical output by inducing larger local strain from the anisotropic structure and strain coherence. Subsequently, wireless magnetoelectric neuromodulation in vitro was synergistically achieved by voltage-gated ion channels and to a lesser extent, the mechanosensitive ion channels. Furthermore, FBC less-invasively injected into the anterior nucleus of the thalamus (ANT) obviously inhibited acute and continuous seizures under magnetic loading, exhibiting excellent therapeutic effects in suppressing both high voltage electroencephalogram signals propagation and behavioral seizure stage and neuroprotection of the hippocampus mediated via the Papez circuit similar to conventional wired-in DBS. This work establishes an advanced antiepilepsy strategy and provides a perspective for other neurological disorder treatment.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia , Humanos , Convulsões/terapia , Epilepsia/terapia , Núcleos Anteriores do Tálamo/fisiologia , Hipocampo
10.
ACS Nano ; 17(3): 2079-2088, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724043

RESUMO

The vision of patients rendered blind by photoreceptor degeneration can be partially restored by exogenous stimulation of surviving retinal ganglion cells (RGCs). Whereas conventional electrical stimulation techniques have failed to produce naturalistic visual percepts, nanoparticle-based optical sensors have recently received increasing attention as a means to artificially stimulate the RGCs. In particular, nanoparticle-enhanced infrared neural modulation (NINM) is a plasmonically mediated photothermal neuromodulation technique that has a demonstrated capacity for both stimulation and inhibition, which is essential for the differential modulation of ON-type and OFF-type RGCs. Gold nanorods provide tunable absorption through the near-infrared wavelength window, which reduces interference with any residual vision. Therefore, NINM may be uniquely well-suited to retinal prosthesis applications but, to our knowledge, has not previously been demonstrated in RGCs. In the present study, NINM laser pulses of 100 µs, 500 µs and 200 ms were applied to RGCs in explanted rat retinae, with single-cell responses recorded via patch-clamping. The shorter laser pulses evoked robust RGC stimulation by capacitive current generation, while the long laser pulses are capable of inhibiting spontaneous action potentials by thermal block. Importantly, an implicit bias toward OFF-type inhibition is observed, which may have important implications for the feasibility of future high-acuity retinal prosthesis design based on nanoparticle sensors.


Assuntos
Células Ganglionares da Retina , Próteses Visuais , Ratos , Animais , Luz , Potenciais de Ação/fisiologia , Estimulação Elétrica
11.
Curr Biol ; 33(11): 2121-2135.e4, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37105168

RESUMO

Switching behaviors from aggression to submission in losers at the end of conspecific social fighting is essential to avoid serious injury or death. We have previously shown that the experience of defeat induces a loser-specific potentiation in the habenula (Hb)-interpeduncular nucleus (IPN) and show here that this is induced by acetylcholine. Calcium imaging and electrophysiological recording using acute brain slices from winners and losers of fighting behavior in zebrafish revealed that the ventral IPN (vIPN) dominates over the dorsal IPN in the neural response to Hb stimulation in losers. We also show that GluA1 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits on the postsynaptic membrane increased in the vIPN of losers. Furthermore, these loser-specific neural properties disappeared in the presence of an α7 nicotinic acetylcholine receptor (nAChR) antagonist and, conversely, were induced in brain slices of winners treated with α7 nAChR agonists. These data suggest that acetylcholine released from Hb terminals in the vIPN induces activation of α7 nAChR followed by an increase in postsynaptic membrane GluA1. This results in an increase in active synapses on postsynaptic neurons, resulting in the potentiation of neurotransmissions to the vIPN. This acetylcholine-induced neuromodulation could be the neural foundation for behavioral switching in losers. Our results could increase our understanding of the mechanisms of various mood disorders such as social anxiety disorder and social withdrawal.


Assuntos
Habenula , Núcleo Interpeduncular , Receptores Nicotínicos , Animais , Núcleo Interpeduncular/metabolismo , Receptores Nicotínicos/metabolismo , Ácido Glutâmico , Acetilcolina/farmacologia , Habenula/fisiologia , Peixe-Zebra/metabolismo
12.
Neurophotonics ; 9(4): 041409, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35719844

RESUMO

Genetically encoded calcium indicators and optogenetics have revolutionized neuroscience by enabling the detection and modulation of neural activity with single-cell precision using light. To fully leverage the immense potential of these techniques, advanced optical instruments that can place a light on custom ensembles of neurons with a high level of spatial and temporal precision are required. Modern light sculpting techniques that have the capacity to shape a beam of light are preferred because they can precisely target multiple neurons simultaneously and modulate the activity of large ensembles of individual neurons at rates that match natural neuronal dynamics. The most versatile approach, computer-generated holography (CGH), relies on a computer-controlled light modulator placed in the path of a coherent laser beam to synthesize custom three-dimensional (3D) illumination patterns and illuminate neural ensembles on demand. Here, we review recent progress in the development and implementation of fast and spatiotemporally precise CGH techniques that sculpt light in 3D to optically interrogate neural circuit functions.

13.
Cortex ; 154: 299-310, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35839572

RESUMO

Deep brain stimulation (DBS) provides clinical benefits for several neurological and psychiatric conditions. By overcoming the limitations and risks of conventional DBS, transcranial temporal interference stimulation (tTIS) has the potential to offer non-invasive stimulation of deep brain regions. However, research that investigates the efficacy of tTIS is limited to animal studies or computer simulations and its capability to modulate neural oscillations in humans has not been demonstrated so far. The method of tTIS is hypothesized to elicit its effects via neural entrainment, corresponding to the supposed mechanism of action underlying transcranial alternating current stimulation (tACS), another, more established non-invasive brain stimulation technique. Physiological effects of tACS are well established for cortical brain oscillations, but not for deep brain structures. In particular, aftereffects on the power of parieto-occipital alpha oscillations have been shown repeatedly. In a first attempt to test the efficacy of tTIS in the human brain, the current study thus seeks to compare the effects of tTIS to the well-studied aftereffect of tACS in the cortex. To investigate this research question, the current study compared MEG-recorded brain activity during a simple visual change detection task in 34 healthy subjects pre- and post-tTIS. Additionally, the effects of tTIS were contrasted to conventional tACS and a control stimulation. We expected that the parieto-occipital α-power will increase after tTIS and tACS, in contrast to the control stimulation. Overall, no difference between the experimental groups (tTIS, tACS and control stimulation) were found regarding the source-projected increase in α-power. Based on the results of the study two hypothesis can be made: tTIS, tACS and the control stimulation condition don't have an effect on human brain oscillations in the α-band, or, any experimental conditions of the current study can modulate brain oscillations in the α-band. Both hypotheses emphasize the importance of further studies investigating different carrier frequencies, and the comparison to sham stimulation.


Assuntos
Benchmarking , Estimulação Transcraniana por Corrente Contínua , Animais , Encéfalo , Simulação por Computador , Humanos
14.
Front Neurosci ; 16: 1005810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408413

RESUMO

Highly precise neuromodulation with a high efficacy poses great importance in neuroscience. Here we developed a candle soot fiber optoacoustic emitter (CSFOE), capable of generating a high pressure of over 10 MPa with a central frequency of 12.8 MHz, enabling highly efficient neuromodulation in vitro. The design of the fiber optoacoustic emitter, including the choice of the material and the thickness of the layered structure, was optimized in both simulations and experiments. The optoacoustic conversion efficiency of the optimized CSFOE was found to be 10 times higher than the other carbon-based fiber optoacoustic emitters. Driven by a single laser, the CSFOE can perform dual-site optoacoustic activation of neurons, confirmed by calcium (Ca2+) imaging. Our work opens potential avenues for more complex and programmed control in neural circuits using a simple design for multisite neuromodulation in vivo.

15.
J Neurosci Methods ; 368: 109473, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990698

RESUMO

Alpha band oscillations are the most prominent rhythmic oscillations in EEG, which are related to various types of mental diseases, such as attention deficit hyperactivity disorder, anxiety, and depression. However, the dynamics of alpha oscillations, especially how the endogenous alpha oscillations be entrained by exogenous stimulus, are still unclear. Recently, a newly-developed phase-locked visual feedback (PLVF) protocol has shown effectiveness in modulating alpha rhythm, which provides empirical evidence for the further investigation of the neural mechanism of alpha dynamics. In this work, extensive numerical simulations based on four well-studied models were used to investigate the questions that (1) What kind of dynamic model exhibits a modulation phenomenon of PLVF? (2) What is the dynamic mechanism of PLVF for alpha modulation? (3) Which factors affect the modulation effects in PLVF? The result indicates that the dynamics of endogenous alpha oscillations are close to a simpler dynamic structure, like fixed-point attractor or limit-cycle attractor, which shows a global consistent dynamic behavior at different phases of the alpha oscillation. The further analysis explains the dynamic mechanism of PLVF for amplitude and frequency modulation of the alpha rhythm, as well as the influence of parameter settings in the modulation. All these findings provide a deeper understanding of the endogenous alpha oscillations entrained by exogenous phased locked visual stimulus and lead in turn to the refinement of a control strategy for alpha modulation, which could potentially be used in developing new neural modulation methods for cognitive enhancement and mental diseases treatment.


Assuntos
Ritmo alfa , Retroalimentação Sensorial , Eletroencefalografia , Percepção Visual
16.
ACS Nano ; 16(12): 19892-19912, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36411035

RESUMO

Nanomaterials at the neural interface can provide the bridge between bioelectronic devices and native neural tissues and achieve bidirectional transmission of signals with our brain. Photoactive nanomaterials, such as inorganic and polymeric nanoparticles, nanotubes, nanowires, nanorods, nanosheets or related, are being explored to mimic, modulate, control, or even substitute the functions of neural cells or tissues. They show great promise in next generation technologies for the neural interface with excellent spatial and temporal accuracy. In this review, we highlight the discovery and understanding of these nanomaterials in precise control of an individual neuron, biomimetic retinal prosthetics for vision restoration, repair or regeneration of central or peripheral neural tissues, and wireless deep brain stimulation for treatment of movement or mental disorders. The most intriguing feature is that the photoactive materials fit within a minimally invasive and wireless strategy to trigger the flux of neurologically active molecules and thus influences the cell membrane potential or key signaling molecule related to gene expression. In particular, we focus on worthy pathways of photosignal transduction at the nanomaterial-neural interface and the behavior of the biological system. Finally, we describe the challenges on how to design photoactive nanomaterials specific to neurological disorders. There are also some open issues such as long-term interface stability and signal transduction efficiency to further explore for clinical practice.


Assuntos
Nanopartículas , Nanoestruturas , Nanofios , Humanos , Biomimética , Regeneração
17.
Front Neurosci ; 16: 1080027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620467

RESUMO

New tools for monitoring and manipulating neural activity have been developed with steadily improving functionality, specificity, and reliability, which are critical both for mapping neural circuits and treating neurological diseases. This review focuses on the use of an invertebrate animal, the marine mollusk Aplysia californica, in the development of novel neurotechniques. We review the basic physiological properties of Aplysia neurons and discuss the specific aspects that make it advantageous for developing novel neural interfaces: First, Aplysia nerves consist only of unmyelinated axons with various diameters, providing a particularly useful model of the unmyelinated C fibers in vertebrates that are known to carry important sensory information, including those that signal pain. Second, Aplysia's neural tissues can last for a long period in an ex vivo experimental setup. This allows comprehensive tests such as the exploration of parameter space on the same nerve to avoid variability between animals and minimize animal use. Third, nerves in large Aplysia can be many centimeters in length, making it possible to easily discriminate axons with different diameters based on their conduction velocities. Aplysia nerves are a particularly good approximation of the unmyelinated C fibers, which are hard to stimulate, record, and differentiate from other nerve fibers in vertebrate animal models using epineural electrodes. Fourth, neurons in Aplysia are large, uniquely identifiable, and electrically compact. For decades, researchers have used Aplysia for the development of many novel neurotechnologies. Examples include high-frequency alternating current (HFAC), focused ultrasound (FUS), optical neural stimulation, recording, and inhibition, microelectrode arrays, diamond electrodes, carbon fiber microelectrodes, microscopic magnetic stimulation and magnetic resonance electrical impedance tomography (MREIT). We also review a specific example that illustrates the power of Aplysia for accelerating technology development: selective infrared neural inhibition of small-diameter unmyelinated axons, which may lead to a translationally useful treatment in the future. Generally, Aplysia is suitable for testing modalities whose mechanism involves basic biophysics that is likely to be similar across species. As a tractable experimental system, Aplysia californica can help the rapid development of novel neuromodulation technologies.

18.
Adv Healthc Mater ; 11(11): e2101310, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34971080

RESUMO

A remote optogenetic device for analyzing freely moving animals has attracted extensive attention in optogenetic engineering. In particular, for peripheral nerve regions, a flexible device is needed to endure the continuous bending movements of these areas. Here, a remote optogenetic optical transducer device made from a gold inverse opaline skeleton grown with a dendrite-like gold nanostructure (D-GIOF) and chemically grafted with upconversion nanoparticles (UCNPs) is developed. This implantable D-GIOF-based transducer device can achieve synergistic interaction of the photonic crystal effect and localized surface plasmon resonance, resulting in considerable UCNP conversion efficiency with a negligible thermal effect under low-intensity 980 nm near-infrared (NIR) light excitation. Furthermore, the D-GIOF-based transducer device exhibits remarkable emission power retention (≈100%) under different bending states, indicating its potential for realizing peripheral nerve stimulation. Finally, the D-GIOF-based transducer device successfully stimulates neuronal activities of the sciatic nerve in mice. This study demonstrates the potential of the implantable device to promote remote NIR stimulation for modulation of neural activity in peripheral nerve regions and provides proof of concept for its in vivo application in optogenetic engineering.


Assuntos
Optogenética , Animais , Dendritos , Camundongos , Neurônios/fisiologia , Optogenética/métodos , Transdutores
19.
Zhongguo Zhen Jiu ; 40(4): 439-42, 2020 Apr 12.
Artigo em Chinês | MEDLINE | ID: mdl-32275377

RESUMO

The advantages of western medical research were analyzed and the differences between skin nerve stimulation in western medicine and acupuncture-moxibustion in TCM were compared, so as to inspire the scientific researches of acupuncture and moxibustion in China. The related literature was searched and the research basis, content and achievements of the American stimulating peripheral activity to relief condition (SPARC) program were systematically summarized. From the perspectives of theoretical system, stimulation site, stimulation method and mechanism of action, the similarities and differences between skin nerve stimulation in western medicine and acupuncture-moxibustion in TCM were compared. Through comparative analysis, it is found that the systematic construction of SPARC "high-resolution neural circuit map" is essentially the upgraded version of the traditional distribution map of meridians and acupoints in China, which is similar to the research on origin of nervous system and stimulation site of acupuncture-moxibustion of TCM. Under the impact of "localization of traditional Chinese medicine" in other countries, learning from the international advanced research technology, gathering top-level talents, and encouraging openness and innovation will be the necessary pathway to improve the quality of acupuncture-moxibustion research and master the power of knowledge initiative.


Assuntos
Terapia por Acupuntura , Acupuntura/educação , Meridianos , Moxibustão , Pontos de Acupuntura , China , Medicina Tradicional Chinesa
20.
Front Psychol ; 11: 566848, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192845

RESUMO

A widely held view of the visual system supported the perspective that the primate brain is organized in two main specialized streams, called the ventral and dorsal streams. The ventral stream is known to be involved in object recognition (e.g., form and orientation). In contrast, the dorsal stream is thought to be more involved in spatial recognition (e.g., the spatial relationship between objects and motion direction). Recent evidence suggests that these two streams are not segregated but interact with each other. A class of visual stimuli known as Glass patterns has been developed to shed light on this process. Glass patterns are visual stimuli made of pairs of dots, called dipoles, that give the percept of a specific form or apparent motion, depending on the spatial and temporal arrangement of the dipoles. In this review, we show an update of the neurophysiological, brain imaging, psychophysical, clinical, and brain stimulation studies which have assessed form and motion integration mechanisms, and the level at which this occurs in the human and non-human primate brain. We also discuss several studies based on non-invasive brain stimulation techniques that used different types of visual stimuli to assess the cortico-cortical interactions in the visual cortex for the processing of form and motion information. Additionally, we discuss the timing of specific visual processing in the ventral and dorsal streams. Finally, we report some parallels between healthy participants and neurologically impaired patients in the conscious processing of form and motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA