RESUMO
We develop a photonic description of short, one-dimensional electromagnetic pulses, specifically in the language of electrical transmission lines. Current practice in quantum technology, using arbitrary waveform generators, can readily produce very short, few-cycle pulses in a very-low-noise, low-temperature setting. We argue that these systems attain the limit of producing pure coherent quantum states, in which the vacuum has been displaced for a short time, and therefore over a short spatial extent. When the pulse is bipolar, that is, the integrated voltage of the pulse is zero, then the state can be described by the finite displacement of a single mode. Therefore there is a definite mean number of photons, but which have neither a well-defined frequency nor position. Due to the Paley-Wiener theorem, the two-component photon "wavefunction" of this mode, while somewhat localized, is not strictly bounded in space even if the vacuum displacement that defines it is bounded. When the pulse is unipolar, no photonic description is possible-the photon number can be considered to be divergent. We consider properties that photon counters and quantum non-demolition detectors must have to optimally convert and detect the photons in several example pulses. We develop a conceptual test system for implementing short-pulse quantum key distribution, building on the design of a recently achieved Bell's theorem test in a cryogenic microwave setup.
RESUMO
We demonstrate an important step toward on-chip integration of single-photon sources at room temperature. Excellent photon directionality is achieved with a hybrid metal-dielectric bullseye antenna, while back-excitation is permitted by placement of the emitter in a subwavelength hole positioned at its center. The unique design enables a direct back-excitation and very efficient front coupling of emission either to a low numerical aperture (NA) optics or directly to an optical fiber. To show the versatility of the concept, we fabricate devices containing either a colloidal quantum dot or a nanodiamond containing silicon-vacancy centers, which are accurately positioned using two different nanopositioning methods. Both of these back-excited devices display front collection efficiencies of â¼70% at NAs as low as 0.5. The combination of back-excitation with forward directionality enables direct coupling of the emitted photons into a proximal optical fiber without any coupling optics, thereby facilitating and simplifying future integration.
RESUMO
Cluster states are key resources for measurement-based quantum information processing. Photonic cluster and graph states, in particular, play indispensable roles in quantum network and quantum metrology. We demonstrate a semiconductor quantum dot based device in which the confined hole spin acts as a needle in a quantum knitting machine producing continuously and deterministically at sub-Gigahertz repetition rate single indistinguishable photons which are all polarization entangled to each other and to the spin in a one dimensional cluster state. By projecting two nonadjacent photons onto circular polarization bases we disentangle the spin from the photons emitted in between. This way we demonstrate a novel way for producing deterministic and continuous all-photonic cluster states. We use polarization tomography on four sequentially detected photons to demonstrate and to directly quantify the robustness of the cluster's entanglement and the determinism in its photon generation.
RESUMO
BACKGROUND: Radiotherapy has both immunostimulant and immunosuppressive effects, particularly in radiation-induced lymphopenia. Proton therapy has demonstrated potential in mitigating this lymphopenia, yet the mechanisms by which different types of radiation affect the immune system function are not fully characterized. The Circulating Immunes Cells, Cytokines and Brain Radiotherapy (CYRAD) trial aims to compare the effects of postoperative X-ray and proton radiotherapy on circulating leukocyte subpopulations and cytokine levels in patients with head and neck (CNS and ear nose throat) cancer. METHODS: CYRAD is a prospective, non-randomized, single-center non interventional study assessing changes in the circulating leukocyte subpopulations and cytokine levels in head and neck cancer patients receiving X-ray or proton radiotherapy following tumor resection. Dosimetry parameters, including dose deposited to organs-at-risk such as the blood and cervical lymph nodes, are computed. Participants undergo 29 to 35 radiotherapy sessions over 40 to 50 days, followed by a 3-month follow-up. Blood samples are collected before starting radiotherapy (baseline), before the 11th (D15) and 30th sessions (D40), and three months after completing radiotherapy. The study will be conducted with 40 patients, in 2 groups of 20 patients per modality of radiotherapy (proton therapy and photon therapy). Statistical analyses will assess the absolute and relative relationship between variations (depletion, recovery) in immune cells, biomarkers, dosimetry parameters and early outcomes. DISCUSSION: Previous research has primarily focused on radiation-induced lymphopenia, paying less attention to the specific impacts of radiation on different lymphoid and myeloid cell types. Early studies indicate that X-ray and proton irradiation may lead to divergent outcomes in leukocyte subpopulations within the bloodstream. Based on these preliminary findings, this study aims to refine our understanding of how proton therapy can better preserve immune function in postoperative (macroscopic tumor-free) head and neck cancer patients, potentially improving treatment outcomes. PROTOCOL VERSION: Version 2.1 dated from January 18, 2023. TRIAL REGISTRATION: The CYRAD trial is registered from October 19, 2021, at the US National Library of Medicine, ClinicalTrials.gov ID NCT05082961.
Assuntos
Citocinas , Neoplasias de Cabeça e Pescoço , Leucócitos , Fótons , Terapia com Prótons , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/cirurgia , Terapia com Prótons/métodos , Citocinas/sangue , Citocinas/metabolismo , Estudos Prospectivos , Leucócitos/efeitos da radiação , Leucócitos/metabolismo , Leucócitos/imunologia , Fótons/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Linfopenia/etiologia , Adulto , IdosoRESUMO
BACKGROUND AND AIMS: Long-term exposure over several days to Far-Red (FR) increases leaf expansion, while short-term exposure (minutes) may enhance the PSII operating efficiency (ÏPSII). The interaction between these responses at different time scales, and their impact on photosynthesis at whole-plant level is not well understood. Our study aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance) both in the long and short-term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant. METHODS: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR(SUN(FR-) vs. SUN). To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf level. At whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves. KEY RESULTS: SUN(FR-) plants had lower leaf area, shorter stems, and darker leaves than SUN plants. While reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the growth light treatment and leaf position. Interestingly, the kinetics of ÏPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants. CONCLUSIONS: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.
RESUMO
We demonstrate how two-photon excitation with quantum light can influence elementary photochemical events. The azobenzene trans â cis isomerization following entangled two-photon excitation is simulated using quantum nuclear wave packet dynamics. Photon entanglement modulates the nuclear wave packets by coherently controlling the transition pathways. The photochemical transition state during passage of the reactive conical intersection in azobenzene photoisomerization is strongly affected with a noticeable alteration of the product yield. Quantum entanglement thus provides a novel control knob for photochemical reactions. The distribution of the vibronic coherences during the conical intersection passage strongly depends on the shape of the initial wave packet created upon quantum light excitation. X-ray signals that can experimentally monitor this coherence are simulated.
RESUMO
BACKGROUND: Photon counting detector (PCD) CT benefits from reduced noise compared with conventional energy-integrating detector (EID) CT, which should translate to improved image quality and reduced radiation exposure for pediatric patients undergoing chest CT with IV contrast. OBJECTIVE: To determine the differences in radiation exposure and image quality of PCD CT and EID CT in pediatric chest CT with intravenous (IV) contrast. MATERIALS AND METHODS: In this institutional review board-approved retrospective observational study, 20 scan pairs (20 PCD CT; 20 EID CT) for children who underwent chest CT with IV contrast on both a PCD CT (Siemens NAEOTOM Alpha) and an EID CT (Siemens SOMATOM Definition Edge or Force) within 12 months were reviewed independently by three pediatric radiologists for three subjective quality features on 5-point Likert scales: overall quality, small structure delineation, and motion artifact. Objective measures of image quality (image noise, signal-to-noise ratio, and contrast-to-noise ratio) were assessed by a single radiologist in several locations in the chest through region of interest measurement of Hounsfield units (HU) and standard deviation. Patient-related and radiation exposure parameters were collected for each scan and summarized with median and interquartile range (IQR). The Wilcoxon rank-sum test was utilized to compare groups. A P < 0.05 indicated statistical significance. Inter-observer agreement of subjective image quality metrics was analyzed using weighted kappa. RESULTS: Age (14.2 years vs 13.8 years, P= 0.15), height (P= 0.13), weight (P= 0.21), and BMI (P = 0.24) did not significantly differ between groups. There were 10 male and 3 female patients. Compared to EID CT, PCD CT showed lower radiation exposure parameters including volumetric CT dose index, 1.7 mGy (IQR 1.1-2.4 mGy) vs 3.8 mGy (IQR 2.0-4.7 mGy) (P< 0.01), and size-specific dose estimate, 2.6 mGy (IQR 1.8-3.1 mGy) vs 5.0 mGy (IQR 3.3-6.2 mGy) (P< 0.01). Objective image quality of lung parenchyma was improved on the PCD CT scanner, including image noise 119.5 HU (IQR 95.4-135.7 HU) vs 143.1 HU (IQR 125.4-169.8 HU) (P < 0.01), signal-to-noise ratio (SNR) -6.1 (IQR -8.4 to -4.8) vs -4.9 (IQR -5.6 to -3.8) (P= 0.01), and contrast-to-noise ratio -63.9 (-84.1 to -57.5) vs -60.5 (-76.3 to -52.5) (P = 0.01). Motion artifact was improved on the PCD CT scanner (P< 0.01). No significant differences in overall image quality or small structure delineation were identified (P= 0.06 and P= 0.31). CONCLUSION: PCD CT pediatric chest CT had significantly reduced radiation exposure, improved image quality, and reduced motion artifact compared with EID CT.
RESUMO
Triggered, indistinguishable single photons are crucial in various quantum photonic implementations. Here, we realize a novel n+-i-n++ diode structure embedding semiconductor quantum dots: the gated device enables spectral tuning of the transitions and deterministic control of the charged states. Blinking-free single-photon emission and high two-photon indistinguishability are observed. The line width's temporal evolution is investigated across over 6 orders of magnitude time scales, combining photon-correlation Fourier spectroscopy, high-resolution photoluminescence spectroscopy, and two-photon interference (visibility of VTPI,2ns = (85.8 ± 2.2)% and VTPI,9ns = (78.3 ± 3.0)%). Most of the dots show no spectral broadening beyond â¼9 ns time scales, and the photons' line width ((420 ± 30) MHz) deviates from the Fourier-transform limit by a factor of 1.68. The combined techniques verify that most dephasing mechanisms occur at time scales ≤2 ns, despite their modest impact. The presence of n-doping implies higher carrier mobility, enhancing the device's appeal for high-speed tunable, high-performance quantum light sources.
RESUMO
Quantum physics phenomena, entanglement and coherence, are crucial for quantum information protocols, but understanding these in systems with more than two parts is challenging due to increasing complexity. The W state, a multipartite entangled state, is notable for its robustness and benefits in quantum communication. Here, we generate eight-mode on-demand single-photon W states, using nanowire quantum dots and a silicon nitride photonic chip. We demonstrate a reliable and scalable technique for reconstructing the W state in photonic circuits using Fourier and real-space imaging, supported by the Gerchberg-Saxton phase retrieval algorithm. Additionally, we utilize an entanglement witness to distinguish between mixed and entangled states, thereby affirming the entangled nature of our generated state. The study provides a new imaging approach of assessing multipartite entanglement in W states, paving the way for further progress in image processing and Fourier-space analysis techniques for complex quantum systems.
RESUMO
Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just â¼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.
RESUMO
Large-scale quantum networks require the implementation of long-lived quantum memories as stationary nodes interacting with qubits of light. Epitaxially grown quantum dots hold great potential for the on-demand generation of single and entangled photons with high purity and indistinguishability. Coupling these emitters to memories with long coherence times enables the development of hybrid nanophotonic devices that incorporate the advantages of both systems. Here we report the first GaAs/AlGaAs quantum dots grown by the droplet etching and nanohole infilling method, emitting single photons with a narrow wavelength distribution (736.2 ± 1.7 nm) close to the zero-phonon line of silicon-vacancy centers. Polarization entangled photons are generated via the biexciton-exciton cascade with a fidelity of (0.73 ± 0.09). High single photon purity is maintained from 4 K (g(2)(0) = 0.07 ± 0.02) up to 80 K (g(2)(0) = 0.11 ± 0.01), therefore making this hybrid system technologically attractive for real-world quantum photonic applications.
RESUMO
OBJECTIVE: To compare beam profiles of MatriXX scanning system and water phantom for different treatment parameters. METHODS: The cross-sectional study was conducted at Al-Amal National Hospital for Cancer Treatment, Baghdad, Iraq, from November 2020 to March 2021. Beam data for 6MV and 10MV photon beams generated from the linear accelerator was utilised at field sizes 20×20cm2, 15×15 cm2, 10×10cm2 and 5×5cm2 at depth 10 and source-to-skin distance 100cm. Data was obtained for both water phantom and MatriXX system. The dose distribution for the two systems were compared. Data was analysed using SPSS 24. RESULTS: The 32 measures taken were all related to symmetry and flatness. Flatness data indicated that all measurements were within tolerance except for cross line plane variations in 10x10cm2 field size with 6MV energy (-3.81%) and 5x5cm2 field size with 10MV energy (-3.01).Symmetry data revealed all measurement differences were within tolerance. CONCLUSIONS: MatriXX system could also be used for routine photon profile measurements as a substitute for water phantom.
Assuntos
Aceleradores de Partículas , Imagens de Fantasmas , Fótons , Radiometria , Dosagem Radioterapêutica , Fótons/uso terapêutico , Humanos , Estudos Transversais , Radiometria/métodos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Planejamento da Radioterapia Assistida por Computador/métodosRESUMO
We analyze the general relation between canonical and grand canonical ensembles in the thermodynamic limit. We begin our discussion by deriving, with an alternative approach, some standard results first obtained by Kac and coworkers in the late 1970s. Then, motivated by the Bose-Einstein condensation (BEC) of trapped gases with a fixed number of atoms, which is well described by the canonical ensemble and by the recent groundbreaking experimental realization of BEC with photons in a dye-filled optical microcavity under genuine grand canonical conditions, we apply our formalism to a system of non-interacting Bose particles confined in a two-dimensional harmonic trap. We discuss in detail the mathematical origin of the inequivalence of ensembles observed in the condensed phase, giving place to the so-called grand canonical catastrophe of density fluctuations. We also provide explicit analytical expressions for the internal energy and specific heat and compare them with available experimental data. For these quantities, we show the equivalence of ensembles in the thermodynamic limit.
RESUMO
Integrating plasmonic nanoparticles with photonic crystals holds immense potential to enhance green hydrogen photosynthesis by amplifying localized electromagnetic field through generating surface plasmons and slow photons. Current plasmonic photonic designs primarily employ semiconductor-based structural backbone deposited with plasmonic nanoparticles. However, the competition between various optical phenomena in these ensembles hinders effective field enhancement rather than facilitating it. This limitation creates a formidable performance bottleneck that retards hydrogen evolution. Herein, we enhance plasmonic catalysis for efficient hydrogen evolution by effectively harmonizing plasmonic and photonic effects. This is achieved by using inert SiO2 opal as a non-photoabsorbing photonic framework. By aligning the excitation wavelengths of surface plasmons and slow photons, our optimized plasmonic photonic crystals demonstrates a remarkable H2 evolution rate of 560â mmol h-1 gAg -1, surpassing bare plasmonic Ag nanoparticles by >106-fold and other high-performance photocatalytic designs by 280-fold. Mechanistic studies highlight the pivotal role of the non-photoabsorbing photonic backbone in facilitating effective light confinement through the photonic effect. This in turn boosts the plasmonic field for enhanced photocatalytic H2 evolution, even without needing additional co-catalysts. Our work offers valuable insights for future design of electromagnetically hot plasmonic catalysts to achieve efficient light-to-chemical transformations in diverse energy, chemical, and environmental applications.
RESUMO
The X-ray detector is a fundamental component of a CT system that determines the image quality and dose efficiency. Until the approval of the first clinical photon-counting-detector (PCD) system in 2021, all clinical CT scanners used scintillating detectors, which do not capture information about individual photons in the two-step detection process. In contrast, PCDs use a one-step process whereby X-ray energy is converted directly into an electrical signal. This preserves information about individual photons such that the numbers of X-ray in different energy ranges can be counted. Primary advantages of PCDs include the absence of electronic noise, improved radiation dose efficiency, increased iodine signal and the ability to use lower doses of iodinated contrast material, and better spatial resolution. PCDs with more than one energy threshold can sort the detected photons into two or more energy bins, making energy-resolved information available for all acquisitions. This allows for material classification or quantitation tasks to be performed in conjunction with high spatial resolution, and in the case of dual-source CT, high pitch, or high temporal resolution acquisitions. Some of the most promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value. These include imaging of the inner ear, bones, small blood vessels, heart, and lung. This review describes the clinical benefits observed to date and future directions for this technical advance in CT imaging. KEY POINTS: ⢠Beneficial characteristics of photon-counting detectors include the absence of electronic noise, increased iodine signal-to-noise ratio, improved spatial resolution, and full-time multi-energy imaging. ⢠Promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value and applications requiring multi-energy data simultaneous with high spatial and/or temporal resolution. ⢠Future applications of PCD-CT technology may include extremely high spatial resolution tasks, such as the detection of breast micro-calcifications, and quantitative imaging of native tissue types and novel contrast agents.
Assuntos
Compostos de Iodo , Iodo , Humanos , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Meios de Contraste , Fótons , Imagens de FantasmasRESUMO
Since 1971 and Hounsfield's first CT system, clinical CT systems have used scintillating energy-integrating detectors (EIDs) that use a two-step detection process. First, the X-ray energy is converted into visible light, and second, the visible light is converted to electronic signals. An alternative, one-step, direct X-ray conversion process using energy-resolving, photon-counting detectors (PCDs) has been studied in detail and early clinical benefits reported using investigational PCD-CT systems. Subsequently, the first clinical PCD-CT system was commercially introduced in 2021. Relative to EIDs, PCDs offer better spatial resolution, higher contrast-to-noise ratio, elimination of electronic noise, improved dose efficiency, and routine multi-energy imaging. In this review article, we provide a technical introduction to the use of PCDs for CT imaging and describe their benefits, limitations, and potential technical improvements. We discuss different implementations of PCD-CT ranging from small-animal systems to whole-body clinical scanners and summarize the imaging benefits of PCDs reported using preclinical and clinical systems. KEY POINTS: ⢠Energy-resolving, photon-counting-detector CT is an important advance in CT technology. ⢠Relative to current energy-integrating scintillating detectors, energy-resolving, photon-counting-detector CT offers improved spatial resolution, improved contrast-to-noise ratio, elimination of electronic noise, increased radiation and iodine dose efficiency, and simultaneous multi-energy imaging. ⢠High-spatial-resolution, multi-energy imaging using energy-resolving, photon-counting-detector CT has been used in investigations into new imaging approaches, including multi-contrast imaging.
Assuntos
Iodo , Tomografia Computadorizada por Raios X , Animais , Tomografia Computadorizada por Raios X/métodos , Fótons , Raios X , Imagens de FantasmasRESUMO
We study the effect of degenerate parametric down-conversion (DPDC) in an ensemble of two-level quantum emitters (QEs) coupled via near-field interactions to a single surface plasmon (SP) mode of a nonlinear plasmonic cavity. For this purpose, we develop a quantum driven-dissipative model capturing non-equilibrium dynamics of the system in which incoherently pumped QEs have transition frequency tuned near the second-harmonic response of the SPs. Considering the strong coupling regime, i.e. the SP-QE interaction rate exceeds system dissipation rates, we find a critical SP-QE coupling attributed to the phase transition between normal and lasing steady states. Examining fluctuations above the system's steady states, we predict new elementary excitations, namely, the exciton-plasmon polaritons formed by the two-SP quanta and single-exciton states of QEs. The contribution of two-SP quanta results in the linear scaling of the SP-QE interaction rate with the number of QEs,îºo, as opposed to theîºo-scaling known for the Dicke and Tavis-Cummings models. We further examine how SP-QE interaction scaling affects the polariton dispersions and power spectra in the vicinity of the critical coupling. For this purpose, we compare the calculation results assuming a finite ensemble of QEs and the model thermodynamic limit. The calculated power spectra predict an interplay of coherent photon emission by QEs near the second-harmonic frequency and correlated photon-pair emission at the fundamental frequency by the SPs (i.e. the photonic DPDC effect).
RESUMO
PURPOSE: Defining dosimetric rules to automatically detect patients requiring adaptive radiotherapy (ART) is not straightforward, and most centres perform ad-hoc ART with no specific protocol. This study aims to propose and analyse different steps to design a protocol for dosimetrically triggered ART of head and neck (H&N) cancer. As a proof-of-concept, the designed protocol was applied to patients treated in TomoTherapy units, using their available software for daily MVCT image and dose accumulation. METHODS: An initial protocol was designed by a multidisciplinary team, with a set of flagging criteria based only on dose-volume metrics, including two action levels: (1) surveillance (orange flag), and (2) immediate verification (red flag). This protocol was adapted to the clinical needs following an iterative process. First, the protocol was applied to 38 H&N patients with daily imaging. Automatic software generated the daily contours, recomputed the daily dose and flagged the dosimetric differences with respect to the planning dose. Second, these results were compared, by a sensitivity/specificity test, to the answers of a physician. Third, the physician, supported by the multidisciplinary team, performed a self-analysis of the provided answers and translated them into mathematical rules in order to upgrade the protocol. The upgraded protocol was applied to different definitions of the target volume (i.e. deformed CTV + 0, 2 and 4 mm), in order to quantify how the number of flags decreases when reducing the CTV-to-PTV margin. RESULTS: The sensitivity of the initial protocol was very low, specifically for the orange flags. The best values were 0.84 for red and 0.15 for orange flags. After the review and upgrade process, the sensitivity of the upgraded protocol increased to 0.96 for red and 0.84 for orange flags. The number of patients flagged per week with the final (upgraded) protocol decreased in median by 26% and 18% for red and orange flags, respectively, when reducing the CTV-to-PTV margin from 4 to 2 mm. This resulted in only one patient flagged at the last fraction for both red and orange flags. CONCLUSION: Our results demonstrate the value of iterative protocol design with retrospective data, and shows the feasibility of automatically-triggered ART using simple dosimetric rules to mimic the physician's decisions. Using a proper target volume definition is important and influences the flagging rate, particularly when decreasing the CTV-to-PTV margin.
Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Radioterapia de Intensidade Modulada/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Protocolos ClínicosRESUMO
PURPOSE: Hazard scenarios were created to assess and reduce the risk of planning errors in automated planning processes. This was accomplished through iterative testing and improvement of examined user interfaces. METHODS: Automated planning requires three user inputs: a computed tomography (CT), a prescription document, known as the service request, and contours. We investigated the ability of users to catch errors that were intentionally introduced into each of these three stages, according to an FMEA analysis. Five radiation therapists each reviewed 15 patient CTs, containing three errors: inappropriate field of view, incorrect superior border, and incorrect identification of isocenter. Four radiation oncology residents reviewed 10 service requests, containing two errors: incorrect prescription and treatment site. Four physicists reviewed 10 contour sets, containing two errors: missing contour slices and inaccurate target contour. Reviewers underwent video training prior to reviewing and providing feedback for various mock plans. RESULTS: Initially, 75% of hazard scenarios were detected in the service request approval. The visual display of prescription information was then updated to improve the detectability of errors based on user feedback. The change was then validated with five new radiation oncology residents who detected 100% of errors present. 83% of the hazard scenarios were detected in the CT approval portion of the workflow. For the contour approval portion of the workflow none of the errors were detected by physicists, indicating this step will not be used for quality assurance of contours. To mitigate the risk from errors that could occur at this step, radiation oncologists must perform a thorough review of contour quality prior to final plan approval. CONCLUSIONS: Hazard testing was used to pinpoint the weaknesses of an automated planning tool and as a result, subsequent improvements were made. This study identified that not all workflow steps should be used for quality assurance and demonstrated the importance of performing hazard testing to identify points of risk in automated planning tools.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodosRESUMO
Lower light absorption and faster carrier recombination are significant challenges in photocatalysis. This study introduces a novel approach to address these challenges by anchoring cadmium sulfide quantum dots (CdS QDs) on inverse opal (IO)-TiO2, which increases light absorption and promotes carriers' separation by coupling slow-photon effect with Z-scheme charge transfer. Specifically, the IO-TiO2 was created by etching a polystyrene opal template, which resulted in a periodic structure that enhances light absorption by reflecting light in the stop band. The size of CdS quantum dots (QDs) was regulated to achieve appropriate alignment of energy bands between CdS QDs and IO-TiO2, promoting carrier transfer through alterations in charge transfer modes and resulting in synergistic-amplified photocatalysis. Theoretical simulations and electrochemical investigations demonstrated the coexistence of slow-photon effects and Z-scheme transfer. The system's photodegradation performance was tested using rhodamine B as a model. This novel hierarchical structure of the Z-scheme heterojunction exhibits degradability 7.82 and 4.34 times greater than pristine CdS QDs and IO-TiO2, respectively. This study serves as a source of inspiration for enhancing the photocatalytic capabilities of IO-TiO2 and broadening its scope of potential applications.