Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.381
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Cell ; 182(2): 372-387.e14, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610084

RESUMO

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Assuntos
Tecido Adiposo Marrom/metabolismo , Interleucina-6/metabolismo , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Encéfalo/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Gluconeogênese , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Interleucina-6/sangue , Interleucina-6/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Interleucina-6/metabolismo , Proteína Desacopladora 1/deficiência , Proteína Desacopladora 1/genética
2.
Cell ; 179(2): 403-416.e23, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585080

RESUMO

Pulmonary neuroendocrine (NE) cells are neurosensory cells sparsely distributed throughout the bronchial epithelium, many in innervated clusters of 20-30 cells. Following lung injury, NE cells proliferate and generate other cell types to promote epithelial repair. Here, we show that only rare NE cells, typically 2-4 per cluster, function as stem cells. These fully differentiated cells display features of classical stem cells. Most proliferate (self-renew) following injury, and some migrate into the injured area. A week later, individual cells, often just one per cluster, lose NE identity (deprogram), transit amplify, and reprogram to other fates, creating large clonal repair patches. Small cell lung cancer (SCLC) tumor suppressors regulate the stem cells: Rb and p53 suppress self-renewal, whereas Notch marks the stem cells and initiates deprogramming and transit amplification. We propose that NE stem cells give rise to SCLC, and transformation results from constitutive activation of stem cell renewal and inhibition of deprogramming.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Células-Tronco Neoplásicas/patologia , Células Neuroendócrinas/patologia , Receptores Notch/metabolismo , Proteína do Retinoblastoma/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Lesão Pulmonar/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células Neuroendócrinas/metabolismo , Análise de Célula Única/métodos , Carcinoma de Pequenas Células do Pulmão/metabolismo
3.
CA Cancer J Clin ; 74(4): 359-367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685134

RESUMO

The American Joint Committee on Cancer (AJCC) staging system for all cancer sites, including gastroenteropancreatic neuroendocrine tumors (GEP-NETs), is meant to be dynamic, requiring periodic updates to optimize AJCC staging definitions. This entails the collaboration of experts charged with evaluating new evidence that supports changes to each staging system. GEP-NETs are the second most prevalent neoplasm of gastrointestinal origin after colorectal cancer. Since publication of the AJCC eighth edition, the World Health Organization has updated the classification and separates grade 3 GEP-NETs from poorly differentiated neuroendocrine carcinoma. In addition, because of major advancements in diagnostic and therapeutic technologies for GEP-NETs, AJCC version 9 advocates against the use of serum chromogranin A for the diagnosis and monitoring of GEP-NETs. Furthermore, AJCC version 9 recognizes the increasing role of endoscopy and endoscopic resection in the diagnosis and management of NETs, particularly in the stomach, duodenum, and colorectum. Finally, T1NXM0 has been added to stage I in these disease sites as well as in the appendix.


Assuntos
Neoplasias Intestinais , Estadiamento de Neoplasias , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/terapia , Estadiamento de Neoplasias/métodos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Intestinais/patologia , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/terapia , Estados Unidos
4.
Mol Cell ; 83(12): 1983-2002.e11, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295433

RESUMO

The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Íntrons/genética , Neoplasias da Próstata/metabolismo , Splicing de RNA/genética , Spliceossomos/metabolismo , Transdução de Sinais , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Neoplasias de Próstata Resistentes à Castração/genética
5.
Genes Dev ; 36(5-6): 241-258, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318269

RESUMO

Small cell lung cancer (SCLC) is a rapidly growing, highly metastatic, and relatively immune-cold lung cancer subtype. Historically viewed in the laboratory and clinic as a single disease, new discoveries suggest that SCLC comprises multiple molecular subsets. Expression of MYC family members and lineage-related transcription factors ASCL1, NEUROD1, and POU2F3 (and, in some studies, YAP1) define unique molecular states that have been associated with distinct responses to a variety of therapies. However, SCLC tumors exhibit a high degree of intratumoral heterogeneity, with recent studies suggesting the existence of tumor cell plasticity and phenotypic switching between subtype states. While SCLC plasticity is correlated with, and likely drives, therapeutic resistance, the mechanisms underlying this plasticity are still largely unknown. Subtype states are also associated with immune-related gene expression, which likely impacts response to immune checkpoint blockade and may reveal novel targets for alternative immunotherapeutic approaches. In this review, we synthesize recent discoveries on the mechanisms of SCLC plasticity and how these processes may impinge on antitumor immunity.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição/metabolismo
6.
Genes Dev ; 35(11-12): 870-887, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34016692

RESUMO

Small cell lung carcinoma (SCLC) is among the most lethal of all solid tumor malignancies. In an effort to identify novel therapeutic approaches for this recalcitrant cancer type, we applied genome-scale CRISPR/Cas9 inactivation screens to cell lines that we derived from a murine model of SCLC. SCLC cells were particularly sensitive to the deletion of NEDD8 and other neddylation pathway genes. Genetic suppression or pharmacological inhibition of this pathway using MLN4924 caused cell death not only in mouse SCLC cell lines but also in patient-derived xenograft (PDX) models of pulmonary and extrapulmonary small cell carcinoma treated ex vivo or in vivo. A subset of PDX models were exceptionally sensitive to neddylation inhibition. Neddylation inhibition suppressed expression of major regulators of neuroendocrine cell state such as INSM1 and ASCL1, which a subset of SCLC rely upon for cell proliferation and survival. To identify potential mechanisms of resistance to neddylation inhibition, we performed a genome-scale CRISPR/Cas9 suppressor screen. Deletion of components of the COP9 signalosome strongly mitigated the effects of neddylation inhibition in small cell carcinoma, including the ability of MLN4924 to suppress neuroendocrine transcriptional program expression. This work identifies neddylation as a regulator of neuroendocrine cell state and potential therapeutic target for small cell carcinomas.


Assuntos
Carcinoma de Células Pequenas/terapia , Ciclopentanos , Neoplasias Pulmonares/terapia , Proteína NEDD8/metabolismo , Pirimidinas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Complexo do Signalossomo COP9/genética , Carcinoma de Células Pequenas/fisiopatologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Neoplasias Pulmonares/fisiopatologia , Camundongos , Proteína NEDD8/genética , Células Neuroendócrinas/citologia , Células Neuroendócrinas/efeitos dos fármacos , Proteínas/genética , Proteínas/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Proteínas Repressoras/genética , Deleção de Sequência
7.
Genes Dev ; 35(11-12): 847-869, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34016693

RESUMO

ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição SOX9/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Crista Neural/citologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Células-Tronco/citologia
8.
Physiol Rev ; 100(1): 357-405, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437089

RESUMO

The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system's function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient's benefit.


Assuntos
Condicionamento Psicológico , Sistema Imunitário/fisiologia , Sistemas Neurossecretores/fisiologia , Animais , Humanos , Ratos
9.
Annu Rev Neurosci ; 42: 1-26, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30735460

RESUMO

Peripheral endocrine output relies on either direct or feed-forward multi-order command from the hypothalamus. Efficient coding of endocrine responses is made possible by the many neuronal cell types that coexist in intercalated hypothalamic nuclei and communicate through extensive synaptic connectivity. Although general anatomical and neurochemical features of hypothalamic neurons were described during the past decades, they have yet to be reconciled with recently discovered molecular classifiers and neurogenetic function determination. By interrogating magnocellular as well as parvocellular dopamine, GABA, glutamate, and phenotypically mixed neurons, we integrate available information at the molecular, cellular, network, and endocrine output levels to propose a framework for the comprehensive classification of hypothalamic neurons. Simultaneously, we single out putative neuronal subclasses for which future research can fill in existing gaps of knowledge to rationalize cellular diversity through function-determinant molecular marks in the hypothalamus.


Assuntos
Hipotálamo/citologia , Neurônios/classificação , Animais , Conectoma , Humanos , Hormônios Hipotalâmicos/análise , Rede Nervosa/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Neurotransmissores/análise , Hormônios Peptídicos/análise , Análise de Célula Única
10.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109637

RESUMO

Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells. We find, contrary to previous studies, that chick C-cells derive from pharyngeal endoderm, with neural crest-derived cells instead contributing to connective tissue intimately associated with C-cells in the ultimobranchial gland. This endodermal origin of C-cells is conserved in a ray-finned bony fish (zebrafish) and a cartilaginous fish (the little skate, Leucoraja erinacea). Furthermore, we discover putative C-cell homologs within the endodermally-derived pharyngeal epithelium of the ascidian Ciona intestinalis and the amphioxus Branchiostoma lanceolatum, two invertebrate chordates that lack neural crest cells. Our findings point to a conserved endodermal origin of C-cells across vertebrates and to a pre-vertebrate origin of this cell type along the chordate stem.


Assuntos
Calcitonina , Linhagem da Célula , Ciona intestinalis , Endoderma , Crista Neural , Células Neuroendócrinas , Animais , Endoderma/metabolismo , Endoderma/citologia , Calcitonina/metabolismo , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/citologia , Ciona intestinalis/metabolismo , Ciona intestinalis/embriologia , Crista Neural/metabolismo , Crista Neural/citologia , Embrião de Galinha , Camundongos , Vertebrados/embriologia , Vertebrados/metabolismo , Peixe-Zebra/embriologia , Anfioxos/embriologia , Anfioxos/metabolismo , Anfioxos/genética , Corpo Ultimobranquial/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(17): e2321898121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625939

RESUMO

High-grade neuroendocrine cervical cancers (NETc) are exceedingly rare, highly aggressive tumors. We analyzed 64 NETc tumor samples by whole-exome sequencing (WES). Human papillomavirus DNA was detected in 65.6% (42/64) of the tumors. Recurrent mutations were identified in PIK3CA, KMT2D/MLL2, K-RAS, ARID1A, NOTCH2, and RPL10. The top mutated genes included RB1, ARID1A, PTEN, KMT2D/MLL2, and WDFY3, a gene not yet implicated in NETc. Somatic CNV analysis identified two copy number gains (3q27.1 and 19q13.12) and five copy number losses (1p36.21/5q31.3/6p22.2/9q21.11/11p15.5). Also, gene fusions affecting the ACLY-CRHR1 and PVT1-MYC genes were identified in one of the eight samples subjected to RNA sequencing. To resolve evolutionary history, multiregion WES in NETc admixed with adenocarcinoma cells was performed (i.e., mixed-NETc). Phylogenetic analysis of mixed-NETc demonstrated that adenocarcinoma and neuroendocrine elements derive from a common precursor with mutations typical of adenocarcinomas. Over one-third (22/64) of NETc demonstrated a mutator phenotype of C > T at CpG consistent with deficiencies in MBD4, a member of the base excision repair (BER) pathway. Mutations in the PI3K/AMPK pathways were identified in 49/64 samples. We used two patient-derived-xenografts (PDX) (i.e., NET19 and NET21) to evaluate the activity of pan-HER (afatinib), PIK3CA (copanlisib), and ATR (elimusertib) inhibitors, alone and in combination. PDXs harboring alterations in the ERBB2/PI3K/AKT/mTOR/ATR pathway were sensitive to afatinib, copanlisib, and elimusertib (P < 0.001 vs. controls). However, combinations of copanlisib/afatinib and copanlisib/elimusertib were significantly more effective in controlling NETc tumor growth. These findings define the genetic landscape of NETc and suggest that a large subset of these highly lethal malignancies might benefit from existing targeted therapies.


Assuntos
Adenocarcinoma , Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Afatinib , Filogenia , Fosfatidilinositol 3-Quinases/genética , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Análise Mutacional de DNA
12.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814866

RESUMO

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Transformação Celular Neoplásica , Cloridrato de Erlotinib , Neoplasias Pulmonares , Humanos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Camundongos , Cloridrato de Erlotinib/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Via de Sinalização Wnt/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Transcrição Gênica , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase
13.
Genes Dev ; 33(23-24): 1718-1738, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727771

RESUMO

More than 90% of small cell lung cancers (SCLCs) harbor loss-of-function mutations in the tumor suppressor gene RB1 The canonical function of the RB1 gene product, pRB, is to repress the E2F transcription factor family, but pRB also functions to regulate cellular differentiation in part through its binding to the histone demethylase KDM5A (also known as RBP2 or JARID1A). We show that KDM5A promotes SCLC proliferation and SCLC's neuroendocrine differentiation phenotype in part by sustaining expression of the neuroendocrine transcription factor ASCL1. Mechanistically, we found that KDM5A sustains ASCL1 levels and neuroendocrine differentiation by repressing NOTCH2 and NOTCH target genes. To test the role of KDM5A in SCLC tumorigenesis in vivo, we developed a CRISPR/Cas9-based mouse model of SCLC by delivering an adenovirus (or an adeno-associated virus [AAV]) that expresses Cre recombinase and sgRNAs targeting Rb1, Tp53, and Rbl2 into the lungs of Lox-Stop-Lox Cas9 mice. Coinclusion of a KDM5A sgRNA decreased SCLC tumorigenesis and metastasis, and the SCLCs that formed despite the absence of KDM5A had higher NOTCH activity compared to KDM5A+/+ SCLCs. This work establishes a role for KDM5A in SCLC tumorigenesis and suggests that KDM5 inhibitors should be explored as treatments for SCLC.


Assuntos
Diferenciação Celular/genética , Células Neuroendócrinas/citologia , Receptores Notch/fisiologia , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Transdução de Sinais/genética , Carcinoma de Pequenas Células do Pulmão/enzimologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem Celular , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Histona Desmetilases/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Células Neuroendócrinas/patologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia
14.
Proc Natl Acad Sci U S A ; 120(24): e2210113120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279279

RESUMO

Using scRNA-seq and microscopy, we describe a cell that is enriched in the lower airways of the developing human lung and identified by the unique coexpression of SCGB3A2/SFTPB/CFTR. To functionally interrogate these cells, we apply a single-cell barcode-based lineage tracing method, called CellTagging, to track the fate of SCGB3A2/SFTPB/CFTR cells during airway organoid differentiation in vitro. Lineage tracing reveals that these cells have a distinct differentiation potential from basal cells, giving rise predominantly to pulmonary neuroendocrine cells and a subset of multiciliated cells distinguished by high C6 and low MUC16 expression. Lineage tracing results are supported by studies using organoids and isolated cells from the lower noncartilaginous airway. We conclude that SCGB3A2/SFTPB/CFTR cells are enriched in the lower airways of the developing human lung and contribute to the epithelial diversity and heterogeneity in this region.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Pulmão , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular , Linhagem da Célula , Organoides , Células Epiteliais/metabolismo
15.
Front Neuroendocrinol ; 75: 101153, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128801

RESUMO

The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.

16.
Gastroenterology ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768690

RESUMO

Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 3 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas. Among the most synthetically dynamic tissues in the body, the exocrine and endocrine pancreas relies heavily on the ISR to rapidly adjust cell function to meet the metabolic demands of the organism. The hardwiring of the ISR into normal pancreatic functions and adaptation to stress may explain why it is a commonly used pro-oncogenic and therapy-resistance mechanism in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Here we review what is known about the key roles that the ISR plays in the development, homeostasis, and neoplasia of the pancreas.

17.
Trends Immunol ; 43(1): 41-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844850

RESUMO

Catestatin (CST) is a bioactive cleavage product of the neuroendocrine prohormone chromogranin A (CgA). Recent findings show that CST can exert anti-inflammatory and antiadrenergic effects by suppressing the inflammatory actions of mammalian macrophages. However, recent findings also suggest that macrophages themselves are major CST producers. Here, we hypothesize that macrophages produce CST in an inflammation-dependent manner and thereby might self-regulate inflammation in an autocrine fashion. CST is associated with pathological conditions hallmarked by chronic inflammation, including autoimmune, cardiovascular, and metabolic disorders. Since intraperitoneal injection of CST in mouse models of diabetes and inflammatory bowel disease has been reported to be beneficial for mitigating disease, we posit that CST should be further investigated as a candidate target for treating certain inflammatory diseases.


Assuntos
Inflamação , Fragmentos de Peptídeos , Animais , Cromogranina A/metabolismo , Humanos , Macrófagos , Mamíferos , Camundongos
18.
FASEB J ; 38(13): e23762, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923643

RESUMO

Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.


Assuntos
Antígenos CD , Exossomos , Proteínas Ligadas por GPI , Metaloproteinase 9 da Matriz , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Microambiente Tumoral , Macrófagos Associados a Tumor , Exossomos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Animais , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Metaloproteinase 9 da Matriz/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Camundongos , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Metástase Neoplásica , Camundongos Nus , Hipóxia/metabolismo , Hipóxia Celular/fisiologia , Antígeno Carcinoembrionário
19.
CA Cancer J Clin ; 68(6): 471-487, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30295930

RESUMO

Neuroendocrine tumors (NETs) are heterogeneous malignancies arising from the diffuse neuroendocrine system. They frequently originate in the gastroenteropancreatic (GEP) tract and the bronchopulmonary tree, and their incidence has steadily increased in the last 3 decades. Fundamental biologic and genomic differences underlie the clinical heterogeneity of NETs, and distinct molecular features characterize NETs of different grades and different primary sites. Although surgery remains the cornerstone of treatment for localized tumors, systemic treatment options for patients with metastatic NETs have expanded considerably. Somatostatin analogs have demonstrated both antisecretory and antitumor efficacy. Peptide receptor radionuclide therapy with lutetium-177 dotatate (177 Lu-DOTATATE) has been approved for advanced GEP-NETs. The antitumor activity of everolimus has been demonstrated across a wide spectrum of NETs, and the antiangiogenic agent sunitinib has been approved for pancreatic NETs (pNETs). Chemotherapy with temozolomide and capecitabine has recently demonstrated an unprecedented prolongation of progression-free survival in a randomized trial of pNETs. Multiple retrospective series have reported the efficacy of liver-directed therapies both for palliating symptoms of hormone excess and for controlling tumor growth. Telotristat, an oral inhibitor of tryptophan hydroxylase, has been shown to reduce diarrhea in patients with carcinoid syndrome. Defining the therapeutic algorithm and identifying biomarkers predictive of response to treatments are among the main priorities for the next decade of research in the NET field.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/análise , Procedimentos Cirúrgicos de Citorredução/métodos , Neoplasias Intestinais/terapia , Tumores Neuroendócrinos/terapia , Octreotida/análogos & derivados , Compostos Organometálicos/administração & dosagem , Neoplasias Pancreáticas/terapia , Neoplasias Gástricas/terapia , Humanos , Incidência , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/epidemiologia , Neoplasias Intestinais/etiologia , Oncologia/métodos , Oncologia/normas , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/epidemiologia , Tumores Neuroendócrinos/etiologia , Octreotida/administração & dosagem , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/etiologia , Seleção de Pacientes , Guias de Prática Clínica como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/etiologia , Resultado do Tratamento
20.
J Pathol ; 263(4-5): 418-428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795318

RESUMO

Neuroendocrine neoplasms (NENs) encompass tumors arising from neuroendocrine cells in various organs, including the gastrointestinal tract, pancreas, adrenal gland, and paraganglia. Despite advancements, accurately predicting the aggressiveness of gastroenteropancreatic (GEP) NENs based solely on pathological data remains challenging, thereby limiting optimal clinical management. Our previous research unveiled a crucial link between hypermethylation of the protocadherin PCDHGC3 gene and neuroendocrine tumors originating from the paraganglia and adrenal medulla. This epigenetic alteration was associated with increased metastatic potential and succinate dehydrogenase complex (SDH) dysfunction. Expanding upon this discovery, the current study explored PCDHGC3 gene methylation within the context of GEP-NENs in a cohort comprising 34 cases. We uncovered promoter hypermethylation of PCDHGC3 in 29% of GEP-NENs, with a significantly higher prevalence in gastrointestinal (GI) neuroendocrine carcinomas (NECs) compared with both pancreatic (Pan) NECs and neuroendocrine tumors (NETs) of GI and Pan origin. Importantly, these findings were validated in one of the largest multi-center GEP-NEN cohorts. Mechanistic analysis revealed that PCDHGC3 hypermethylation was not associated with SDH mutations or protein loss, indicating an SDH-independent epigenetic mechanism. Clinically, PCDHGC3 hypermethylation emerged as a significant prognostic factor, correlating with reduced overall survival rates in both patient cohorts. Significantly, whereas PCDHGC3 hypermethylation exhibited a strong correlation with TP53 somatic mutations, a hallmark of NEC, its predictive value surpassed that of TP53 mutations, with an area under the curve (AUC) of 0.95 (95% CI 0.83-1.0) for discriminating GI-NECs from GI-NETs, highlighting its superior predictive performance. In conclusion, our findings position PCDHGC3 methylation status as a promising molecular biomarker for effectively stratifying patients with GI-NENs. This discovery has the potential to advance patient care by enabling more precise risk assessments and tailored treatment strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Biomarcadores Tumorais , Carcinoma Neuroendócrino , Metilação de DNA , Neoplasias Intestinais , Humanos , Biomarcadores Tumorais/genética , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Masculino , Feminino , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Pessoa de Meia-Idade , Caderinas/genética , Idoso , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Epigênese Genética , Regiões Promotoras Genéticas , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA