Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447732

RESUMO

For the last two decades, the CNES optoelectronics detection department and partners have evaluated space environment effects on a large panel of CMOS image sensors (CIS) from a wide range of commercial foundries and device providers. Many environmental tests have been realized in order to provide insights into detection chain degradation in modern CIS for space applications. CIS technology has drastically improved in the last decade, reaching very high performances in terms of quantum efficiency (QE) and spectral selectivity. These improvements are obtained thanks to the introduction of various components in the pixel optical stack, such as microlenses, color filters, and polarizing filters. However, since these parts have been developed only for commercial applications suitable for on-ground environment, it is crucial to evaluate if these technologies can handle space environments for future space imaging missions. There are few results on that robustness in the literature. The objective of this article is to give an overview of CNES and partner experiments from numerous works, showing that the performance gain from the optical stack is greater than the degradation induced by the space environment. Consequently, optical stacks can be used for space missions because they are not the main contributor to the degradation in the detection chain.


Assuntos
Diagnóstico por Imagem , Semicondutores
2.
J Low Temp Phys ; 209(5-6): 1249-1257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467123

RESUMO

Typical materials for optical Microwave Kinetic Inductance Detetectors (MKIDs) are metals with a natural absorption of ∼ 30-50% in the visible and near-infrared. To reach high absorption efficiencies (90-100%) the KID must be embedded in an optical stack. We show an optical stack design for a 60 nm TiN film. The optical stack is modeled as sections of transmission lines, where the parameters for each section are related to the optical properties of each layer. We derive the complex permittivity of the TiN film from a spectral ellipsometry measurement. The designed optical stack is optimised for broadband absorption and consists of, from top (illumination side) to bottom: 85 nm SiO2, 60 nm TiN, 23 nm of SiO2, and a 100 nm thick Al mirror. We show the modeled absorption and reflection of this stack, which has >80% absorption from 400 to 1550 nm and near-unity absorption for 500-800 nm. We measure transmission and reflection of this stack with a commercial spectrophotometer. The results are in good agreement with the model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA