Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
1.
Physiol Rev ; 100(3): 1065-1075, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216698

RESUMO

Patients with hypertension, diabetes, coronary heart disease, cerebrovascular illness, chronic obstructive pulmonary disease, and kidney dysfunction have worse clinical outcomes when infected with SARS-CoV-2, for unknown reasons. The purpose of this review is to summarize the evidence for the existence of elevated plasmin(ogen) in COVID-19 patients with these comorbid conditions. Plasmin, and other proteases, may cleave a newly inserted furin site in the S protein of SARS-CoV-2, extracellularly, which increases its infectivity and virulence. Hyperfibrinolysis associated with plasmin leads to elevated D-dimer in severe patients. The plasmin(ogen) system may prove a promising therapeutic target for combating COVID-19.


Assuntos
Infecções por Coronavirus/sangue , Suscetibilidade a Doenças/sangue , Fibrinolisina/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Plasminogênio/metabolismo , Pneumonia Viral/sangue , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Comorbidade , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/fisiopatologia , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/mortalidade , Pneumonia Viral/fisiopatologia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/virologia , Fatores de Risco , SARS-CoV-2
2.
Mol Cell Proteomics ; 23(1): 100696, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101751

RESUMO

Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.


Assuntos
Fibrinolisina , Plasminogênio , Humanos , Ratos , Animais , Fosforilação , Plasminogênio/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Processamento de Proteína Pós-Traducional
3.
Proc Natl Acad Sci U S A ; 120(7): e2214081120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36763533

RESUMO

Triglyceride (TG) metabolism is highly regulated by angiopoietin-like protein (ANGPTL) family members [Y. Q. Chen et al., J. Lipid Res. 61, 1203-1220 (2020)]. During feeding, ANGPTL8 forms complexes with the fibrinogen-like domain-containing protein ANGPTL4 in adipose tissue to decrease ANGPTL3/8- and ANGPTL4-mediated lipoprotein lipase (LPL)-inhibitory activity and promote TG hydrolysis and fatty acid (FA) uptake. The ANGPTL4/8 complex, however, tightly binds LPL and partially inhibits it in vitro. To try to reconcile the in vivo and in vitro data on ANGPTL4/8, we aimed to find novel binding partners of ANGPTL4/8. To that end, we performed pulldown experiments and found that ANGPTL4/8 bound both tissue plasminogen activator (tPA) and plasminogen, the precursor of the fibrinolytic enzyme plasmin. Remarkably, ANGPTL4/8 enhanced tPA activation of plasminogen to generate plasmin in a manner like that observed with fibrin, while minimal plasmin generation was observed with ANGPTL4 alone. The addition of tPA and plasminogen to LPL-bound ANGPTL4/8 caused rapid, complete ANGPTL4/8 cleavage and increased LPL activity. Restoration of LPL activity in the presence of ANGPTL4/8 was also achieved with plasmin but was blocked when catalytically inactive plasminogen (S760A) was added to tPA or when plasminogen activator inhibitor-1 was added to tPA + plasminogen, indicating that conversion of plasminogen to plasmin was essential. Together, these results suggest that LPL-bound ANGPTL4/8 mimics fibrin to recruit tPA and plasminogen to generate plasmin, which then cleaves ANGPTL4/8, enabling LPL activity to be increased. Our observations thus reveal a unique link between the ANGPTL4/8 complex and plasmin generation.


Assuntos
Proteína 4 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Fibrinolisina , Lipase Lipoproteica , Plasminogênio , Lipase Lipoproteica/metabolismo , Serina Proteases , Ativador de Plasminogênio Tecidual , Triglicerídeos/metabolismo , Humanos
4.
J Biol Chem ; 300(1): 105465, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979915

RESUMO

Calreticulin (CRT) was originally identified as a key calcium-binding protein of the endoplasmic reticulum. Subsequently, CRT was shown to possess multiple intracellular functions, including roles in calcium homeostasis and protein folding. Recently, several extracellular functions have been identified for CRT, including roles in cancer cell invasion and phagocytosis of apoptotic and cancer cells by macrophages. In the current report, we uncover a novel function for extracellular CRT and report that CRT functions as a plasminogen-binding receptor that regulates the conversion of plasminogen to plasmin. We show that human recombinant or bovine tissue-derived CRT dramatically stimulated the conversion of plasminogen to plasmin by tissue plasminogen activator or urokinase-type plasminogen activator. Surface plasmon resonance analysis revealed that CRT-bound plasminogen (KD = 1.8 µM) with moderate affinity. Plasminogen binding and activation by CRT were inhibited by ε-aminocaproic acid, suggesting that an internal lysine residue of CRT interacts with plasminogen. We subsequently show that clinically relevant CRT variants (lacking four or eight lysines in carboxyl-terminal region) exhibited decreased plasminogen activation. Furthermore, CRT-deficient fibroblasts generated 90% less plasmin and CRT-depleted MDA MB 231 cells also demonstrated a significant reduction in plasmin generation. Moreover, treatment of fibroblasts with mitoxantrone dramatically stimulated plasmin generation by WT but not CRT-deficient fibroblasts. Our results suggest that CRT is an important cellular plasminogen regulatory protein. Given that CRT can empower cells with plasmin proteolytic activity, this discovery may provide new mechanistic insight into the established role of CRT in cancer.


Assuntos
Calreticulina , Plasminogênio , Animais , Bovinos , Humanos , Calreticulina/genética , Calreticulina/isolamento & purificação , Calreticulina/metabolismo , Fibrinolisina/metabolismo , Plasminogênio/genética , Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Domínios Proteicos/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas de Inativação de Genes , Linhagem Celular Tumoral , Neoplasias/fisiopatologia
5.
J Biol Chem ; 300(3): 105683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272220

RESUMO

Histidine-rich glycoprotein (HRG) is an abundant plasma protein harboring at least three N-glycosylation sites. HRG integrates many biological processes, such as coagulation, antiangiogenic activity, and pathogen clearance. Importantly, HRG is known to exhibit five genetic variants with minor allele frequencies of more than 10%. Among them, Pro204Ser can induce a fourth N-glycosylation site (Asn202). Considerable efforts have been made to reveal the biological function of HRG, whereas data on HRG glycosylation are scarcer. To close this knowledge gap, we used C18-based LC-MS/MS to study the glycosylation characteristics of six HRG samples from different sources. We used endogenous HRG purified from human plasma and compared its glycosylation to that of the recombinant HRG produced in Chinese hamster ovary cells or human embryonic kidney 293 cells, targeting distinct genotypic isoforms. In endogenous plasma HRG, every N-glycosylation site was occupied predominantly with a sialylated diantennary complex-type glycan. In contrast, in the recombinant HRGs, all glycans showed different antennarities, sialylation, and core fucosylation, as well as the presence of oligomannose glycans, LacdiNAcs, and antennary fucosylation. Furthermore, we observed two previously unreported O-glycosylation sites in HRG on residues Thr273 and Thr274. These sites together showed more than 90% glycan occupancy in all HRG samples studied. To investigate the potential relevance of HRG glycosylation, we assessed the plasmin-induced cleavage of HRG under various conditions. These analyses revealed that the sialylation of the N- and O-glycans as well as the genotype-dependent N-glycosylation significantly influenced the kinetics and specificity of plasmin-induced cleavage of HRG.


Assuntos
Fibrinolisina , Proteínas , Espectrometria de Massas em Tandem , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Fibrinolisina/química , Genótipo , Glicosilação , Polissacarídeos/química , Isoformas de Proteínas , Cromatografia Líquida de Alta Pressão
6.
J Biol Chem ; 299(10): 105179, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37607618

RESUMO

Most serine proteases are synthesized as inactive zymogens that are activated by cleavage by another protease in a tightly regulated mechanism. The urokinase-type plasminogen activator (uPA) and plasmin cleave and activate each other, constituting a positive feedback loop. How this mutual activation cycle begins has remained a mystery. We used hydrogen deuterium exchange mass spectrometry to characterize the dynamic differences between the inactive single-chain uPA (scuPA) and its active form two-chain uPA (tcuPA). The results show that the C-terminal ß-barrel and the area around the new N terminus have significantly reduced dynamics in tcuPA as compared with scuPA. We also show that the zymogen scuPA is inactive but can, upon storage, become active in the absence of external proteases. In addition to plasmin, the tcuPA can activate scuPA by cleavage at K158, a process called autoactivation. Unexpectedly, tcuPA can cleave at position 158 even when this site is mutated. TcuPA can also cleave scuPA after K135 or K136 in the disordered linker, which generates the soluble protease domain of uPA. Plasmin cleaves scuPA exclusively after K158 and at a faster rate than tcuPA. We propose a mechanism by which the uPA receptor dimerization could promote autoactivation of scuPA on cell surfaces. These results resolve long-standing controversies in the literature surrounding the mechanism of uPA activation.

7.
Kidney Int ; 106(2): 273-290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38789038

RESUMO

Prolonged warm ischemic is the main cause discarding donated organs after cardiac death. Here, we identified that prolonged warm ischemic time induced disseminated intravascular coagulation and severe capillary vasospasm after cardiac death of rat kidneys. Additionally, we found a significant accumulation of fibrinogen in a hypoxic cell culture of human umbilical vein epithelial cells and in isolated kidneys exposed to prolonged warm ischemic following flushing out of blood. However, pre-flushing the kidney with snake venom plasmin in a 90-minute warm ischemic model maximized removal of micro thrombi and facilitated the delivery of oxygen and therapeutic agents. Application of carbon monoxide-releasing CORM-401 during ex vivo hypothermic oxygenated perfusion achieved multipath protective effects in prolonged warm ischemic kidneys. This led to significant improvements in perfusion parameters, restoration of the microcirculation, amelioration of mitochondrial injury, oxidative stress, and apoptosis. This benefit resulted in significantly prolonged warm ischemic kidney recipient survival rates of 70%, compared with none in those receiving ex vivo hypothermic oxygenated perfusion alone. Significantly, ex vivo hypothermic oxygenated perfusion combined with cytoprotective carbon monoxide releasing CORM-401 treatment meaningfully protected the donated kidney after cardiac death from ischemia-reperfusion injury by reducing inflammation, oxidative stress, apoptosis, and pathological damage. Thus, our study suggests a new combination treatment strategy to potentially expand the donor pool by increasing use of organs after cardiac death and salvaging prolonged warm ischemic kidneys.


Assuntos
Transplante de Rim , Rim , Preservação de Órgãos , Compostos Organometálicos , Perfusão , Isquemia Quente , Animais , Isquemia Quente/efeitos adversos , Rim/irrigação sanguínea , Rim/patologia , Rim/efeitos dos fármacos , Perfusão/métodos , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Humanos , Preservação de Órgãos/métodos , Masculino , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Ratos , Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Microcirculação/efeitos dos fármacos , Fatores de Tempo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos
8.
Biol Reprod ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018235

RESUMO

The migratory and matrix-invading capacities of the cumulus oocyte complex (COC) have been shown to be important for the ovulatory process. In metastatic cancers, these capacities are due to increased expression of proteases, however, there is limited information on protease expression in the COCs. The present study examined COC expression of plasmins, matrix metalloproteases (MMP) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) family members in the rat and human. In the rat, hCG administration increased COC expression of Mmp2, Mmp9, Mmp13, Mmp14, Mmp16, Adamts1, and the protease inhibitors Timp1, Timp3 and Serpine1 by 8-12 hours. This ovulatory induction of proteases in vivo could be mimicked by forskolin and ampiregulin treatment of cultured rat COCs with increases observed in Mmp2, Mmp13, Mmp14, Mmp16, Mmp19, Plat, and the protease inhibitors Timp1, Timp3 and Serpine1. Comparison of expression between rat COCs and granulosa cells at the time of ovulation showed decreased Mmp9 and increased Mmp13, Mmp14, Mmp16, Adamts1, Timp1 and Timp3 expression in the COCs. In human, comparison of expression between cumulus and granulosa cells at the time of IVF retrieval showed decreased MMP1, MMP2, MMP9, and ADAMTS1, while expression of MMP16, TIMP1, and TIMP3 were increased. Treatment of expanding rat COCs with a broad spectrum MMP inhibitor, GM6001, significantly reduced the migration of cumulus cells in vitro. These data provide evidence that multiple proteases and their inhibitors are expressed in the COCs and play an important role in imparting the migratory phenotype of the COCs at the time of ovulation.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38630302

RESUMO

PURPOSE: To report the results of invivo generated autologous plasmin enzyme(IVAP) assisted vitrectomy, partial circumferential-oral retinotomy and silicone oil injection for surgical treatment of patients with chronic retinal detachment without posterior vitreous detachment(PVD). METHODS: Study was performed in retrospective, comparative manner. A total of 16 consecutive eyes with chronic retinal detachment who had intravitreal injection of 50 µgr of t-PA and 0.1 ml of autologous whole blood, 3 days before surgery, underwent lens extraction with phacoemulsification, IVAP assisted vitrectomy, partial circumferential-oral retinotomy, and silicone oil injection(Study Group) were compared to a similar group of 15 eyes who had undergone vitrectomy, with or without lens extraction and silicone oil injection(Control Group) for the treatment of chronic retinal detachment. Primary outcome measures were initial retinal reattachment and number of operations at postoperative 6 months. RESULTS: Mean age of 16 patients of whom 7 were female, was 39.31 ± 17.76 years in study group and 15 patients of whom 4 were female, was 35.40 ± 11.92 years (p = 0.607). Mean follow-up time was 10.68 ± 7.15 months in study group and 29.13 ± 18.83 months in control group (p = 0.001). Initial retinal reattachment was achieved in 87.50% (14 out of 16 patients) in the study group, whereas it was 46.66% (7 out of 15 patients) in the control group (p = 0.017). The mean number of operations for reattachment in the study group was 1.12 ± 0.34, whereas it was 1.46 ± 0.51 in the control group (p = 0.039) at postoperative 6 months While the preoperative LogMAR visual acuity was 1.25 ± 0.64, it was 0.53 ± 0.37 at postoperative 6 months in study group (p = 0.001). Conversely, in the control group, the preoperative LogMAR visual acuity was 1.22 ± 0.33, it was 1.20 ± 0.89 at postoperative 6 months (p = 0.780). At postoperative 6 months,, epiretinal membrane developed in 2 eyes of the study group, 1 eye in the control group, and phthisis bulbi occurred in 1 eye of control group. CONCLUSION: IVAP assisted vitrectomy, partial circumferential-oral retinotomy and silicone oil injection is effective and safe for the surgical treatment of chronic retinal detachment without PVD.

10.
Mar Drugs ; 22(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38393039

RESUMO

Marine organisms are a rich source of enzymes that exhibit excellent biological activity and a wide range of applications. However, there has been limited research on the proteases found in marine mudflat organisms. Based on this background, the marine fibrinolytic enzyme FELP, which was isolated and purified from clamworm (Perinereis aibuhitensis), has exhibited excellent fibrinolytic activity. We demonstrated the FELP with a purification of 10.61-fold by precipitation with ammonium sulfate, ion-exchange chromatography, and gel-filtration chromatography. SDS-PAGE, fibrin plate method, and LC-MS/MS indicated that the molecular weight of FELP is 28.9 kDa and identified FELP as a fibrinolytic enzyme-like protease. FELP displayed the maximum fibrinolytic activity at pH 9 (407 ± 16 mm2) and 50 °C (724 ± 27 mm2) and had excellent stability at pH 7-11 (50%) or 30-60 °C (60%), respectively. The three-dimensional structure of some amino acid residues of FELP was predicted with the SWISS-MODEL. The fibrinolytic and fibrinogenolytic assays showed that the enzyme possessed direct fibrinolytic activity and indirect fibrinolysis via the activation of plasminogen; it could preferentially degrade Aα-chains of fibrinogen, followed by Bß- and γ-chains. Overall, the fibrinolytic enzyme was successfully purified from Perinereis aibuhitensis, a marine Annelida (phylum), with favorable stability that has strong fibrinolysis activity in vitro. Therefore, FELP appears to be a potent fibrinolytic enzyme with an application that deserves further investigation.


Assuntos
Fibrinolisina , Poliquetos , Animais , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Serina Proteases/metabolismo , Poliquetos/metabolismo , Fibrinolíticos/química , Temperatura , Peso Molecular
11.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34380733

RESUMO

Idiopathic normal pressure hydrocephalus (iNPH) is a common neurological disorder that is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and dementia. iNPH usually develops after the sixth decade of life in previously asymptomatic individuals. We recently reported that loss-of-function deletions in CWH43 lead to the development of iNPH in a subgroup of patients, but how this occurs is poorly understood. Here, we show that deletions in CWH43 decrease expression of the cell adhesion molecule, L1CAM, in the brains of CWH43 mutant mice and in human HeLa cells harboring a CWH43 deletion. Loss-of-function mutations in L1CAM are a common cause of severe neurodevelopmental defects that include congenital X-linked hydrocephalus. Mechanistically, we find that CWH43 deletion leads to decreased N-glycosylation of L1CAM, decreased association of L1CAM with cell membrane lipid microdomains, increased L1CAM cleavage by plasmin, and increased shedding of cleaved L1CAM in the cerebrospinal fluid. CWH43 deletion also decreased L1CAM nuclear translocation, suggesting decreased L1CAM intracellular signaling. Importantly, the increase in L1CAM cleavage occurred primarily in the ventricular and subventricular zones where brain CWH43 is most highly expressed. Thus, CWH43 deletions may contribute to adult-onset iNPH by selectively downregulating L1CAM in the ventricular and subventricular zone.


Assuntos
Pressão do Líquido Cefalorraquidiano , Fibrinolisina/metabolismo , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Proteínas de Membrana/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Animais , Encéfalo/patologia , Regulação para Baixo , Deleção de Genes , Regulação da Expressão Gênica , Células HeLa , Humanos , Lipídeos/química , Imageamento por Ressonância Magnética , Proteínas de Membrana/genética , Camundongos , Molécula L1 de Adesão de Célula Nervosa/genética , Ligação Proteica , Domínios Proteicos , RNA
12.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791134

RESUMO

We report the histological changes over time for a patient with infection-related glomerulonephritis (IRGN) that developed in a transplanted kidney. A 47-year-old man had undergone renal transplantation 3 years ago for end-stage kidney disease (ESKD). After several episodes of acute rejection, the patient was in a stable CKD condition. The abrupt development of severe microscopic hematuria and renal dysfunction was observed approximately 2 weeks after the onset of a phlegmon in his right leg. An allograft biopsy showed prominent glomerular endocapillary proliferation on light microscopy, granular C3 deposition on immunofluorescent microscopy, and subepithelial electron-dense deposits on electron microscopy, suggesting IRGN accompanied by moderate interstitial fibrosis and tubular atrophy (IFTA). Positive glomerular staining for nephritis-associated plasmin receptor (NAPlr) and plasmin activity, which are biomarkers of bacterial IRGN, supported the diagnosis. Although the infection was completely cured with antibiotic therapy, renal dysfunction persisted. A re-biopsy of the allograft 2 months later revealed resolution of the glomerular endocapillary proliferation and negative staining for NAPlr/plasmin activity, with worsening IFTA. We showed, for the first time, the chronological changes in infiltrating cells and histological markers of IRGN in transplanted kidneys. Glomerular changes, including NAPlr/plasmin activity staining, almost disappeared after the cessation of infection, while interstitial changes continuously progressed, contributing to ESKD progression.


Assuntos
Aloenxertos , Glomerulonefrite , Transplante de Rim , Humanos , Masculino , Transplante de Rim/efeitos adversos , Pessoa de Meia-Idade , Glomerulonefrite/patologia , Glomerulonefrite/etiologia , Falência Renal Crônica/patologia , Falência Renal Crônica/complicações , Falência Renal Crônica/etiologia , Falência Renal Crônica/cirurgia , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Biópsia , Rim/patologia
13.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000111

RESUMO

A new family of antifibrinolytic drugs has been recently discovered, combining a triazole moiety, an oxadiazolone, and a terminal amine. Two of the molecules of this family have shown activity that is greater than or similar to that of tranexamic acid (TXA), the current antifibrinolytic gold standard, which has been associated with several side effects and whose use is limited in patients with renal impairment. The aim of this work was to thoroughly examine the mechanism of action of the two ideal candidates of the 1,2,3-triazole family and compare them with TXA, to identify an antifibrinolytic alternative active at lower dosages. Specifically, the antifibrinolytic activity of the two compounds (1 and 5) and TXA was assessed in fibrinolytic isolated systems and in whole blood. Results revealed that despite having an activity pathway comparable to that of TXA, both compounds showed greater activity in blood. These differences could be attributed to a more stable ligand-target binding to the pocket of plasminogen for compounds 1 and 5, as suggested by molecular dynamic simulations. This work presents further evidence of the antifibrinolytic activity of the two best candidates of the 1,2,3-triazole family and paves the way for incorporating these molecules as new antifibrinolytic therapies.


Assuntos
Antifibrinolíticos , Ácido Tranexâmico , Triazóis , Triazóis/química , Triazóis/farmacologia , Antifibrinolíticos/farmacologia , Antifibrinolíticos/química , Humanos , Ácido Tranexâmico/farmacologia , Ácido Tranexâmico/química , Simulação de Dinâmica Molecular , Plasminogênio/metabolismo , Plasminogênio/química , Fibrinólise/efeitos dos fármacos
14.
J Lipid Res ; 64(10): 100441, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666362

RESUMO

After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain-containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.

15.
J Biol Chem ; 298(7): 102112, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35690148

RESUMO

Plasmin is a broad-spectrum protease and therefore needs to be tightly regulated. Active plasmin is formed from plasminogen, which is found in high concentrations in the blood and is converted by the plasminogen activators. In the circulation, high levels of α2-antiplasmin rapidly and efficiently inhibit plasmin activity. Certain myeloid immune cells have been shown to bind plasmin and plasminogen on their cell surface via proteins that bind to the plasmin(ogen) kringle domains. Our earlier work showed that T cells can activate plasmin but that they do not themselves express plasminogen. Here, we demonstrate that T cells express several known plasminogen receptors and that they bind plasminogen on their cell surface. We show T cell-bound plasminogen was converted to plasmin by plasminogen activators upon T cell activation. To examine functional consequences of plasmin generation by activated T cells, we investigated its effect on the chemokine, C-C motif chemokine ligand 21 (CCL21). Video microscopy and Western blotting confirmed that plasmin bound by human T cells cleaves CCL21 and increases the chemotactic response of monocyte-derived dendritic cells toward higher CCL21 concentrations along the concentration gradient by increasing their directional migration and track straightness. These results demonstrate how migrating T cells and potentially other activated immune cells may co-opt a powerful proteolytic system from the plasma toward immune processes in the peripheral tissues, where α2-antiplasmin is more likely to be absent. We propose that plasminogen bound to migrating immune cells may strongly modulate chemokine responses in peripheral tissues.


Assuntos
Quimiocina CCL21/metabolismo , Células Dendríticas/imunologia , Plasminogênio/metabolismo , Linfócitos T/metabolismo , Antifibrinolíticos , Quimiocinas , Células Dendríticas/metabolismo , Fibrinolisina/metabolismo , Humanos , Ligantes , Ativadores de Plasminogênio/metabolismo , alfa 2-Antiplasmina
16.
J Cell Sci ; 134(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34085693

RESUMO

Urokinase-type plasminogen activator (uPA; encoded by Plau) is a serine proteinase that, in the central nervous system, induces astrocytic activation. ß-Catenin is a protein that links the cytoplasmic tail of cadherins to the actin cytoskeleton, thus securing the formation of cadherin-mediated cell adhesion complexes. Disruption of cell-cell contacts leads to the detachment of ß-catenin from cadherins, and ß-catenin is then degraded by the proteasome following its phosphorylation by GSK3ß. Here, we show that astrocytes release uPA following a scratch injury, and that this uPA promotes wound healing via a plasminogen-independent mechanism. We found that uPA induces the detachment of ß-catenin from the cytoplasmic tail of N-cadherin (NCAD; also known as CDH2) by triggering its phosphorylation at Tyr654. Surprisingly, this is not followed by degradation of ß-catenin because uPA also induces the phosphorylation of the low density lipoprotein receptor-related protein 6 (LRP6) at Ser1490, which then blocks the kinase activity of GSK3ß. Our work indicates that the ensuing cytoplasmic accumulation of ß-catenin is followed by its nuclear translocation and ß-catenin-triggered transcription of the receptor for uPA (Plaur), which in turn is required for uPA to induce astrocytic wound healing.


Assuntos
Ativador de Plasminogênio Tipo Uroquinase , beta Catenina , Caderinas/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Cicatrização , beta Catenina/genética
17.
Biochem Biophys Res Commun ; 680: 135-140, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37738903

RESUMO

Venous malformations are a vascular disorder. Currently, the use of chemical sclerosing agents is a common clinical approach for the treatment of venous malformations. However, the effectiveness of existing sclerosing agents is unsatisfactory and often accompanied by severe side effects. In this study, we have developed a novel cationic surfactant-based sclerosing agent (POL-TA) by conjugating the plasmin inhibitor tranexamic acid (TA) with a nonionic surfactant polidocanol (POL) through an ester bond. POL-TA induces endothelial cell damage, triggering the coagulation cascade and thrombus formation. Moreover, it releases TA in vivo, which inhibits plasmin activity and the activation of matrix metalloproteinase (MMPs), thereby stabilizing the fibrin network of the thrombus and promoting vascular fibrosis. We have established a cell model using venous malformation endothelial cells and assessed the cellular damage and underlying mechanisms of POL-TA. The inhibitory effects of POL-TA on the plasmin-MMPs system were evaluated using MMP-9 activity assay kit. Additionally, the mice tail vein model was employed to investigate the vascular sclerosing effects and mechanisms of POL-TA.

18.
Respir Res ; 24(1): 280, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964270

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic fatal disease with limited therapeutic options. The infiltration of monocytes and fibroblasts into the injured lungs is implicated in IPF. Enolase-1 (ENO1) is a cytosolic glycolytic enzyme which could translocate onto the cell surface and act as a plasminogen receptor to facilitate cell migration via plasmin activation. Our proprietary ENO1 antibody, HL217, was screened for its specific binding to ENO1 and significant inhibition of cell migration and plasmin activation (patent: US9382331B2). METHODS: In this study, effects of HL217 were evaluated in vivo and in vitro for treating lung fibrosis. RESULTS: Elevated ENO1 expression was found in fibrotic lungs in human and in bleomycin-treated mice. In the mouse model, HL217 reduced bleomycin-induced lung fibrosis, inflammation, body weight loss, lung weight gain, TGF-ß upregulation in bronchial alveolar lavage fluid (BALF), and collagen deposition in lung. Moreover, HL217 reduced the migration of peripheral blood mononuclear cells (PBMC) and the recruitment of myeloid cells into the lungs. In vitro, HL217 significantly reduced cell-associated plasmin activation and cytokines secretion from primary human PBMC and endothelial cells. In primary human lung fibroblasts, HL217 also reduced cell migration and collagen secretion. CONCLUSIONS: These findings suggest multi-faceted roles of cell surface ENO1 and a potential therapeutic approach for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Pneumonia , Camundongos , Humanos , Animais , Leucócitos Mononucleares/metabolismo , Anticorpos Monoclonais/uso terapêutico , Células Endoteliais/metabolismo , Fibrinolisina/metabolismo , Fibrinolisina/farmacologia , Fibrinolisina/uso terapêutico , Pulmão/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pneumonia/metabolismo , Colágeno/metabolismo , Bleomicina/toxicidade , Fibroblastos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/farmacologia , Fosfopiruvato Hidratase/uso terapêutico , Camundongos Endogâmicos C57BL
19.
Arch Biochem Biophys ; 743: 109671, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336343

RESUMO

Staphylokinase (SAK), a potent fibrin-specific plasminogen activator secreted by Staphylococcus aureus, carries a pair of lysine at the carboxy-terminus that play a key role in plasminogen activation. The underlaying mechanism by which C-terminal lysins of SAK modulate its function remains unknown. This study has been undertaken to unravel role of C-terminal lysins of SAK in plasminogen activation. While deletion of C-terminal lysins (Lys135, Lys136) drastically impaired plasminogen activation by SAK, addition of lysins enhanced its catalytic activity 2-2.5-fold. Circular dichroism analysis revealed that C-terminally modified mutants of SAK carry significant changes in their beta sheets and secondary structure. Structure models and RING (residue interaction network generation) studies indicated that the deletion of lysins has conferred extensive topological alterations in SAK, disrupting vital interactions at the interface of SAK.plasmin complex, thereby leading significant impairment in its functional activity. In contrast, addition of lysins at the C-terminus enhanced its conformational flexibility, creating a stronger coupling at the interface of SAK.plasmin complex and making it more efficient for plasminogen activation. Taken together, these studies provided new insights on the role of C-terminal lysins in establishment of precise intermolecular interactions of SAK with the plasmin for the optimal function of activator complex.


Assuntos
Fibrinolisina , Lisina , Fibrinolisina/química , Plasminogênio/química , Ativadores de Plasminogênio/química
20.
Microbiol Immunol ; 67(2): 99-104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461153

RESUMO

Two plasminogen binding proteins were identified from a mouse infected with Streptococcus pneumoniae. The pneumococcal proteins were annotated as ATP-dependent Clp protease ATP-binding subunit (ClpC) and excinuclease ABC subunit C (UvrC) using the isobaric tags for relative and absolute quantification (iTRAQ) method. Recombinants of both proteins showed significant binding to plasminogen and were found to promote plasminogen activation by tissue-type plasminogen activator. In addition, ClpC and UvrC were LytA-dependently released into the culture supernatant and bound to the bacterial surface. These results suggest that S. pneumoniae releases ClpC and UvrC by autolysis and recruits them to the bacterial surface, where they bind to plasminogen and promote its activation, contributing to extracellular matrix degradation and tissue invasion.


Assuntos
Proteínas de Bactérias , Endopeptidase Clp , Plasminogênio , Streptococcus pneumoniae , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Plasminogênio/metabolismo , Streptococcus pneumoniae/metabolismo , Interações Hospedeiro-Patógeno , Endopeptidase Clp/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA