Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.395
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(19): 4059-4073.e27, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37611581

RESUMO

Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.


Assuntos
Antibacterianos , Bactérias , Microbiologia do Solo , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bioensaio , Difosfatos
2.
Cell ; 184(7): 1884-1894.e14, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33743210

RESUMO

G-protein-coupled receptors (GPCRs) represent a ubiquitous membrane protein family and are important drug targets. Their diverse signaling pathways are driven by complex pharmacology arising from a conformational ensemble rarely captured by structural methods. Here, fluorine nuclear magnetic resonance spectroscopy (19F NMR) is used to delineate key functional states of the adenosine A2A receptor (A2AR) complexed with heterotrimeric G protein (Gαsß1γ2) in a phospholipid membrane milieu. Analysis of A2AR spectra as a function of ligand, G protein, and nucleotide identifies an ensemble represented by inactive states, a G-protein-bound activation intermediate, and distinct nucleotide-free states associated with either partial- or full-agonist-driven activation. The Gßγ subunit is found to be critical in facilitating ligand-dependent allosteric transmission, as shown by 19F NMR, biochemical, and computational studies. The results provide a mechanistic basis for understanding basal signaling, efficacy, precoupling, and allostery in GPCRs.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/química , Receptor A2A de Adenosina/química , Regulação Alostérica , Sítios de Ligação , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Cinética , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Nanoestruturas/química , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Transdução de Sinais
3.
Annu Rev Biochem ; 89: 389-415, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569518

RESUMO

Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.


Assuntos
Escherichia coli/genética , Chaperonas Moleculares/genética , Biossíntese de Proteínas , Proteoma/química , Ribossomos/genética , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteoma/biossíntese , Proteoma/genética , Proteostase/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Ribossomos/metabolismo , Ribossomos/ultraestrutura
4.
Cell ; 176(1-2): 154-166.e13, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30595448

RESUMO

Primases have a fundamental role in DNA replication. They synthesize a primer that is then extended by DNA polymerases. Archaeoeukaryotic primases require for synthesis a catalytic and an accessory domain, the exact contribution of the latter being unresolved. For the pRN1 archaeal primase, this domain is a 115-amino acid helix bundle domain (HBD). Our structural investigations of this small HBD by liquid- and solid-state nuclear magnetic resonance (NMR) revealed that only the HBD binds the DNA template. DNA binding becomes sequence-specific after a major allosteric change in the HBD, triggered by the binding of two nucleotide triphosphates. The spatial proximity of the two nucleotides and the DNA template in the quaternary structure of the HBD strongly suggests that this small domain brings together the substrates to prepare the first catalytic step of primer synthesis. This efficient mechanism is likely general for all archaeoeukaryotic primases.


Assuntos
DNA Primase/metabolismo , DNA Primase/fisiologia , Primers do DNA/química , Animais , Sítios de Ligação , DNA , DNA Primase/ultraestrutura , Primers do DNA/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Nucleotídeos , Conformação Proteica , Elementos Estruturais de Proteínas/fisiologia
5.
Immunity ; 57(7): 1533-1548.e10, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733997

RESUMO

Several interleukin-1 (IL-1) family members, including IL-1ß and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.


Assuntos
Caspase 1 , Microscopia Crioeletrônica , Interleucina-18 , Transdução de Sinais , Interleucina-18/metabolismo , Caspase 1/metabolismo , Humanos , Inflamassomos/metabolismo , Animais , Conformação Proteica , Ligação Proteica , Sítios de Ligação , Camundongos , Receptores de Interleucina-18/metabolismo , Modelos Moleculares , Peptídeos e Proteínas de Sinalização Intercelular
6.
Cell ; 173(5): 1244-1253.e10, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29681455

RESUMO

The RIPK1-RIPK3 necrosome is an amyloid signaling complex that initiates TNF-induced necroptosis, serving in human immune defense, cancer, and neurodegenerative diseases. RIPK1 and RIPK3 associate through their RIP homotypic interaction motifs with consensus sequences IQIG (RIPK1) and VQVG (RIPK3). Using solid-state nuclear magnetic resonance, we determined the high-resolution structure of the RIPK1-RIPK3 core. RIPK1 and RIPK3 alternately stack (RIPK1, RIPK3, RIPK1, RIPK3, etc.) to form heterotypic ß sheets. Two such ß sheets bind together along a compact hydrophobic interface featuring an unusual ladder of alternating Ser (from RIPK1) and Cys (from RIPK3). The crystal structure of a four-residue RIPK3 consensus sequence is consistent with the architecture determined by NMR. The RIPK1-RIPK3 core is the first detailed structure of a hetero-amyloid and provides a potential explanation for the specificity of hetero- over homo-amyloid formation and a structural basis for understanding the mechanisms of signal transduction.


Assuntos
Amiloide/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Alinhamento de Sequência
7.
Cell ; 172(1-2): 68-80.e12, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29290469

RESUMO

Signaling across cellular membranes, the 826 human G protein-coupled receptors (GPCRs) govern a wide range of vital physiological processes, making GPCRs prominent drug targets. X-ray crystallography provided GPCR molecular architectures, which also revealed the need for additional structural dynamics data to support drug development. Here, nuclear magnetic resonance (NMR) spectroscopy with the wild-type-like A2A adenosine receptor (A2AAR) in solution provides a comprehensive characterization of signaling-related structural dynamics. All six tryptophan indole and eight glycine backbone 15N-1H NMR signals in A2AAR were individually assigned. These NMR probes provided insight into the role of Asp522.50 as an allosteric link between the orthosteric drug binding site and the intracellular signaling surface, revealing strong interactions with the toggle switch Trp 2466.48, and delineated the structural response to variable efficacy of bound drugs across A2AAR. The present data support GPCR signaling based on dynamic interactions between two semi-independent subdomains connected by an allosteric switch at Asp522.50.


Assuntos
Regulação Alostérica , Receptor A2A de Adenosina/química , Transdução de Sinais , Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/farmacologia , Sítio Alostérico , Animais , Simulação de Acoplamento Molecular , Pichia , Ligação Proteica , Receptor A2A de Adenosina/metabolismo , Células Sf9 , Spodoptera
8.
Cell ; 175(5): 1365-1379.e25, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445040

RESUMO

The exchange of metabolites between the mitochondrial matrix and the cytosol depends on ß-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and ß-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and ß-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Membranas Intracelulares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
9.
Mol Cell ; 84(8): 1512-1526.e9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508184

RESUMO

J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified ß-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the ß-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP ß-hairpin as a highly specific target for cancer therapeutics.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína
10.
Mol Cell ; 84(3): 429-446.e17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215753

RESUMO

Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.


Assuntos
Nucleossomos , Poli ADP Ribosilação , Nucleossomos/genética , Poli ADP Ribosilação/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Microscopia Crioeletrônica , Condensados Biomoleculares , Reparo do DNA , Histonas/genética , Histonas/metabolismo , DNA/genética , DNA/metabolismo , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo
11.
Mol Cell ; 84(5): 839-853.e12, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38242129

RESUMO

RNF168 plays a central role in the DNA damage response (DDR) by ubiquitylating histone H2A at K13 and K15. These modifications direct BRCA1-BARD1 and 53BP1 foci formation in chromatin, essential for cell-cycle-dependent DNA double-strand break (DSB) repair pathway selection. The mechanism by which RNF168 catalyzes the targeted accumulation of H2A ubiquitin conjugates to form repair foci around DSBs remains unclear. Here, using cryoelectron microscopy (cryo-EM), nuclear magnetic resonance (NMR) spectroscopy, and functional assays, we provide a molecular description of the reaction cycle and dynamics of RNF168 as it modifies the nucleosome and recognizes its ubiquitylation products. We demonstrate an interaction of a canonical ubiquitin-binding domain within full-length RNF168, which not only engages ubiquitin but also the nucleosome surface, clarifying how such site-specific ubiquitin recognition propels a signal amplification loop. Beyond offering mechanistic insights into a key DDR protein, our study aids in understanding site specificity in both generating and interpreting chromatin ubiquitylation.


Assuntos
Nucleossomos , Ubiquitina-Proteína Ligases , Nucleossomos/genética , Microscopia Crioeletrônica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Histonas/metabolismo , Cromatina/genética , Reparo do DNA , Ubiquitina/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Dano ao DNA
12.
Cell ; 167(5): 1241-1251.e11, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839865

RESUMO

The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/isolamento & purificação , Humanos , Membranas Intracelulares/química , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Termodinâmica , Vesículas Transportadoras/química
13.
Mol Cell ; 83(22): 4141-4157.e11, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977121

RESUMO

Biomolecular condensates have emerged as a major organizational principle in the cell. However, the formation, maintenance, and dissolution of condensates are still poorly understood. Transcriptional machinery partitions into biomolecular condensates at key cell identity genes to activate these. Here, we report a specific perturbation of WNT-activated ß-catenin condensates that disrupts oncogenic signaling. We use a live-cell condensate imaging method in human cancer cells to discover FOXO and TCF-derived peptides that specifically inhibit ß-catenin condensate formation on DNA, perturb nuclear ß-catenin condensates in cells, and inhibit ß-catenin-driven transcriptional activation and colorectal cancer cell growth. We show that these peptides compete with homotypic intermolecular interactions that normally drive condensate formation. Using this framework, we derive short peptides that specifically perturb condensates and transcriptional activation of YAP and TAZ in the Hippo pathway. We propose a "monomer saturation" model in which short interacting peptides can be used to specifically inhibit condensate-associated transcription in disease.


Assuntos
Neoplasias , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Transdução de Sinais , Via de Sinalização Hippo , Peptídeos/genética
14.
Mol Cell ; 83(12): 2108-2121.e7, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244255

RESUMO

The two non-visual arrestins, arrestin2 and arrestin3, bind hundreds of GPCRs with different phosphorylation patterns, leading to distinct functional outcomes. Structural information on these interactions is available only for very few GPCRs. Here, we have characterized the interactions between the phosphorylated human CC chemokine receptor 5 (CCR5) and arrestin2. We identified several new CCR5 phosphorylation sites necessary for stable arrestin2 complex formation. Structures of arrestin2 in the apo form and complexes with CCR5 C-terminal phosphopeptides, together with NMR, biochemical, and functional assays, revealed three phosphoresidues in a pXpp motif that are essential for arrestin2 binding and activation. The identified motif appears responsible for robust arrestin2 recruitment in many other GPCRs. An analysis of receptor sequences and available structural and functional information provides hints on the molecular basis of arrestin2/arrestin3 isoform specificity. Our findings demonstrate how multi-site phosphorylation controls GPCR⋅arrestin interactions and provide a framework to probe the intricate details of arrestin signaling.


Assuntos
Fosfopeptídeos , Receptores CCR5 , Humanos , Fosforilação , beta-Arrestinas/metabolismo , Fosfopeptídeos/metabolismo , Receptores CCR5/metabolismo , Linhagem Celular
15.
Mol Cell ; 83(15): 2653-2672.e15, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506698

RESUMO

Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Sítios de Splice de RNA/genética , Íntrons/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
16.
Annu Rev Biochem ; 84: 465-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25839340

RESUMO

Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Amiloide/química , Bactérias/química , Humanos , Hidrogênio/análise , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/instrumentação
17.
Mol Cell ; 82(5): 950-968.e14, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202574

RESUMO

A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.


Assuntos
GTP Fosfo-Hidrolases , Transdução de Sinais , Animais , Cristalografia por Raios X , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Mamíferos/metabolismo , Nucleotídeos , Proteínas
18.
Mol Cell ; 82(3): 555-569.e7, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063133

RESUMO

In the eukaryotic cytosol, the Hsp70 and the Hsp90 chaperone machines work in tandem with the maturation of a diverse array of client proteins. The transfer of nonnative clients between these systems is essential to the chaperoning process, but how it is regulated is still not clear. We discovered that NudC is an essential transfer factor with an unprecedented mode of action: NudC interacts with Hsp40 in Hsp40-Hsp70-client complexes and displaces Hsp70. Then, the interaction of NudC with Hsp90 allows the direct transfer of Hsp40-bound clients to Hsp90 for further processing. Consistent with this mechanism, NudC increases client activation in vitro as well as in cells and is essential for cellular viability. Together, our results show the complexity of the cooperation between the major chaperone machineries in the eukaryotic cytosol.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Nucleares/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Sobrevivência Celular , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Células K562 , Cinética , Simulação de Acoplamento Molecular , Proteínas Nucleares/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Annu Rev Biochem ; 83: 291-315, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905784

RESUMO

Large macromolecular assemblies, so-called molecular machines, are critical to ensuring proper cellular function. Understanding how proper function is achieved at the atomic level is crucial to advancing multiple avenues of biomedical research. Biophysical studies often include X-ray diffraction and cryo-electron microscopy, providing detailed structural descriptions of these machines. However, their inherent flexibility has complicated an understanding of the relation between structure and function. Solution NMR spectroscopy is well suited to the study of such dynamic complexes, and continued developments have increased size boundaries; insights into function have been obtained for complexes with masses as large as 1 MDa. We highlight methyl-TROSY (transverse relaxation optimized spectroscopy) NMR, which enables the study of such large systems, and include examples of applications to several cellular machines. We show how this emerging technique contributes to an understanding of cellular function and the role of molecular plasticity in regulating an array of biochemical activities.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Sítio Alostérico , Animais , Proteínas de Bactérias/química , Domínio Catalítico , Exossomos , Proteína HMGN2/química , Proteínas de Choque Térmico/química , Humanos , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares/química , Nucleossomos/química , Canais de Potássio/química , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Proteínas/química
20.
Mol Cell ; 81(20): 4165-4175.e6, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34433090

RESUMO

GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the ß-arrestin pathways through the µ-opioid receptor (µOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific µOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger µOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair ß-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands.


Assuntos
Analgésicos Opioides/farmacologia , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Transdução de Sinais/efeitos dos fármacos , Analgésicos Opioides/química , Animais , Sítios de Ligação , Desenho Assistido por Computador , Desenho de Fármacos , Agonismo Parcial de Drogas , Células HEK293 , Humanos , Ligantes , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Células Sf9 , Relação Estrutura-Atividade , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA