Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Cell ; 187(16): 4193-4212.e24, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38942014

RESUMO

Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.


Assuntos
Envelhecimento , Encéfalo , Complemento C1q , Homeostase , Microglia , Neurônios , Ribonucleoproteínas , Animais , Complemento C1q/metabolismo , Camundongos , Microglia/metabolismo , Envelhecimento/metabolismo , Encéfalo/metabolismo , Ribonucleoproteínas/metabolismo , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Humanos
2.
Mol Cell ; 84(6): 1078-1089.e4, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340715

RESUMO

Aberrantly slow ribosomes incur collisions, a sentinel of stress that triggers quality control, signaling, and translation attenuation. Although each collision response has been studied in isolation, the net consequences of their collective actions in reshaping translation in cells is poorly understood. Here, we apply cryoelectron tomography to visualize the translation machinery in mammalian cells during persistent collision stress. We find that polysomes are compressed, with up to 30% of ribosomes in helical polysomes or collided disomes, some of which are bound to the stress effector GCN1. The native collision interface extends beyond the in vitro-characterized 40S and includes the L1 stalk and eEF2, possibly contributing to translocation inhibition. The accumulation of unresolved tRNA-bound 80S and 60S and aberrant 40S configurations identifies potentially limiting steps in collision responses. Our work provides a global view of the translation machinery in response to persistent collisions and a framework for quantitative analysis of translation dynamics in situ.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Ribossomos/genética , Ribossomos/metabolismo , Polirribossomos/genética , Polirribossomos/metabolismo , Mamíferos
3.
Mol Cell ; 84(14): 2698-2716.e9, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059370

RESUMO

The cell interior is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cellular physiology. Cellular stress responses almost universally lead to inhibition of translation, resulting in polysome collapse and release of mRNA. The released mRNA molecules condense with RNA-binding proteins to form ribonucleoprotein (RNP) condensates known as processing bodies and stress granules. Here, we show that polysome collapse and condensation of RNA transiently fluidize the cytoplasm, and coarse-grained molecular dynamic simulations support this as a minimal mechanism for the observed biophysical changes. Increased mesoscale diffusivity correlates with the efficient formation of quality control bodies (Q-bodies), membraneless organelles that compartmentalize misfolded peptides during stress. Synthetic, light-induced RNA condensation also fluidizes the cytoplasm. Together, our study reveals a functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to enable efficient response of cells to stress conditions.


Assuntos
Citoplasma , Polirribossomos , Ribonucleoproteínas , Polirribossomos/metabolismo , Citoplasma/metabolismo , Humanos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Simulação de Dinâmica Molecular , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Condensados Biomoleculares/metabolismo , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética
4.
Mol Cell ; 83(24): 4494-4508.e6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38016476

RESUMO

In the cytoplasm, mRNAs are dynamically partitioned into translating and non-translating pools, but the mechanism for this regulation has largely remained elusive. Here, we report that m6A regulates mRNA partitioning between polysome and P-body where a pool of non-translating mRNAs resides. By quantifying the m6A level of polysomal and cytoplasmic mRNAs with m6A-LAIC-seq and m6A-LC-MS/MS in HeLa cells, we observed that polysome-associated mRNAs are hypo-m6A-methylated, whereas those enriched in P-body are hyper-m6A-methylated. Downregulation of the m6A writer METTL14 enhances translation by switching originally hyper-m6A-modified mRNAs from P-body to polysome. Conversely, by proteomic analysis, we identify a specific m6A reader IGF2BP3 enriched in P-body, and via knockdown and molecular tethering assays, we demonstrate that IGF2BP3 is both necessary and sufficient to switch target mRNAs from polysome to P-body. These findings suggest a model for the dynamic regulation of mRNA partitioning between the translating and non-translating pools in an m6A-dependent manner.


Assuntos
Adenina , Corpos de Processamento , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Humanos , Cromatografia Líquida , Células HeLa , Polirribossomos/genética , Proteômica , RNA Mensageiro/genética , Espectrometria de Massas em Tandem , Adenina/análogos & derivados , Adenina/metabolismo , Proteínas de Ligação a RNA/metabolismo
5.
J Biol Chem ; 300(2): 105648, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219816

RESUMO

Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Humanos , Ratos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588208

RESUMO

As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.


Assuntos
MicroRNAs , Poli A , Animais , Haploidia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Poli A/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Espermátides/metabolismo
7.
Mol Cell ; 66(1): 1-2, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388436

RESUMO

In this issue of Molecular Cell, Legnini et al. (2017) and Pamudurti et al. (2017) demonstrate that endogenous circular RNAs may generate proteins, thereby expanding the eukaryotic proteome and revealing novel modes of cap-independent translation.


Assuntos
Proteínas , Ribossomos , Humanos , Biossíntese de Proteínas , RNA Mensageiro
8.
Mol Cell ; 67(1): 55-70.e4, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28673543

RESUMO

Ribosomal protein (RP) expression in higher eukaryotes is regulated translationally through the 5'TOP sequence. This mechanism evolved to more rapidly produce RPs on demand in different tissues. Here we show that 40S ribosomes, in a complex with the mRNA binding protein LARP1, selectively stabilize 5'TOP mRNAs, with disruption of this complex leading to induction of the impaired ribosome biogenesis checkpoint (IRBC) and p53 stabilization. The importance of this mechanism is underscored in 5q− syndrome, a macrocytic anemia caused by a large monoallelic deletion, which we found to also encompass the LARP1 gene. Critically, depletion of LARP1 alone in human adult CD34+ bone marrow precursor cells leads to a reduction in 5'TOP mRNAs and the induction of p53. These studies identify a 40S ribosome function independent of those in translation that, with LARP1, mediates the autogenous control of 5'TOP mRNA stability, whose disruption is implicated in the pathophysiology of 5q− syndrome.


Assuntos
Autoantígenos/metabolismo , Biossíntese de Proteínas , Sequência de Oligopirimidina na Região 5' Terminal do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Anemia Macrocítica/genética , Anemia Macrocítica/metabolismo , Autoantígenos/genética , Células da Medula Óssea/metabolismo , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Cromossomos Humanos Par 5/metabolismo , Células HCT116 , Humanos , Complexos Multiproteicos , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antígeno SS-B
9.
Neurobiol Dis ; 195: 106488, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565397

RESUMO

Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.


Assuntos
Modelos Animais de Doenças , Doença de Huntington , Polirribossomos , Ribossomos , Animais , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Camundongos , Polirribossomos/metabolismo , Ribossomos/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Camundongos Transgênicos , Progressão da Doença , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética
10.
J Exp Bot ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592734

RESUMO

Plant mitochondria and chloroplasts are semi-autonomous organelles originated from free-living bacteria and retaining respective reduced genomes during evolution. As a consequence, relatively few of the mitochondrial and chloroplast proteins are encoded in the organellar genomes and synthesized by the organellar ribosomes. Since the both organellar genomes encode mainly components of the energy transduction systems, oxidative phosphorylation in mitochondria and photosynthetic apparatus in chloroplasts, understanding the organellar translation is critical to a thorough comprehension of the key aspects of mitochondrial and chloroplast activity affecting plant growth and development. Recent studies have clearly shown that translation is a key regulatory node in the expression of plant organellar genes, underscoring the need for an adequate methodology to study this unique stage of gene expression. The organellar translatome can be analysed by studying newly synthesized proteins or the mRNA pool recruited to the organellar ribosomes. In this review, we present in some detail the experimental approaches used to date for studying translation in the plant bioenergetic organelles. Their benefits and limitations, as well as the critical steps are discussed. Additionally, we briefly mention several recently developed strategies to study organellar translation that have not yet been applied to plants.

11.
J Exp Bot ; 75(8): 2494-2509, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156667

RESUMO

Dark-light and light-dark transitions during the day are switching points of leaf metabolism that strongly affect the regulatory state of the cells, and this change is hypothesized to affect the translatome. The cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1 and GAPC2 function in glycolysis, and carbohydrate and energy metabolism, but GAPC1/C2 also shows moonlighting functions in gene expression and post-transcriptional regulation. In this study we examined the rapid reprogramming of the translatome that occurs within 10 min at the end of the night and the end of the day in wild-type (WT) Arabidopsis and a gapc1/c2 double-knockdown mutant. Metabolite profiling compared to the WT showed that gapc1/c2 knockdown led to increases in a set of metabolites at the start of day, particularly intermediates of the citric acid cycle and linked pathways. Differences in metabolite changes were also detected at the end of the day. Only small sets of transcripts changed in the total RNA pool; however, RNA-sequencing revealed major alterations in polysome-associated transcripts at the light-transition points. The most pronounced difference between the WT and gapc1/c2 was seen in the reorganization of the translatome at the start of the night. Our results are in line with the proposed hypothesis that GAPC1/C2 play a role in the control of the translatome during light/dark transitions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Citosol/metabolismo , Arabidopsis/metabolismo , RNA/metabolismo
12.
RNA Biol ; 21(1): 23-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39194147

RESUMO

GEMIN5 is a multifunctional protein involved in various aspects of RNA biology, including biogenesis of snRNPs and translation control. Reduced levels of GEMIN5 confer a differential translation to selective groups of mRNAs, and biallelic variants reducing protein stability or inducing structural conformational changes are associated with neurological disorders. Here, we show that upregulation of GEMIN5 can be detrimental as it modifies the steady state of mRNAs and enhances alternative splicing (AS) events of genes involved in a broad range of cellular processes. RNA-Seq identification of the mRNAs associated with polysomes in cells with high levels of GEMIN5 revealed that a significant fraction of the differential AS events undergo translation. The association of mRNAs with polysomes was dependent on the type of AS event, being more frequent in the case of exon skipping. However, there were no major differences in the percentage of genes showing open-reading frame disruption. Importantly, differential AS events in mRNAs engaged in polysomes, eventually rendering non-functional proteins, encode factors controlling cell growth. The broad range of mRNAs comprising AS events engaged in polysomes upon GEMIN5 upregulation supports the notion that this multifunctional protein has evolved as a gene expression balancer, consistent with its dual role as a member of the SMN complex and as a modulator of protein synthesis, ultimately impinging on cell homoeostasis.


Assuntos
Processamento Alternativo , Polirribossomos , Biossíntese de Proteínas , RNA Mensageiro , Proteínas do Complexo SMN , Humanos , Proteínas do Complexo SMN/metabolismo , Proteínas do Complexo SMN/genética , Polirribossomos/metabolismo , Polirribossomos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Éxons , Células HeLa , Regulação da Expressão Gênica
13.
Biol Res ; 57(1): 26, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735981

RESUMO

BACKGROUND: Vitamin C (ascorbate) is a water-soluble antioxidant and an important cofactor for various biosynthetic and regulatory enzymes. Mice can synthesize vitamin C thanks to the key enzyme gulonolactone oxidase (Gulo) unlike humans. In the current investigation, we used Gulo-/- mice, which cannot synthesize their own ascorbate to determine the impact of this vitamin on both the transcriptomics and proteomics profiles in the whole liver. The study included Gulo-/- mouse groups treated with either sub-optimal or optimal ascorbate concentrations in drinking water. Liver tissues of females and males were collected at the age of four months and divided for transcriptomics and proteomics analysis. Immunoblotting, quantitative RT-PCR, and polysome profiling experiments were also conducted to complement our combined omics studies. RESULTS: Principal component analyses revealed distinctive differences in the mRNA and protein profiles as a function of sex between all the mouse cohorts. Despite such sexual dimorphism, Spearman analyses of transcriptomics data from females and males revealed correlations of hepatic ascorbate levels with transcripts encoding a wide array of biological processes involved in glucose and lipid metabolisms as well as in the acute-phase immune response. Moreover, integration of the proteomics data showed that ascorbate modulates the abundance of various enzymes involved in lipid, xenobiotic, organic acid, acetyl-CoA, and steroid metabolism mainly at the transcriptional level, especially in females. However, several proteins of the mitochondrial complex III significantly correlated with ascorbate concentrations in both males and females unlike their corresponding transcripts. Finally, poly(ribo)some profiling did not reveal significant enrichment difference for these mitochondrial complex III mRNAs between Gulo-/- mice treated with sub-optimal and optimal ascorbate levels. CONCLUSIONS: Thus, the abundance of several subunits of the mitochondrial complex III are regulated by ascorbate at the post-transcriptional levels. Our extensive omics analyses provide a novel resource of altered gene expression patterns at the transcriptional and post-transcriptional levels under ascorbate deficiency.


Assuntos
Ácido Ascórbico , Fígado , Proteômica , Animais , Ácido Ascórbico/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Feminino , Masculino , Camundongos , L-Gulonolactona Oxidase/genética , L-Gulonolactona Oxidase/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Análise de Componente Principal , Antioxidantes/metabolismo
14.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396700

RESUMO

Understanding the intricate molecular mechanisms governing the fate of human adipose-derived stem cells (hASCs) is essential for elucidating the delicate balance between adipogenic and osteogenic differentiation in both healthy and pathological conditions. Long non-coding RNAs (lncRNAs) have emerged as key regulators involved in lineage commitment and differentiation of stem cells, operating at various levels of gene regulation, including transcriptional, post-transcriptional, and post-translational processes. To gain deeper insights into the role of lncRNAs' in hASCs' differentiation, we conducted a comprehensive analysis of the lncRNA transcriptome (RNA-seq) and translatome (polysomal-RNA-seq) during a 24 h period of adipogenesis and osteogenesis. Our findings revealed distinct expression patterns between the transcriptome and translatome during both differentiation processes, highlighting 90 lncRNAs that are exclusively regulated in the polysomal fraction. These findings underscore the significance of investigating lncRNAs associated with ribosomes, considering their unique expression patterns and potential mechanisms of action, such as translational regulation and potential coding capacity for microproteins. Additionally, we identified specific lncRNA gene expression programs associated with adipogenesis and osteogenesis during the early stages of cell differentiation. By shedding light on the expression and potential functions of these polysome-associated lncRNAs, we aim to deepen our understanding of their involvement in the regulation of adipogenic and osteogenic differentiation, ultimately paving the way for novel therapeutic strategies and insights into regenerative medicine.


Assuntos
Adipogenia , RNA Longo não Codificante , Humanos , Adipogenia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Polirribossomos/metabolismo
15.
RNA ; 27(9): 1082-1101, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34193551

RESUMO

The expression of long noncoding RNAs is highly enriched in the human nervous system. However, the function of neuronal lncRNAs in the cytoplasm and their potential translation remains poorly understood. Here we performed Poly-Ribo-Seq to understand the interaction of lncRNAs with the translation machinery and the functional consequences during neuronal differentiation of human SH-SY5Y cells. We discovered 237 cytoplasmic lncRNAs up-regulated during early neuronal differentiation, 58%-70% of which are associated with polysome translation complexes. Among these polysome-associated lncRNAs, we find 45 small ORFs to be actively translated, 17 specifically upon differentiation. Fifteen of 45 of the translated lncRNA-smORFs exhibit sequence conservation within Hominidea, suggesting they are under strong selective constraint in this clade. The profiling of publicly available data sets revealed that 8/45 of the translated lncRNAs are dynamically expressed during human brain development, and 22/45 are associated with cancers of the central nervous system. One translated lncRNA we discovered is LINC01116, which is induced upon differentiation and contains an 87 codon smORF exhibiting increased ribosome profiling signal upon differentiation. The resulting LINC01116 peptide localizes to neurites. Knockdown of LINC01116 results in a significant reduction of neurite length in differentiated cells, indicating it contributes to neuronal differentiation. Our findings indicate cytoplasmic lncRNAs interact with translation complexes, are a noncanonical source of novel peptides, and contribute to neuronal function and disease. Specifically, we demonstrate a novel functional role for LINC01116 during human neuronal differentiation.


Assuntos
Diferenciação Celular/genética , Neurônios/metabolismo , Polirribossomos/genética , Biossíntese de Proteínas , RNA Longo não Codificante/genética , Sequência de Bases , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Neurônios/citologia , Fases de Leitura Aberta , Polirribossomos/metabolismo , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Análise de Sequência de RNA , Tretinoína/farmacologia
16.
New Phytol ; 239(6): 2235-2247, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37403528

RESUMO

Heat stress greatly threatens crop production. Plants have evolved multiple adaptive mechanisms, including alternative splicing, that allow them to withstand this stress. However, how alternative splicing contributes to heat stress responses in wheat (Triticum aestivum) is unclear. We reveal that the heat shock transcription factor gene TaHSFA6e is alternatively spliced in response to heat stress. TaHSFA6e generates two major functional transcripts: TaHSFA6e-II and TaHSFA6e-III. TaHSFA6e-III enhances the transcriptional activity of three downstream heat shock protein 70 (TaHSP70) genes to a greater extent than does TaHSFA6e-II. Further investigation reveals that the enhanced transcriptional activity of TaHSFA6e-III is due to a 14-amino acid peptide at its C-terminus, which arises from alternative splicing and is predicted to form an amphipathic helix. Results show that knockout of TaHSFA6e or TaHSP70s increases heat sensitivity in wheat. Moreover, TaHSP70s are localized in stress granule following exposure to heat stress and are involved in regulating stress granule disassembly and translation re-initiation upon stress relief. Polysome profiling analysis confirms that the translational efficiency of stress granule stored mRNAs is lower at the recovery stage in Tahsp70s mutants than in the wild types. Our finding provides insight into the molecular mechanisms by which alternative splicing improves the thermotolerance in wheat.


Assuntos
Proteínas de Choque Térmico , Termotolerância , Proteínas de Choque Térmico/metabolismo , Triticum/metabolismo , Processamento Alternativo/genética , Resposta ao Choque Térmico/genética , Termotolerância/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Cell Mol Life Sci ; 79(9): 490, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987821

RESUMO

Selective translation allows to orchestrate the expression of specific proteins in response to different signals through the concerted action of cis-acting elements and RNA-binding proteins (RBPs). Gemin5 is a ubiquitous RBP involved in snRNP assembly. In addition, Gemin5 regulates translation of different mRNAs through apparently opposite mechanisms of action. Here, we investigated the differential function of Gemin5 in translation by identifying at a genome-wide scale the mRNAs associated with polysomes. Among the mRNAs showing Gemin5-dependent enrichment in polysomal fractions, we identified a selective enhancement of specific transcripts. Comparison of the targets previously identified by CLIP methodologies with the polysome-associated transcripts revealed that only a fraction of the targets was enriched in polysomes. Two different subsets of these mRNAs carry unique cis-acting regulatory elements, the 5' terminal oligopyrimidine tracts (5'TOP) and the histone stem-loop (hSL) structure at the 3' end, respectively, encoding ribosomal proteins and histones. RNA-immunoprecipitation (RIP) showed that ribosomal and histone mRNAs coprecipitate with Gemin5. Furthermore, disruption of the TOP motif impaired Gemin5-RNA interaction, and functional analysis showed that Gemin5 stimulates translation of mRNA reporters bearing an intact TOP motif. Likewise, Gemin5 enhanced hSL-dependent mRNA translation. Thus, Gemin5  promotes polysome association of only a subset of its targets, and as a consequence, it favors translation of the ribosomal and the histone mRNAs. Together, the results presented here unveil Gemin5 as a novel translation regulator of mRNA subsets encoding proteins involved in fundamental cellular processes.


Assuntos
Histonas , RNA , Histonas/genética , Histonas/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA/metabolismo , RNA Mensageiro/metabolismo
18.
BMC Biol ; 20(1): 261, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424632

RESUMO

BACKGROUND: Folate is an essential B-group vitamin and a key methyl donor with important biological functions including DNA methylation regulation. Normal neurodevelopment and physiology are sensitive to the cellular folate levels. Either deficiency or excess of folate may lead to neurological disorders. Recently, folate has been linked to tRNA cytosine-5 methylation (m5C) and translation in mammalian mitochondria. However, the influence of folate intake on neuronal mRNA m5C modification and translation remains largely unknown. Here, we provide transcriptome-wide landscapes of m5C modification in poly(A)-enriched RNAs together with mRNA transcription and translation profiles for mouse neural stem cells (NSCs) cultured in three different concentrations of folate. RESULTS: NSCs cultured in three different concentrations of folate showed distinct mRNA methylation profiles. Despite uncovering only a few differentially expressed genes, hundreds of differentially translated genes were identified in NSCs with folate deficiency or supplementation. The differentially translated genes induced by low folate are associated with cytoplasmic translation and mitochondrial function, while the differentially translated genes induced by high folate are associated with increased neural stem cell proliferation. Interestingly, compared to total mRNAs, polysome mRNAs contained high levels of m5C. Furthermore, an integrative analysis indicated a transcript-specific relationship between RNA m5C methylation and mRNA translation efficiency. CONCLUSIONS: Altogether, our study reports a transcriptome-wide influence of folate on mRNA m5C methylation and translation in NSCs and reveals a potential link between mRNA m5C methylation and mRNA translation.


Assuntos
Ácido Fólico , Células-Tronco Neurais , Camundongos , Animais , RNA , Células-Tronco Neurais/metabolismo , Metilação de DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética
19.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047141

RESUMO

Ribosomal protein uL15 (RPL27a) carries a specific modification, hydroxylation, at the His39 residue, which neighbors the CCA terminus of the E-site-bound tRNA at the mammalian ribosome. Under hypoxia, the level of hydroxylation of this protein decreases. We transiently transfected HEK293T cells with constructs expressing wild-type uL15 or mutated uL15 (His39Ala) incapable of hydroxylation, and demonstrated that ribosomes containing both proteins are competent in translation. By applying RNA-seq to the total cellular and polysome-associated mRNAs, we identified differentially expressed genes (DEGs) in cells containing exogenous uL15 or its mutant form. Analyzing mRNA features of up- and down-regulated DEGs, we found an increase in the level of more abundant mRNAs and shorter CDSs in cells with uL15 mutant for both translated and total cellular mRNAs. The level of longer and rarer mRNAs, on the contrary, decreased. Our data show how ribosome heterogeneity can change the composition of the translatome and transcriptome, depending on the properties of the translated mRNAs.


Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas , Humanos , Animais , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hidroxilação , Células HEK293 , Mutação , Mamíferos/metabolismo
20.
Trends Biochem Sci ; 43(12): 938-950, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30337135

RESUMO

Great progress has been made toward solving the atomic structure of the ribosome, which is the main biosynthetic machine in cells, but we still do not have a full picture of exactly how cellular ribosomes function. Based on the analysis of crystallographic and electron microscopy data, we propose a basic model of the structural organization of ribosomes into a compartment. This compartment is regularly formed by arrays of ribosomal tetramers made up of two dimers that are actually facing in opposite directions. The compartment functions as the main 'factory' for the production of cellular proteins. The model is consistent with the existing biochemical and genetic data. We also consider the functional connections of such a compartment with cellular transcription and ribosomal biogenesis.


Assuntos
Ribossomos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Microscopia Eletrônica , Polirribossomos/genética , Polirribossomos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA