Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Cell Mol Med ; 27(19): 2937-2944, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499109

RESUMO

Colorectal cancer (CRC) is identified as a primary cause of death around the world. The current chemotherapies are not cost-effective. Therefore, finding novel potential therapeutic target is urgent. Titin (TTN) is a muscle protein that is critical in hypertrophic cardiomyopathy. However, its role in CRC is not well understood. The study focused on exploring the possible role of TTN in CRC carcinogenesis. TTN mRNA and protein expression levels presented an obvious downregulation in CRC tissue samples, relative to normal control (p < 0.05). TTN expression significantly correlated with the clinical stage (normal vs. Stage 1, p < 0.05; normal vs. Stage 4, p < 0.05), node metastasis (normal vs. N1, p < 0.05; N1 vs. N2, p < 0.05), histological type (normal vs. adenocarcinoma, p < 0.05), race (Caucasian vs. Asian, p < 0.05; African-American vs. Asian, p < 0.05) and TP53 mutation (normal vs. TP53 mutation, p < 0.05), considering The Cancer Genome Atlas database. However, for patients who had higher TTN expression, the overall survival was remarkably shorter than patients who had low TTN expression. Furthermore, TTN was lowly expressed in four CRC cell lines. TTN overexpression facilitated CRC cells in terms of the proliferation, metastasis and invasion. Based on gene set enrichment analysis, the ERB pathway might be responsible for TTN-related CRC. Besides, TTN was involved in the response to azacitidine. Overall, TTN might serve as a potential novel therapeutic target for treating and overcoming chemotherapy resistance in CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Conectina/genética , Conectina/metabolismo , MicroRNAs/genética , Proteínas Musculares/genética , Mutação/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo
2.
Hereditas ; 160(1): 11, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907956

RESUMO

BACKGROUND: Acid sphingomyelinase deficiency (ASMD) disorder, also known as Niemann-Pick disease (NPD) is a rare genetic disease caused by mutations in SMPD1 gene, which encodes sphingomyelin phosphodiesterase (ASM). Except for liver and spleen enlargement and lung disease, two subtypes (Type A and B) of NDP have different onset times, survival times, ASM activities, and neurological abnormalities. To comprehensively explore NPD's genotype-phenotype association and pathophysiological characteristics, we collected 144 NPD cases with strict quality control through literature mining. RESULTS: The difference in ASM activity can differentiate NPD type A from other subtypes, with the ratio of ASM activity to the reference values being lower in type A (threshold 0.045 (4.45%)). Severe variations, such as deletion and insertion, can cause complete loss of ASM function, leading to type A, whereas relatively mild missense mutations generally result in type B. Among reported mutations, the p.Arg3AlafsX76 mutation is highly prevalent in the Chinese population, and the p.R608del mutation is common in Mediterranean countries. The expression profiles of SMPD1 from GTEx and single-cell RNA sequencing data of multiple fetal tissues showed that high expressions of SMPD1 can be observed in the liver, spleen, and brain tissues of adults and hepatoblasts, hematopoietic stem cells, STC2_TLX1-positive cells, mesothelial cells of the spleen, vascular endothelial cells of the cerebellum and the cerebrum of fetuses, indicating that SMPD1 dysfunction is highly likely to have a significant effect on the function of those cell types during development and the clinicians need pay attention to these organs or tissues as well during diagnosis. In addition, we also predicted 21 new pathogenic mutations in the SMPD1 gene that potentially cause the NPD, signifying that more rare cases will be detected with those mutations in SMPD1. Finally, we also analysed the function of the NPD type A cells following the extracellular milieu. CONCLUSIONS: Our study is the first to elucidate the effects of SMPD1 mutation on cell types and at the tissue level, which provides new insights into the genotype-phenotype association and can help in the precise diagnosis of NPD.


Assuntos
Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Esfingomielina Fosfodiesterase , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estudos de Associação Genética , Mutação , Doença de Niemann-Pick Tipo A/diagnóstico , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/patologia , Doenças de Niemann-Pick/diagnóstico , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
3.
Arch Microbiol ; 204(3): 192, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195774

RESUMO

Human gut microbiota are a huge and complex microbial community, which is recognized to play a significant role in regulating host metabolism. However, the destruction of gut microbiota leads to the pathological response of host, and thus results in a variety of metabolic diseases. This article gives a brief review of research progress on gut microbiota and some main metabolic diseases, including osteoporosis, obesity, type 2 diabetes, non-alcoholic fatty liver, and hypertension, with a specific focus on the effect of gut microbiota on diseases' occurrence and development. In addition, this review article also shows some case studies on the regulation of gut microbiota by new means, such as fecal microbiota transplantation and oral probiotics. Although gut microbiota are considered as a promising novel target for the treatment of metabolic diseases, it is also necessary to encourage further studies to provide more valuable data for guiding the application of gut microbiota on disease therapy in future.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Probióticos , Transplante de Microbiota Fecal , Humanos , Doenças Metabólicas/microbiologia
4.
Invest New Drugs ; 39(1): 278-282, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32915420

RESUMO

An inflammatory myofibroblastic tumor (IMT) is a rare invasive soft tissue mass with intramuscular penetration that is primarily treated via a surgical procedure. However, with unclear boundaries and a high rate of relapse, there is no standard treatment for recurrence or unresectable tumors. It is noteworthy that approximately half of IMTs harbor genetic rearrangements of the anaplastic lymphoma kinase (ALK). ALK inhibitors have been used successfully in the treatment of IMTs with a variety of ALK fusions. Here, we present a case of a 15-year-old patient with IMT around the hip. Next-generation sequencing (NGS) revealed an LRRFIP1-ALK fusion, which has not yet been reported in the literature. Crizotinib, an ALK inhibitor, was effective in the treatment of this patient, indicating that ALK inhibitors may be effective for IMT with LRRFIP1-ALK fusions. This report expands the list of gene fusions in IMTs and highlights a new target for treatment.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Crizotinibe/uso terapêutico , Neoplasias de Tecido Muscular/tratamento farmacológico , Proteínas de Ligação a RNA/genética , Adolescente , Fusão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Neoplasias de Tecido Muscular/genética
6.
Bioorg Med Chem ; 24(24): 6291-6297, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27143131

RESUMO

Kibdelomycin is a complex novel antibiotic, discovered by applying a highly sophisticated chemical-genetic Staphylococcus aureus Fitness Test (SaFT) approach, that inhibits the clinically established bacterial targets, gyrase and topoisomerase IV. It exhibits broad-spectrum antibacterial activity against aerobic bacteria including MRSA and Acinetobacter baumannii. It is slowly bactericidal and has a low frequency of resistance. In an anaerobic environment, it exhibits narrow-spectrum activity and inhibits the growth of gut bacteria Clostridium difficile (MIC 0.125µg/mL) without affecting the growth of commensal Gram-negative organisms particularly, Bacteroides sp. It is highly efficacious in the hamster model of C. difficile infection providing 100% protection at >6mg/kg and 80% protection at 1.56mg/kg by oral dosing without systemic exposure. X-ray co-crystal structures of kibdelomycin bound to GyrB and ParE showed a unique dual arm 'U shaped' multisite binding never encountered with any other gyrase inhibitors. Kibdelomycin is poised for preclinical development for C. difficile treatment, and most importantly, the co-crystal structures of kibdelomycin provide unique insight for structure-guided structure modification, which could lead to better broader-spectrum systemic antibiotic potentially covering many ESKAPE pathogens.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Descoberta de Drogas , Pirróis/farmacologia , Pirrolidinonas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Clostridioides difficile/enzimologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Pirróis/síntese química , Pirróis/química , Pirrolidinonas/síntese química , Pirrolidinonas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
7.
Biochem Biophys Res Commun ; 463(4): 961-7, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26093302

RESUMO

Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes , Fator 3-beta Nuclear de Hepatócito/fisiologia , Neoplasias Pulmonares/genética , Transcrição Gênica/fisiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Humanos , Neoplasias Pulmonares/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Curr Med Chem ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38310398

RESUMO

Cancer immunotherapy has demonstrated remarkable success in the treatment of multiple advanced malignancies, especially approaches to target the immune checkpoint. Nonetheless, the limited response rate remains a barrier to broader application. Identifying other ways to extend the beneficiaries to a large extent is needed. Emerging evidence has shown that mitogen-activated protein kinase-interacting kinases (MNKs) could be regarded as a novel, attractive target for cancer immunotherapy that is closely correlated with cancer biology and therapies. A comprehensive understanding of the role and mechanism of MNKs in cancer will shed light on the discovery of novel therapeutic strategies for cancer treatment. In this review, we outlined the structure of MNKs, their function and expression, and how MNKs affect tumor progression and elucidated the evidence supporting MNKs as a new promising treatment modality in human cancers.

9.
Open Biol ; 14(6): 230272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889771

RESUMO

Traditional medication and alternative therapies have long been used to treat breast cancer. One of the main problems with current treatments is that there is an increase in drug resistance in the cancer cells owing to genetic differences such as mutational changes, epigenetic changes and miRNA (microRNA) alterations such as miR-1246, miR-298, miR-27b and miR-33a, along with epigenetic modifications, such as Histone3 acetylation and CCCTC-Binding Factor (CTCF) hypermethylation for drug resistance in breast cancer cell lines. Certain forms of conventional drug resistance have been linked to genetic changes in genes such as ABCB1, AKT, S100A8/A9, TAGLN2 and NPM. This review aims to explore the current approaches to counter breast cancer, the action mechanism, along with novel therapeutic methods endowing potential drug resistance. The investigation of novel therapeutic approaches sheds light on the phenomenon of drug resistance including genetic variations that impact distinct forms of oestrogen receptor (ER) cancer, genetic changes, epigenetics-reported resistance and their identification in patients. Long-term effective therapy for breast cancer includes selective oestrogen receptor modulators, selective oestrogen receptor degraders and genetic variations, such as mutations in nuclear genes, epigenetic modifications and miRNA alterations in target proteins. Novel research addressing combinational therapies including maytansine, photodynamic therapy, guajadiol, talazoparib, COX2 inhibitors and miRNA 1246 inhibitors have been developed to improve patient survival rates.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Receptores de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
10.
World J Clin Oncol ; 15(1): 130-144, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292656

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is an aggressive subtype of liver cancer and is one of the most common cancers with high mortality worldwide. Reprogrammed lipid metabolism plays crucial roles in HCC cancer cell survival, growth, and evolution. Emerging evidence suggests the importance of fatty acid binding proteins (FABPs) in contribution to cancer progression and metastasis; however, how these FABPs are dysregulated in cancer cells, especially in HCC, and the roles of FABPs in cancer progression have not been well defined. AIM: To understand the genetic alterations and expression of FABPs and their associated cancer hallmarks and oncogenes in contributing to cancer malignancies. METHODS: We used The Cancer Genome Atlas datasets of pan cancer and liver hepatocellular carcinoma (LIHC) as well as patient cohorts with other cancer types in this study. We investigated genetic alterations of FABPs in various cancer types. mRNA expression was used to determine if FABPs are abnormally expressed in tumor tissues compared to non-tumor controls and to investigate whether their expression correlates with patient clinical outcome, enriched cancer hallmarks and oncogenes previously reported for patients with HCC. We determined the protein levels of FABP5 and its correlated genes in two HCC cell lines and assessed the potential of FABP5 inhibition in treating HCC cells. RESULTS: We discovered that a gene cluster including five FABP family members (FABP4, FABP5, FABP8, FABP9 and FABP12) is frequently co-amplified in cancer. Amplification, in fact, is the most common genetic alteration for FABPs, leading to overexpression of FABPs. FABP5 showed the greatest differential mRNA expression comparing tumor with non-tumor tissues. High FABP5 expression correlates well with worse patient outcomes (P < 0.05). FABP5 expression highly correlates with enrichment of G2M checkpoint (r = 0.33, P = 1.1e-10), TP53 signaling pathway (r = 0.22, P = 1.7e-5) and many genes in the gene sets such as CDK1 (r = 0.56, P = 0), CDK4 (r = 0.49, P = 0), and TP53 (r = 0.22, P = 1.6e-5). Furthermore, FABP5 also correlates well with two co-expressed oncogenes PLK1 and BIRC5 in pan cancer especially in LIHC patients (r = 0.58, P = 0; r = 0.58, P = 0; respectively). FABP5high Huh7 cells also expressed higher protein levels of p53, BIRC5, CDK1, CDK2, and CDK4 than FABP5low HepG2 cells. FABP5 inhibition more potently inhibited the tumor cell growth in Huh7 cells than in HepG2 cells. CONCLUSION: We discovered that FABP5 gene is frequently amplified in cancer, especially in HCC, leading to its significant elevated expression in HCC. Its high expression correlates well with worse patient outcome, enriched cancer hallmarks and oncogenes in HCC. FABP5 inhibition impaired the cell viability of FABP5high Huh7 cells. All these support that FABP5 is a novel therapeutic target for treating FABP5high HCC.

11.
Ann Neurosci ; 30(4): 262-276, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38020406

RESUMO

Background: Epilepsy is a chronic neurological disorder that affects approximately 50-70 million people worldwide. Epilepsy has a significant economic and social burden on patients as well as on the country. The recurrent, spontaneous seizure activity caused by abnormal neuronal firing in the brain is a hallmark of epilepsy. The current antiepileptic drugs provide symptomatic relief by restoring the balance of excitatory and inhibitory neurotransmitters. Besides, about 30% of epileptic patients do not achieve seizure control. The prevalence of adverse drug reactions, including aggression, agitation, irritability, and associated comorbidities, is also prevalent. Therefore, researchers should focus on developing more effective, safe, and disease-modifying agents based on new molecular targets and signaling cascades. Summary: This review overviews several clinical trials that help identify promising new targets like lactate dehydrogenase inhibitors, c-jun n-terminal kinases, high mobility group box-1 antibodies, astrocyte reactivity inhibitors, cholesterol 24-hydroxylase inhibitors, glycogen synthase kinase-3 beta inhibitors, and glycolytic inhibitors to develop a new antiepileptic drug. Key messages: Approximately 30% of epileptic patients do not achieve seizure control. The current anti-seizure drugs are not disease modifying, cure or prevent epilepsy. Lactate dehydrogenase inhibitor, cholesterol 24-hydroxylase inhibitor, glycogen synthase kinase-3 beta inhibitors, and mTOR inhibitors have a promising antiepileptogenic effect.

12.
Curr Drug Targets ; 24(5): 406-415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815636

RESUMO

More people are diagnosed with thyroid cancer than any other endocrine tumor. Differentiated thyroid cancer is often treated by removing the thyroid gland (thyroidectomy), iodizing radiation, or inhibiting thyroid stimulating hormone (TSH). Advanced thyroid carcinomas are notoriously resistant to chemotherapy, thus the pursuit of alternative treatments is vital. The best methods for treating individuals with advanced nonmedullary and medullary thyroid carcinomas are discussed in this post. Numerous tyrosine kinase inhibitors and antiangiogenic inhibitors, two types of novel target therapy, have shown promise in studies for individuals with thyroid cancer. Both the positive and unfavourable outcomes of clinical studies of these drugs were addressed. The findings presented here are encouraging, but more study is required to establish whether or not this method is effective in the treatment of thyroid cancer.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Tireoidectomia , Carcinoma Neuroendócrino/tratamento farmacológico
13.
Mol Ther Nucleic Acids ; 33: 376-390, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37547288

RESUMO

PANoptosis pathway gene sets encompassing pyroptosis, apoptosis, and necroptosis were identified from the MSigDB database. We analyzed the perturbations and crosstalk in the PANoptosis pathway in prostate adenocarcinoma (PRAD), including gene mutation, transcription, methylation, and clinical features. By constructing a PANoptosis signature, we accurately predicted the prognosis and immunotherapeutic response of PRAD patients. We further explored the molecular features and immunological roles of the signature, dividing patients into high- and low-score groups. Notably, the high-score group correlated with better survival outcomes and immunotherapeutic responses, as well as a higher mutation frequency and enrichment score in the PANoptosis and HALLMARK pathways. The PANoptosis signature also enhanced overall antitumor immunity, promoted immune cell infiltration, upregulated immune checkpoint regulators, and revealed the cold tumor characteristics of PRAD. We also identified potential drug targets based on the PANoptosis signature. These findings lead the way in identifying novel prognostic markers and therapeutic targets for patients with PRAD.

14.
Eur J Med Chem ; 256: 115413, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150058

RESUMO

Antimicrobial resistance (AMR) is a major public health issue, causing 5 million deaths per year. Without any action plan, AMR will be in a near future the leading cause of death ahead of cancer. AMR comes from the ability of bacteria to rapidly develop and share resistance mechanisms towards current antibiotics, rendering them less effective. To circumvent this issue and avoid the phenomenon of cross-resistance, new antibiotics acting on novel targets or with new modes of action are required. Today, the pipeline of potential new treatments with these characteristics includes promising compounds such as gepotidacin, zoliflodacin, ibezapolstat, MGB-BP-3, CRS-3123, afabicin and TXA-709, which are currently in clinical trials, and lefamulin, which has been recently approved by FDA and EMA. In this review, we report the chemical synthesis, mode of action, structure-activity relationships, in vitro and in vivo activities as well as clinical data of these eight small molecules listed above.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
15.
Cancers (Basel) ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190199

RESUMO

About 70% of breast cancer patients are oestrogen receptor-positive (ER +ve). Adjuvant endocrine therapy using tamoxifen (TAM) is an effective approach for preventing local recurrence and metastasis. However, around half of the patients will eventually develop resistance. Overexpression of BQ323636.1 (BQ) is one of the mechanisms that confer TAM resistance. BQ is an alternative splice variant of NCOR2. The inclusion of exon 11 generates mRNA for NCOR2, while the exclusion of exon 11 produces mRNA for BQ. The expression of SRSF5 is low in TAM-resistant breast cancer cells. Modulation of SRSF5 can affect the alternative splicing of NCOR2 to produce BQ. In vitro and in vivo studies confirmed that the knockdown of SRSF5 enhanced BQ expression, and conferred TAM resistance; in contrast, SRSF5 overexpression reduced BQ expression and, thus, reversed TAM resistance. Clinical investigation using a tissue microarray confirmed the inverse correlation of SRSF5 and BQ. Low SRSF5 expression was associated with TAM resistance, local recurrence and metastasis. Survival analyses showed that low SRSF5 expression was associated with poorer prognosis. We showed that SRPK1 can interact with SRSF5 to phosphorylate it. Inhibition of SRPK1 by a small inhibitor, SRPKIN-1, suppressed the phosphorylation of SRSF5. This enhanced the proportion of SRSF5 interacting with exon 11 of NCOR2, reducing the production of BQ mRNA. As expected, SRPKIN-1 reduced TAM resistance. Our study confirms that SRSF5 is essential for BQ expression. Modulating the activity of SRSF5 in ER +ve breast cancer will be a potential approach to combating TAM resistance.

16.
Curr Gene Ther ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929733

RESUMO

BACKGROUND: The development of novel biomarkers is crucial for the treatment of HCC. In this study, we investigated a new molecular therapeutic target for HCC. Fidgetin-like 1 (FIGNL1) has been reported to play a vital role in lung adenocarcinoma. However, the potential function of FIGNL1 in HCC is still unknown. OBJECTIVE: This study aims to investigate the key regulatory mechanisms of FIGNL1 in the formation of HCC. METHODS: The regulatory effect of FIGNL1 on HCC was studied by lentivirus infection. In vitro, the effects of FIGNL1 on the proliferation, migration and apoptosis of cells were investigated by CCK8, colony formation assay, transwell and flow cytometry. Meanwhile, the regulation of FIGNL1 on HCC formation in vivo was studied by subcutaneous transplanted tumors. In addition, using transcriptome sequencing technology, we further explored the specific molecular mechanism of FIGNL1 regulating the formation of HCC. RESULTS: Functionally, we demonstrated that FIGNL1 knockdown significantly inhibited HCC cell proliferation, migration and promoted cell apoptosis in vitro. Similarly, the knockdown of FIGNL1 meaningfully weakened hepatocarcinogenesis in nude mice. Transcriptome sequencing revealed that FIGNL1 affected the expression of genes involved in extracellular matrix-receptor (ECM-receptor) interaction pathway, such as hyaluronan mediated motility receptor (HMMR). Further validation found that overexpression of HMMR based on knockdown FIGNL1 can rescue the expression abundance of related genes involved in the ECM-receptor interaction pathway. CONCLUSION: Our study revealed that FIGNL1 could modulate the ECM-receptor interaction pathway through the regulation of HMMR, thus regulating the formation of HCC.

17.
Int J Gen Med ; 15: 3183-3198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342300

RESUMO

Purpose: To investigate the role of LAMC1 in gastric cancer (GC), if it is of great importance to identify tumour driver genes with prognostic value. Patients and Methods: GC-related gene expression profile data were downloaded from TCGA. R-limma package and univariate Cox regression were used to identify the differentially expressed genes (DEGs) and survival-genes, respectively. Then, the ClusterProfiler package was used to analyse the Gene Ontology and pathway enrichment of DEGs. Cytoscape was used to build a protein interaction network (PPI) and identify key genes. The GEPIA2 and TIMER databases were used to validate the differential expression of LAMC1. The relationship between LAMC1 and the prognosis of GC was analysed by the KM. GSEA and GSVA were used to analyse the major activated and mutated pathways, respectively. Real-time fluorescence quantitative PCR (RT-qPCR) was used to reidentify the expression of LAMC1 in GES-1 and 5 GC cell lines. Finally, we explored the relationship between LAMC1 and FGFR1. Results: A total of 266 DEGs were be selected, which were mainly enriched in extracellular structure organization. LAMC1 was identified as one of the hub genes. The expression of LAMC1 was significantly higher in GC tissue than in paracancerous tissues, and the prognosis of the GC patient with high expression of LAMC1 was relatively poor. Univariate and multivariate Cox analysis indicated that LAMC1 could be used as an independent prognostic indicator. The results of GSEA and GSVA showed that LAMC1 was mainly enriched in pathways such as MYOGENESIS and UV_RESPONSE_DN. The RT-qPCR results showed that the expression level in AGS cells was significantly higher than that in gastric epithelial cells. LAMC1 may play a role in the development of gastric cancer by influencing FGFR1. Conclusion: LAMC1 may mediate the occurrence and development of GC and has potential as a biomarker for the prognosis and treatment of GC.

18.
J Biomol Struct Dyn ; 40(15): 7167-7182, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33847241

RESUMO

Coronavirus disease-2019 (COVID-19) was firstly reported in Wuhan, China, towards the end of 2019, and emerged as a pandemic. The spread and lethality rates of the COVID-19 have ignited studies that focus on the development of therapeutics for either treatment or prophylaxis purposes. In parallel, drug repurposing studies have also come into prominence. Herein, we aimed at having a holistic understanding of conformational and dynamical changes induced by an experimentally characterized inhibitor on main protease (Mpro) which would enable the discovery of novel inhibitors. To this end, we performed molecular dynamics simulations using crystal structures of apo and α-ketoamide 13b-bound Mpro homodimer. Analysis of trajectories pertaining to apo Mpro revealed a new target site, which is located at the homodimer interface, next to the catalytic dyad. Thereafter, we performed ensemble-based virtual screening by exploiting the ZINC and DrugBank databases and identified three candidate molecules, namely eluxadoline, diosmin, and ZINC02948810 that could invoke local and global conformational rearrangements which were also elicited by α-ketoamide 13b on the catalytic dyad of Mpro. Furthermore, ZINC23881687 stably interacted with catalytically important residues Glu166 and Ser1 and the target site throughout the simulation. However, it gave positive binding energy, presumably, due to displaying higher flexibility that might dominate the entropic term, which is not included in the MM-PBSA method. Finally, ZINC20425029, whose mode of action was different, modulated dynamical properties of catalytically important residue, Ala285. As such, this study presents valuable findings that might be used in the development of novel therapeutics against Mpro.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Reposicionamento de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
19.
Front Microbiol ; 13: 820431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602063

RESUMO

Mining novel specific molecular targets and establishing efficient identification methods are significant for detecting Pseudomonas aeruginosa, which can enable P. aeruginosa tracing in food and water. Pangenome analysis was used to analyze the whole genomic sequences of 2017 strains (including 1,000 P. aeruginosa strains and 1,017 other common foodborne pathogen strains) downloaded from gene databases to obtain novel species-specific genes, yielding a total of 11 such genes. Four novel target genes, UCBPP-PA14_00095, UCBPP-PA14_03237, UCBPP-PA14_04976, and UCBPP-PA14_03627, were selected for use, which had 100% coverage in the target strain and were not present in nontarget bacteria. PCR primers (PA1, PA2, PA3, and PA4) and qPCR primers (PA12, PA13, PA14, and PA15) were designed based on these target genes to establish detection methods. For the PCR primer set, the minimum detection limit for DNA was 65.4 fg/µl, which was observed for primer set PA2 of the UCBPP-PA14_03237 gene. The detection limit in pure culture without pre-enrichment was 105 colony-forming units (CFU)/ml for primer set PA1, 103 CFU/ml for primer set PA2, and 104 CFU/ml for primer set PA3 and primer set PA4. Then, qPCR standard curves were established based on the novel species-specific targets. The standard curves showed perfect linear correlations, with R 2 values of 0.9901 for primer set PA12, 0.9915 for primer set PA13, 0.9924 for primer set PA14, and 0.9935 for primer set PA15. The minimum detection limit of the real-time PCR (qPCR) assay was 102 CFU/ml for pure cultures of P. aeruginosa. Compared with the endpoint PCR and traditional culture methods, the qPCR assay was more sensitive by one or two orders of magnitude. The feasibility of these methods was satisfactory in terms of sensitivity, specificity, and efficiency after evaluating 29 ready-to-eat vegetable samples and was almost consistent with that of the national standard detection method. The developed assays can be applied for rapid screening and detection of pathogenic P. aeruginosa, providing accurate results to inform effective monitoring measures in order to improve microbiological safety.

20.
Eur J Med Chem ; 238: 114402, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35525080

RESUMO

In this work, a series of novel 1H-indole-2-carboxylic acid derivatives targeting 14-3-3η protein were designed and synthesized for treatment of liver cancer. After structural optimization for several rounds, C11 displayed a relatively better affinity with 14-3-3η, as well as the best inhibitory activities against several typical human liver cancer cell lines, including Bel-7402, SMMC-7721, SNU-387, Hep G2 and Hep 3B cells. Compound C11 also displayed best inhibitory activity against chemotherapy-resistant Bel-7402/5-Fu cells. Besides, C11 was rather safe against hERG and possessed moderate T1/2 and CL values in liver microsomes. In anti-proliferation, trans-well and cell apoptosis assays, C11 also showed its huge potential as a potent antitumor agent. Then, Western blot assay was conducted, following analyzed by molecular docking, the anti-proliferative mechanisms of this small-molecule inhibitor were revealed. Moreover, C11 was demonstrated to induce G1-S phase cell cycle arrest in liver cancer cells.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Proteínas 14-3-3 , Antineoplásicos/química , Apoptose , Ácidos Carboxílicos , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA