Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Chemistry ; : e202402247, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923595

RESUMO

Vinylidene ortho-quinone methides (VQMs) have been proven to be versatile and crucial intermediates in the catalytic asymmetric reaction in last decade, and thus have drawn considerable concentrations on account of the practical application in the construction of enantiomerically pure functional organic molecules. However, in comparison to the well established chiral Brønsted base-catalyzed asymmetric reaction via VQMs, chiral Brønsted acid-catalyzed reaction is rarely studied and there is no systematic summary to date. In this review, we summarize the recent advances in the chiral Brønsted acid-catalyzed asymmetric reaction via VQMs according to three types of reactions: a) intermolecular asymmetric nucleophilic addition to VQMs; b) intermolecular asymmetric cycloaddition of VQMs; c) intramolecular asymmetric cyclization of VQMs. Finally, we put forward the remained challenges and opportunities for potential breakthroughs in this area.

2.
Biopharm Drug Dispos ; 45(1): 30-42, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236698

RESUMO

SCO-267 is a potent G-protein-coupled receptor 40 agonist that is undergoing clinical development for the treatment of type 2 diabetes mellitus. The current work was undertaken to investigate the bioactivation potential of SCO-267 in vitro and in vivo. Three SCO-267-derived glutathione (GSH) conjugates (M1-M3) were found both in rat and human liver microsomal incubations supplemented with GSH and nicotinamide adenine dinucleotide phosphate. Two GSH conjugates (M1-M2) together with two N-acetyl-cysteine conjugates (M4-M5) were detected in the bile of rats receiving SCO-267 at 10 mg/kg. The identified conjugates suggested the generation of quinone-imine and ortho-quinone intermediates. CYP3A4 was demonstrated to primarily catalyze the bioactivation of SCO-267. In addition, SCO-267 concentration-, time-, and NADPH-dependently inactivated CYP3A in human liver microsomes using testosterone as a probe substrate, along with KI and kinact values of 4.91 µM and 0.036 min-1 , respectively. Ketoconazole (a competitive inhibitor of CYP3A) displayed no significant protective effect on SCO-267-induced CYP3A inactivation. However, inclusion of GSH showed significant protection. These findings revealed that SCO-267 undergoes a facile CYP3A4-catalyzed bioactivation with the generation of quinone-imine and ortho-quinone intermediates, which were assumed to be involved in SCO-267 induced CYP3A inactivation. These findings provide further insight into the bioactivation pathways involved in the generation of reactive, potentially toxic metabolites of SCO-267. Further studies are needed to evaluate the influence of SCO-267 metabolism on the safety of this drug in vivo.


Assuntos
Benzoquinonas , Citocromo P-450 CYP3A , Diabetes Mellitus Tipo 2 , Piperidinas , Piridinas , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/metabolismo , Ativação Metabólica , Diabetes Mellitus Tipo 2/metabolismo , Quinonas/metabolismo , Iminas/metabolismo , Microssomos Hepáticos/metabolismo , Glutationa/metabolismo
3.
Angew Chem Int Ed Engl ; 63(4): e202315759, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38055210

RESUMO

A readily accessible conjugate-base-stabilized carboxylic acid (CBSCA) catalyst facilitates highly enantioselective [4+2] cycloaddition reactions of salicylaldehyde-derived acetals and cyclic enol ethers, resulting in the formation of polycyclic chromanes with oxygenation in the 2- and 4-positions. Stereochemically more complex products can be obtained from racemic enol ethers. Spirocyclic products are also accessible.

4.
Biomed Chromatogr ; 37(4): e5574, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36527223

RESUMO

Methylophiopogonanone B (MOB), one of the homoisoflavonoids isolated from Ophiopogon japonicus, has been demonstrated to possess antioxidative and antitumor activities. The aim of this work was to investigate the metabolism of MOB using liver microsomes and hepatocytes. MOB was individually incubated with rat, monkey, and human hepatocytes to generate the metabolites. To investigate the bioactivation pathways, MOB was incubated with liver microsomes in the presence of glutathione (GSH). All the metabolites were detected and identified using LC with a quadrupole Orbitrap mass spectrometer. Under the current conditions, nine metabolites were identified in hepatocyte incubations. Of these metabolites, M7 derived from hydroxylation was identified as the most abundant metabolite in hepatocyte incubation. MOB was metabolized via demethylation, hydroxylation, and glucuronidation. In liver microsomes, five GSH conjugates were detected and identified. MOB was subjected to bioactivation through demethylation yielding M9, which further formed quinone-methide and ortho-quinone intermediates, followed by GSH conjugation. This work is the first to study the metabolism of MOB, which will help us understand its disposition and efficacy.


Assuntos
Isoflavonas , Microssomos Hepáticos , Ratos , Humanos , Animais , Microssomos Hepáticos/metabolismo , Hepatócitos/metabolismo , Isoflavonas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Glutationa/metabolismo , Cromatografia Líquida de Alta Pressão
5.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836696

RESUMO

The 3,4-dihydrocoumarin derivatives were obtained from 2-alkyl phenols and oxazolones via C-H oxidation and cyclization cascade in the presence of silver oxide (Ag2O) and p-toluenesulfonic acid as a Brønsted acid catalyst. This approach provides a one-pot strategy to synthesize the multisubstituted 3,4-dihydrocoumarins with moderate to high yields (64-81%) and excellent diastereoselectivity (>20:1).

6.
Angew Chem Int Ed Engl ; 62(49): e202311460, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37707882

RESUMO

Organic electrode materials (OEMs), valued for their sustainability and structural tunability, have been attracting increasing attention for wide application in sodium-ion batteries (SIBs) and other rechargeable batteries. However, most OEMs are plagued with insufficient specific capacity or poor cycling stability. Therefore, it's imperative to enhance their specific capacity and cycling stability through molecular design. Herein, we designed and synthesized a heteroaromatic molecule 2,3,8,9,14,15-hexanol hexaazatrinaphthalene (HATN-6OH) by the synergetic coupling of catechol (the precursor of ortho-quinone)/ortho-quinone functional groups and HATN conjugated core structures. The abundance of catechol/ortho-quinone and imine redox-active moieties delivers a high specific capacity of nine-electron transfer for SIBs. Most notably, the π-π interactions and intermolecular hydrogen bond forces among HATN-6OH molecules secure the stable long-term cycling performance of SIBs. Consequently, the as-prepared HATN-6OH electrode exhibited a high specific capacity (554 mAh g-1 at 0.1 A g-1 ), excellent rate capability (202 mAh g-1 at 10 A g-1 ), and stable long-term cycling performance (73 % after 3000 cycles at 10 A g-1 ) in SIBs. Additionally, the nine-electron transfer mechanism is confirmed by systematic density functional theory (DFT) calculation, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Raman analysis. The achievement of the synergetic coupling of the redox-active sites on OEMs could be an important key to the enhancement of SIBs and other metal-ion batteries.

7.
Angew Chem Int Ed Engl ; 62(21): e202301592, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36932035

RESUMO

Metal-polarized aza-ortho-quinone methides (aza-o-QMs) are a unique and efficient handle for azaheterocycle synthesis. Despite great achievements, the potential of these reactive intermediates has not yet been fully exploited, especially the new reaction modes. Herein, we disclosed an unprecedented dearomatization process of metal-polarized aza-o-QMs, affording transient dearomatized spiroaziridine intermediates. Based on this serendipity, we accomplished three sequential dearomatization-rearomatization reactions of benzimidazolines with aza-sulfur ylides, enabling the divergent synthesis of bis-nitrogen heterocycles with high efficiency and flexibility. Moreover, experimental and theoretical studies were performed to explain the proposed mechanisms and observed selectivity. Further cellular evaluation of the dibenzodiazepine products identified a hit compound for new antitumor drugs.

8.
Chemistry ; 28(64): e202202293, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35989226

RESUMO

The pharmaceutical industry has a pervasive need for chiral specific molecules with optimal affinity for their biological targets. However, the mass production of such compounds is currently limited by conventional chemical routes, that are costly and have an environmental impact. Here, we propose an easy access to obtain new tetrahydroquinolines, a motif found in many bioactive compounds, that is rapid and cost effective. Starting from simple raw materials, the procedure uses a proline-catalyzed Mannich reaction followed by the addition of BF3 ⋅ OEt2 , which generates a highly electrophilic aza-ortho-quinone methide intermediate capable of reacting with different nucleophiles to form the diversely functionalized tetrahydroquinoline. Moreover, this enantioselective one-pot process provides access for the first time to tetrahydroquinolines with a cis-2,3 and trans-3,4 configuration. As proof of concept, we demonstrate that a three-step reaction sequence, from simple and inexpensive starting compounds and catalysts, can generate a BD2-selective BET bromodomain inhibitor with anti-inflammatory effect.


Assuntos
Antineoplásicos , Quinolinas , Estereoisomerismo , Catálise
9.
Chem Rec ; 22(3): e202100251, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35112473

RESUMO

This article presents a comprehensive overview of multicomponent reactions (MCRs) that proceed via ortho-quinone methide intermediates (o-QM) generated in the reaction medium. Examples of applications involving these highly reactive intermediates in organic synthesis and biological processes (e. g., biosynthetic pathways, prodrug cleavage and electrophilic capture of biological nucleophiles) are also described. QMs are often generated by eliminative processes of phenol derivatives or by photochemical reactions, including reversible generation in photochromic substances. This class of compounds can undergo various reaction types, including nucleophilic attack at the methide carbon, with subsequent rearomatization, and react with electron-rich dienophiles in inverse-electron demand hetero-Diels-Alder reactions. Its versatile reactivity has been explored in the context of cascade reactions for the construction of several classes of substances, including complex natural products.


Assuntos
Indolquinonas , Técnicas de Química Sintética , Reação de Cicloadição , Indolquinonas/química
10.
J Sep Sci ; 45(23): 4167-4175, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168860

RESUMO

Moscatilin, a bioactive ingredient isolated from Dendrobium moscatum, has been demonstrated to have excellent anti-cancer activity. The goals of the present study were to investigate the metabolic profiles of moscatilin and to identify and characterize its metabolites. In vitro studies were performed by incubating moscatilin (10 µM) with rat, dog, monkey, and human liver microsomes (0.5 mg protein/ml) to generate the metabolites. An analytical method of liquid chromatography combined with hybrid quadrupole orbitrap high-resolution mass spectrometry in full mass/data-dependent tandem mass spectrometry scan was utilized to separate and identify the metabolites in accordance with their accurate masses, formulas, and tandem mass spectrometry fragment ions determination. A total of six phase I metabolites were detected and structurally characterized. The phase I metabolic pathways of moscatilin were hydroxylation, demethylation, and dehydrogenation. In glutathione-supplemented liver microsomes, nine glutathione conjugates were detected and identified. Our results demonstrated that moscatilin was susceptible to bioactivation with the result of ortho quinone and quinone-methide intermediates. The present study provided an overview of the in vitro metabolic profiles of moscatilin, which will aid in the understanding of the efficacy and safety of this active compound.


Assuntos
Projetos de Pesquisa , Espectrometria de Massas em Tandem , Humanos , Ratos , Animais , Cães , Cromatografia Líquida de Alta Pressão , Glutationa
11.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293186

RESUMO

6-Hydroxyquinoline and 3-hydroxyisoquinoline as N-containing naphthol analogues were tested in modified Mannich reactions (mMr's). In the case of 6-hydroxyquinoline, the outcomes of the attempted Mannich reactions were strongly influenced by the amine components. Aminoalkylation of this substrate with reagents 1-naphthaldehyde and N-benzylmethylamine led to the isolation of a diol regarded as a stabilised water adduct of an ortho-quinone methide (o-QM), of which formation can be ascribed to the presence of a hydroxide ion in a relatively higher concentration generated by the bulky and basic amine component with decreased nucleophilicity. The classical Mannich base was isolated as a single product when the amine component was replaced for morpholine, featuring nucleophilicity rather than basic character under the applied reaction conditions. Starting from the isomer substrate 3-hydroxyisoquinoline, independently on the nucleophile (methanol or morpholine) besides the formation of the classical Mannich base, the nucleophilic attack at position one of the heterocyclic substrate was also observed. The DFT analysis of the acceptor molecular orbitals of the potential electrophilic components and the thermodynamics of the assumed-possible transformations demonstrated that this regioselective addition is a feasible process on the investigated heterocyclic skeleton. DFT modelling studies also suggest that besides the steric bulk, the orbital-controlled electronic properties of the aryl group, originating from the aldehyde components, have a strong influence on the ratios and the NMR-monitored interconversions of the C-1-substituted 3-hydroxyisoquinolines and the classical Mannich bases formed in multistep reaction sequences. On the basis of the DFT analysis of the thermodynamics of alternative pathways, a reaction mechanism was proposed for the rationalization of these characteristic substrate-controlled interconversions.


Assuntos
Bases de Mannich , Naftóis , Bases de Mannich/química , Metanol , Água/química , Morfolinas , Aldeídos
12.
Molecules ; 27(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36500630

RESUMO

A new approach for the synthesis of 2-aminobenzofurans has been described via Sc(OTf)3 mediated formal cycloaddition of isocyanides with the in situ generated ortho-quinone methides (o-QMs) from o-hydroxybenzhydryl alcohol. Notably, as a class of readily available and highly active intermediates, o-QMs were first used in the construction of benzofurans. This [4 + 1] cycloaddition reaction provides a straightforward and efficient methodology for the construction of 2-aminobenzofurans scaffold in good yield (up to 93% yield) under mild conditions.


Assuntos
Cianetos , Indolquinonas , Reação de Cicloadição , Álcoois
13.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234726

RESUMO

Vitamin E, a collection of lipophilic phenolic compounds based on chroman-6-ol, has a rich and fascinating oxidative chemistry involving a range of intermediate forms, some of which are proposed to be important in its biological functions. In this review, the available electrochemical and spectroscopic data on these oxidized intermediates are summarized, along with a discussion on how their lifetimes and chemical stability are either typical of similar phenolic and chroman-6-ol derived compounds, or atypical and unique to the specific oxidized isomeric form of vitamin E. The overall electrochemical oxidation mechanism for vitamin E can be summarized as involving the loss of two-electrons and one-proton, although the electron transfer and chemical steps can be controlled to progress along different pathways to prolong the lifetimes of discreet intermediates by modifying the experimental conditions (applied electrochemical potential, aqueous or non-aqueous solvent, and pH). Depending on the environment, the electrochemical reactions can involve single electron transfer (SET), proton-coupled electron transfer (PCET), as well as homogeneous disproportionation and comproportionation steps. The intermediate species produced via chemical or electrochemical oxidation include phenolates, phenol cation radicals, phenoxyl neutral radicals, dications, diamagnetic cations (phenoxeniums) and para-quinone methides. The cation radicals of all the tocopherols are atypically long-lived compared to the cation radicals of other phenols, due to their relatively weak acidity. The diamagnetic cation derived from α-tocopherol is exceptionally long-lived compared to the diamagnetic cations from the other ß-, γ- and δ-isomers of vitamin E and compared with other phenoxenium cations derived from phenolic compounds. In contrast, the lifetime of the phenoxyl radical derived from α-tocopherol, which is considered to be critical in biological reactions, is typical for what is expected for a compound with its structural features. Over longer times via hydrolysis reactions, hydroxy para-quinone hemiketals and quinones can be formed from the oxidized intermediates, which can themselves undergo reduction processes to form intermediate anion radicals and dianions. Methods for generating the oxidized intermediates by chemical, photochemical and electrochemical methods are discussed, along with a summary of how the final products vary depending on the method used for oxidation. Since the intermediates mainly only survive in solution, they are most often monitored using UV-vis spectroscopy, FTIR or Raman spectroscopies, and EPR spectroscopy, with the spectroscopic techniques sometimes combined with fast photoinitiated excitation and time-resolved spectroscopy for detection of short-lived species.


Assuntos
Fenol , Vitamina E , Benzoquinonas , Cromanos , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Fenóis/química , Prótons , Solventes/química , Tocoferóis , alfa-Tocoferol/química
14.
Angew Chem Int Ed Engl ; 61(19): e202201424, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167176

RESUMO

Quinone methides are fundamental intermediates for a wide range of reactions in which catalyst stereocontrol is often achieved by hydrogen bonding. Herein, we describe the feasibility of an intramolecular Friedel-Crafts 6π electrocyclization through ortho-quinone methide iminiums stereocontrolled by a contact ion pair. A disulfonimide catalyst activates racemic trichloroacetimidate substrates and imparts stereocontrol in the cyclization step, providing a new avenue for selective ortho-quinone methide iminium functionalization. A highly stereospecific oxidation readily transforms the enantioenriched acridanes into rotationally restricted acridiniums. Upon ion exchange, the method selectively affords atropisomeric acridinium tetrafluoroborate salts in high yields and an enantioenrichment of up to 93 : 7 e.r. We envision that ion-pairing catalysis over ortho-quinone methide iminiums enables the selective synthesis of a diversity of heterocycles and aniline derivatives with distinct stereogenic units.


Assuntos
Indolquinonas , Sais , Catálise , Ciclização , Indolquinonas/química
15.
Angew Chem Int Ed Engl ; 61(20): e202117063, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35171537

RESUMO

Commonly, an elusive intermediate is generated from a precursor and then trapped and consumed in a reaction. Vinylidene ortho-quinone methides (VQMs) have been demonstrated as transient axially chiral intermediates in asymmetric catalysis due to their orthogonal π-bonds forming an allene motif. The current understanding of VQMs is primarily based on time-resolved absorption, trapping experiments and computational studies. Herein, we report the first isolation and comprehensive characterization of a VQM, including crystallographic analysis. The disturbed aromaticity of the VQM led to its high reactivity as an electrophile or a 4π-component capable of asymmetric dearomatization of an electron-deficient phenyl group. Notably, the VQM could be isolated in enantiomerically enriched form, and the subsequent transformation was stereospecific, indicating that the generation of the VQM was involved in the enantiodetermining step. This study paves the way for the direct application of VQMs as starting materials.

16.
Angew Chem Int Ed Engl ; 61(31): e202206501, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35621411

RESUMO

We herein demonstrated an efficient method for the atroposelective construction of nine-membered carbonate-bridged biaryls through vinylidene ortho-quinone methide (VQM) intermediates. Diverse products with desirable pharmacological features were synthesized in satisfying yields and good to excellent enantioselectivities. In subsequent bioassays, several agents showed considerable antiproliferative activity via the mitochondrial-related apoptosis mechanism. Further transformations produced more structural diversity and may inspire new ideas for developing functional molecules.


Assuntos
Carbonatos
17.
Chemistry ; 27(40): 10349-10355, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-33861491

RESUMO

An efficient and convergent (4+1)-cycloaddition strategy toward the construction of spirooxindole benzofurans that involves the intermediacy of an isatin-derived oxyphosphonium enolate is presented. Mechanistic investigations employing in situ NMR analysis of the reaction mixture revealed a correlation between phosphonium enolate structure and product distribution that was heavily influenced by the solvent and reaction temperature.


Assuntos
Benzofuranos , Isatina , Ácidos Carboxílicos , Reação de Cicloadição
18.
Chemistry ; 27(2): 735-739, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32909264

RESUMO

Reported in this work is a water triggered chemo-divergent enantioselective spiro-annulation and cascade reaction of ortho-quinone methides (o-QMs) with α-thiocyanato indanones catalyzed by a chiral organic base. In the case of spiro-annulation, the use of trace amount of water as additive is critical to achieve high enantioselectivity (up to 96 % ee). We found that a cascade reaction was enabled by just tuning the ratio of water in solvent. Accordingly, two new highly efficient asymmetric reactions for the divergent synthesis of spiro- and fused-indanone scaffolds with excellent enantioselectivities (up to 99 % ee) were developed. Mechanistic investigations suggest that interfacial hydrogen bonding may play an important role in achieving the switchable reaction pathways.

19.
Bioorg Chem ; 117: 105383, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34656969

RESUMO

In this study, we present the design and synthesis of novel fully synthetic L-shaped ortho-quinone analogs with tanshinone IIA as the lead compoud, which is a molecule with numerous pharmacological benefits and potential to treat life-threatening diseases, such as cancer and viral infections. 24 L-shaped ortho-quinone analogs were designed and synthesized via click chemistry and introduced 1,2,3-triazole at the C-2 terminal of the furan ring. The cytotoxicity of these analogs toward different cancer cell lines was investigated in vitro. The new TD compounds showed potent inhibitory activities toward prostate cancer (PC3), leukemia (K562), breast cancer (MDA-231), lung cancer (A549), and cervical cancer (Hela) cell lines. Among them, TD1, TD11, and TD17 showed excellent broad-spectrum cytotoxic effects on five cancer cell lines by inducing apoptosis and arresting the cell cycle phase. Besides, TD1, TD11, and TD17 could target-bind with NQO1 protein in the prostate cancer cells PC3 leukemia cells K562. The results showed that removing the methyl group at C-3 and introducing 1,2,3-triazoles at the C-2 terminal of the furan ring were effective strategies for improving the broad-spectrum anticancer activity of L-shaped ortho-quinone analogs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Quinonas/química , Quinonas/farmacologia , Abietanos/síntese química , Abietanos/química , Abietanos/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/tratamento farmacológico , Quinonas/síntese química , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502054

RESUMO

Equol (7-hydroxy-3-(4'-hydroxyphenyl)-chroman, EQ), one of the major intestinally derived metabolites of daidzein, the principal isoflavane found in soybeans and most soy foods, has recently attracted increased interest as a health-beneficial compound for estrogen-dependent diseases. However, based on its structure with two p-substituted phenols, this study aimed to examine whether EQ is a substrate for tyrosinase and whether it produces o-quinone metabolites that are highly cytotoxic to melanocyte. First, the tyrosinase-catalyzed oxidation of EQ was performed, which yielded three EQ-quinones. They were identified after being reduced to their corresponding catechols with NaBH4 or L-ascorbic acid. The binding of the EQ-quinones to N-acetyl-L-cysteine (NAC), glutathione (GSH), and bovine serum albumin via their cysteine residues was then examined. NAC and GSH afforded two mono-adducts and one di-adduct, which were identified by NMR and MS analysis. It was also found that EQ was oxidized to EQ-di-quinone in cells expressing human tyrosinase. Finally, it was confirmed that the EQ-oligomer, the EQ oxidation product, exerted potent pro-oxidant activity by oxidizing GSH to the oxidized GSSG and concomitantly producing H2O2. These results suggest that EQ-quinones could be cytotoxic to melanocytes due to their binding to cellular proteins.


Assuntos
Equol/metabolismo , Melanócitos/efeitos dos fármacos , Oxidantes/toxicidade , Quinonas/toxicidade , Cisteína/análogos & derivados , Cisteína/metabolismo , Glutationa/metabolismo , Células HEK293 , Humanos , Monofenol Mono-Oxigenase/metabolismo , Oxidantes/metabolismo , Ligação Proteica , Quinonas/metabolismo , Soroalbumina Bovina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA