Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Small ; 20(15): e2308390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037673

RESUMO

Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.


Assuntos
Proteínas de Bactérias , Dextranos , Proteínas de Bactérias/metabolismo
2.
Chembiochem ; : e202400378, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031571

RESUMO

Scientific advancements in bottom-up synthetic biology have led to the development of numerous models of synthetic cells, or protocells. To date, research has mainly focused on increasing the (bio)chemical complexity of these bioinspired micro-compartmentalized systems, yet the successful integration of protocells with living cells remains one of the major challenges in bottom-up synthetic biology. In this review, we aim to summarize the current state of the art in hybrid protocell/living cell and prototissue/living cell systems. Inspired by recent breakthroughs in tissue engineering, we review the chemical, bio-chemical, and mechano-chemical aspects that hold promise for achieving an effective integration of non-living and living matter. The future production of fully integrated protocell/living cell systems and increasingly complex prototissue/living tissue systems not only has the potential to revolutionize the field of tissue engineering, but also paves the way for new technologies in (bio)sensing, personalized therapy, and drug delivery.

3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001592

RESUMO

Functional biomolecules, such as RNA, encapsulated inside a protocellular membrane are believed to have comprised a very early, critical stage in the evolution of life, since membrane vesicles allow selective permeability and create a unit of selection enabling cooperative phenotypes. The biophysical environment inside a protocell would differ fundamentally from bulk solution due to the microscopic confinement. However, the effect of the encapsulated environment on ribozyme evolution has not been previously studied experimentally. Here, we examine the effect of encapsulation inside model protocells on the self-aminoacylation activity of tens of thousands of RNA sequences using a high-throughput sequencing assay. We find that encapsulation of these ribozymes generally increases their activity, giving encapsulated sequences an advantage over nonencapsulated sequences in an amphiphile-rich environment. In addition, highly active ribozymes benefit disproportionately more from encapsulation. The asymmetry in fitness gain broadens the distribution of fitness in the system. Consistent with Fisher's fundamental theorem of natural selection, encapsulation therefore leads to faster adaptation when the RNAs are encapsulated inside a protocell during in vitro selection. Thus, protocells would not only provide a compartmentalization function but also promote activity and evolutionary adaptation during the origin of life.


Assuntos
Células Artificiais/enzimologia , Compartimento Celular , Modelos Biológicos , Origem da Vida , RNA Catalítico/metabolismo , Sequência de Bases , Evolução Molecular , Ensaios de Triagem em Larga Escala , Cinética , Seleção Genética , Termodinâmica
4.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893538

RESUMO

Protocell models play a pivotal role in the exploration of the origin of life. Vesicles are one type of protocell model that have attracted much attention. Simple single-chain amphiphiles (SACs) and organic small molecules (OSMs) possess primitive relevance and were most likely the building blocks of protocells on the early Earth. OSM@SAC vesicles have been considered to be plausible protocell models. Pyrite (FeS2), a mineral with primitive relevance, is ubiquitous in nature and plays a crucial role in the exploration of the origin of life in the mineral-water interface scenario. "How do protocell models based on OSM@SAC vesicles interact with a mineral-water interface scenario that simulates a primitive Earth environment" remains an unresolved question. Hence, we select primitive relevant sodium monododecyl phosphate (SDP), isopentenol (IPN) and pyrite (FeS2) mineral particles to build a protocell model. The model investigates the basic physical and chemical properties of FeS2 particles and reveals the effects of the size, content and duration of interaction of FeS2 particles on IPN@SDP vesicles. This deepens the understanding of protocell growth mechanisms in scenarios of mineral-water interfaces in primitive Earth environments and provides new information for the exploration of the origin of life.

5.
Entropy (Basel) ; 26(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667835

RESUMO

The conditions that allow for the sustained growth of a protocell population are investigated in the case of asymmetrical division. The results are compared to those of previous studies concerning models of symmetrical division, where synchronization (between duplication of the genetic material and fission of the lipid container) was found under a variety of different assumptions about the kinetic equations and about the place where molecular replication takes place. Such synchronization allows a sustained proliferation of the protocell population. In the asymmetrical case, there can be no true synchronization, since the time to duplication may depend upon the initial size, but we introduce a notion of homogeneous growth that actually allows for the sustained reproduction of a population of protocells. We first analyze Surface Reaction Models, defined in the text, and we show that in many cases they undergo homogeneous growth under the same kinetic laws that lead to synchronization in the symmetrical case. This is the case also for Internal Reaction Models (IRMs), which, however, require a deeper understanding of what homogeneous growth actually means, as discussed below.

6.
Angew Chem Int Ed Engl ; 63(34): e202407472, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38847278

RESUMO

The membranization of membrane-less coacervates paves the way for the exploitation of complex protocells with regard to structural and cell-like functional behaviors. However, the controlled transformation from membranized coacervates to vesicles remains a challenge. This can provide stable (multi)phase and (multi)compartmental architectures through the reconfiguration of coacervate droplets in the presence of (bioactive) polymers, bio(macro)molecules and/or nanoobjects. Herein, we present a continuous protocell transformation from membrane-less coacervates to membranized coacervates and, ultimately, to giant hybrid vesicles. This transformation process is orchestrated by altering the balance of non-covalent interactions through varying concentrations of an anionic terpolymer, leading to dynamic processes such as spontaneous membranization of terpolymer nanoparticles at the coacervate surface, disassembly of the coacervate phase mediated by the excess anionic charge, and the redistribution of coacervate components in membrane. The diverse protocells during the transformation course provide distinct structural features and molecular permeability. Notably, the introduction of multiphase coacervates in this continuous transformation process signifies advancements toward the creation of synthetic cells with different diffusible compartments. Our findings emphasize the highly controlled continuous structural reorganization of coacervate protocells and represents a novel step toward the development of advanced and sophisticated synthetic protocells with more precise compositions and complex (membrane) structures.


Assuntos
Células Artificiais , Células Artificiais/química , Polímeros/química , Nanopartículas/química
7.
RNA ; 27(1): 1-11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028653

RESUMO

We propose a model for the replication of primordial protocell genomes that builds upon recent advances in the nonenzymatic copying of RNA. We suggest that the original genomes consisted of collections of oligonucleotides beginning and ending at all possible positions on both strands of one or more virtual circular sequences. Replication is driven by feeding with activated monomers and by the activation of monomers and oligonucleotides in situ. A fraction of the annealed configurations of the protocellular oligonucleotides would allow for template-directed oligonucleotide growth by primer extension or ligation. Rearrangements of these annealed configurations, driven either by environmental fluctuations or occurring spontaneously, would allow for continued oligonucleotide elongation. Assuming that shorter oligonucleotides were more abundant than longer ones, replication of the entire genome could occur by the growth of all oligonucleotides by as little as one nucleotide on average. We consider possible scenarios that could have given rise to such protocell genomes, as well as potential routes to the emergence of catalytically active ribozymes and thus the more complex cells of the RNA World.


Assuntos
Genoma , Modelos Genéticos , Origem da Vida , RNA Catalítico/genética , RNA/genética , Células Artificiais , DNA Circular/genética , DNA Circular/metabolismo , Evolução Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , RNA/metabolismo , RNA Catalítico/metabolismo , Interface Usuário-Computador
8.
Chemistry ; 29(61): e202302058, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37497813

RESUMO

The achievement of light-responsive behaviours is an important target for protocell engineering to allow control of fundamental protocellular processes such as communication via diffusible chemical signals, shape changes or even motility at the flick of a switch. As a step towards this ambitious goal, here we describe the synthesis of a novel poly(ethylene glycol)-based crosslinker, reactive towards nucleophiles, that effectively degrades with UV light (405 nm). We demonstrate its utility for the fabrication of the first protocell membranes capable of light-induced disassembly, for the photo-generation of patterns of protocells, and for the modulation of protocell membrane permeability. Overall, our results not only open up new avenues towards the engineering of spatially organised, communicating networks of protocells, and of micro-compartmentalised systems for information storage and release, but also have important implications for other research fields such as drug delivery and soft materials chemistry.


Assuntos
Células Artificiais , Células Artificiais/metabolismo , Polietilenoglicóis
9.
Chemistry ; 29(43): e202301376, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216492

RESUMO

Demonstrating RNA catalysis within prebiotically relevant models of primordial cells (protocells) remains a challenge in origins of life research. Fatty acid vesicles encapsulating genomic and catalytic RNAs (ribozymes) are attractive models for protocells; however, RNA catalysis has largely been incompatible with fatty acid vesicles due to their instability in the presence of Mg2+ at the concentrations required for ribozyme function. Here, we report a ribozyme that catalyzes template-directed RNA ligation at low Mg2+ concentrations and thus remains active within stable vesicles. Ribose and adenine, both prebiotically relevant molecules, were found to greatly reduce Mg2+ -induced RNA leakage from vesicles. When we co-encapsulated the ribozyme, substrate, and template within fatty acid vesicles, we observed efficient RNA-catalyzed RNA ligation upon subsequent addition of Mg2+ . Our work shows that RNA-catalyzed RNA assembly can occur efficiently within prebiotically plausible fatty acid vesicles and represents a step toward the replication of primordial genomes within self-replicating protocells.


Assuntos
Células Artificiais , RNA Catalítico , RNA/química , RNA Catalítico/química , Ácidos Graxos , Catálise
10.
Orig Life Evol Biosph ; 53(3-4): 187-203, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072914

RESUMO

Decorated vesicles in deep, seafloor basalts form abiotically, but show at least four life-analogous features, which makes them a candidate for origin of life research. These features are a physical enclosure, carbon-assimilatory catalysts, semi-permeable boundaries, and a source of usable energy. The nanometer-to-micron-sized spherules on the inner walls of decorated vesicles are proposed to function as mineral proto-enzymes. Chemically, these structures resemble synthetic FeS clusters shown to convert CO2, CO and H2 into methane, formate, and acetate. Secondary phyllosilicate minerals line the vesicles' inner walls and can span openings in the vesicles and thus can act as molecular sieves between the vesicles' interior and the surrounding aquifer. Lastly, basalt glass in the vesicle walls takes up protons, which replace cations in the silicate framework. This results in an inward proton flux, reciprocal outward flux of metal cations, more alkaline pH inside the vesicle than outside, and production of more phyllosilicates. Such life-like features could have been exploited to move decorated vesicles toward protolife systems. Decorated vesicles are proposed as study models of prebiotic systems that are expected to have existed on the early Earth and Earth-like exoplanets. Their analysis can lead to better understanding of changes in planetary geocycles during the origin of life.


Assuntos
Silicatos , Cátions
11.
Angew Chem Int Ed Engl ; 62(24): e202300932, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37083182

RESUMO

Despite an emerging catalogue of collective behaviours in communities of homogeneously distributed cell-like objects, microscale protocell colonies with spatially segregated populations have received minimal attention. Here, we use microfluidics to fabricate Janus-like calcium alginate hydrogel microspheres with spatially partitioned populations of enzyme-containing inorganic colloidosomes and investigate their potential as integrated platforms for domain-mediated chemical communication and programmable protocell-matrix dynamics. Diffusive chemical signalling within the segregated communities gives rise to increased initial enzyme kinetics compared with a homogeneous distribution of protocells. We employ competing enzyme-mediated hydrogel crosslinking and decrosslinking reactions in different domains of the partitioned colonies to undertake selective expulsion of a specific protocell population from the community. Our results offer new possibilities for the design and construction of spatially organized cytomimetic consortia capable of endogenous chemical processing and protocell-environment interactivity.


Assuntos
Células Artificiais , Células Artificiais/química , Hidrogéis
12.
Chembiochem ; 23(24): e202200371, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35968882

RESUMO

Prebiotically plausible single-chain amphiphiles are enticing as model protocellular compartments to study the emergence of cellular life, owing to their self-assembling properties. Here, we investigated the self-assembly behaviour of mono-N-dodecyl phosphate (DDP) and mixed systems of DDP with 1-dodecanol (DDOH) at varying pH conditions. Membranes composed of DDP showed pH-responsive vesicle formation in a wide range of pH with a low critical bilayer concentration (CBC). Further, the addition of DDOH to DDP membrane system enhanced vesicle formation and stability in alkaline pH regimes. We also compared the high-temperature behaviour of DDP and DDP:DDOH membranes with conventional fatty acid membranes. Both, DDP and DDP:DDOH mixed membranes possess packing that is similar to decanoic acid membrane. However, the micropolarity of these systems is similar to phospholipid membranes. Finally, the pH-dependent modulation of different phospholipid membranes doped with DDP was also demonstrated to engineer tuneable membranes with potential translational implications.


Assuntos
Modelos Biológicos , Fosfatos , Membranas/química , Concentração de Íons de Hidrogênio , Fosfolipídeos
13.
Bull Math Biol ; 84(10): 109, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030325

RESUMO

The evolution of complex cellular life involved two major transitions: the encapsulation of self-replicating genetic entities into cellular units and the aggregation of individual genes into a collectively replicating genome. In this paper, we formulate a minimal model of the evolution of proto-chromosomes within protocells. We model a simple protocell composed of two types of genes: a "fast gene" with an advantage for gene-level self-replication and a "slow gene" that replicates more slowly at the gene level, but which confers an advantage for protocell-level reproduction. Protocell-level replication capacity depends on cellular composition of fast and slow genes. We use a partial differential equation to describe how the composition of genes within protocells evolves over time under within-cell and between-cell competition, considering an infinite population of protocells that each contain infinitely many genes. We find that the gene-level advantage of fast replicators casts a long shadow on the multilevel dynamics of protocell evolution: no level of between-protocell competition can produce coexistence of the fast and slow replicators when the two genes are equally needed for protocell-level reproduction. By introducing a "dimer replicator" consisting of a linked pair of the slow and fast genes, we show analytically that coexistence between the two genes can be promoted in pairwise multilevel competition between fast and dimer replicators, and provide numerical evidence for coexistence in trimorphic competition between fast, slow, and dimer replicators. Our results suggest that dimerization, or the formation of a simple chromosome-like dimer replicator, can help to overcome the shadow of lower-level selection and work in concert with deterministic multilevel selection in protocells featuring high gene copy number to allow for the coexistence of two genes that are complementary at the protocell level but compete at the level of individual gene-level replication. These results for the PDE model complement existing results on the benefits of dimerization in the case of low genetic copy number, for which it has been shown that genetic linkage can help to overcome the stochastic loss of necessary genetic templates.


Assuntos
Células Artificiais , Cromossomos , Genoma , Conceitos Matemáticos , Modelos Biológicos
14.
Proc Natl Acad Sci U S A ; 116(35): 17239-17244, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31405964

RESUMO

The membranes of the first protocells on the early Earth were likely self-assembled from fatty acids. A major challenge in understanding how protocells could have arisen and withstood changes in their environment is that fatty acid membranes are unstable in solutions containing high concentrations of salt (such as would have been prevalent in early oceans) or divalent cations (which would have been required for RNA catalysis). To test whether the inclusion of amino acids addresses this problem, we coupled direct techniques of cryoelectron microscopy and fluorescence microscopy with techniques of NMR spectroscopy, centrifuge filtration assays, and turbidity measurements. We find that a set of unmodified, prebiotic amino acids binds to prebiotic fatty acid membranes and that a subset stabilizes membranes in the presence of salt and Mg2+ Furthermore, we find that final concentrations of the amino acids need not be high to cause these effects; membrane stabilization persists after dilution as would have occurred during the rehydration of dried or partially dried pools. In addition to providing a means to stabilize protocell membranes, our results address the challenge of explaining how proteins could have become colocalized with membranes. Amino acids are the building blocks of proteins, and our results are consistent with a positive feedback loop in which amino acids bound to self-assembled fatty acid membranes, resulting in membrane stabilization and leading to more binding in turn. High local concentrations of molecular building blocks at the surface of fatty acid membranes may have aided the eventual formation of proteins.


Assuntos
Aminoácidos/química , Ácidos Graxos/química , Membranas Artificiais , Microscopia Crioeletrônica
15.
BMC Biol ; 19(1): 266, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911545

RESUMO

BACKGROUND: Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. RESULTS: The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY's halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC's sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. CONCLUSIONS: SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.


Assuntos
Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética
16.
Proc Biol Sci ; 288(1963): 20212098, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34784760

RESUMO

The encapsulation of genetic material inside compartments together with the creation and sustenance of functionally diverse internal components are likely to have been key steps in the formation of 'live', replicating protocells in an RNA world. Several experiments have shown that RNA encapsulated inside lipid vesicles can lead to vesicular growth and division through physical processes alone. Replication of RNA inside such vesicles can produce a large number of RNA strands. Yet, the impact of such replication processes on the emergence of the first ribozymes inside such protocells and on the subsequent evolution of the protocell population remains an open question. In this paper, we present a model for the evolution of protocells with functionally diverse ribozymes. Distinct ribozymes can be created with small probabilities during the error-prone RNA replication process via the rolling circle mechanism. We identify the conditions that can synergistically enhance the number of different ribozymes inside a protocell and allow functionally diverse protocells containing multiple ribozymes to dominate the population. Our work demonstrates the existence of an effective pathway towards increasing complexity of protocells that might have eventually led to the origin of life in an RNA world.


Assuntos
Células Artificiais , RNA Catalítico , RNA , RNA Catalítico/genética , RNA Catalítico/metabolismo
17.
Proc Natl Acad Sci U S A ; 115(5): 885-890, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339510

RESUMO

Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.


Assuntos
Células Artificiais , Inteligência Artificial , Origem da Vida , Algoritmos , Automação , Aprendizado de Máquina , Modelos Biológicos , Modelos Químicos , Óleos , Transição de Fase , Robótica , Água
18.
Biochem Soc Trans ; 48(6): 2579-2589, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33155642

RESUMO

Prototissues comprise free-standing 3D networks of interconnected protocell consortia that communicate and display synergistic functions. Significantly, they can be constructed from functional molecules and materials, providing unprecedented opportunities to design tissue-like architectures that can do more than simply mimic living tissues. They could function under extreme conditions and exhibit a wide range of mechanical properties and bio-inspired metabolic functions. In this perspective, I will start by describing recent advancements in the design and synthetic construction of prototissues. I will then discuss the next challenges and the future impact of this emerging research field, which is destined to find applications in the most diverse areas of science and technology, from biomedical science to environmental science, and soft robotics.


Assuntos
Química/métodos , Polímeros/química , Animais , Células Artificiais/química , Biomimética , Biopolímeros/química , Núcleo Celular/metabolismo , Simulação por Computador , Citoplasma/metabolismo , Perfilação da Expressão Gênica , Humanos , Extração Líquido-Líquido , Teste de Materiais , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Biologia Sintética , Viroses/metabolismo
19.
Biochem Soc Trans ; 47(6): 1909-1919, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31819942

RESUMO

A protocell is a synthetic form of cellular life that is constructed from phospholipid vesicles and used to understand the emergence of life from a nonliving chemical network. To be considered 'living', a protocell should be capable of self-proliferation, which includes successive growth and division processes. The growth of protocells can be achieved via vesicle fusion approaches. In this review, we provide a brief overview of recent research on the formation of a protocell, fusion and division processes of the protocell, and encapsulation of a defined chemical network such as the genetic material. We also provide some perspectives on the challenges and future developments of synthetic protocell research.


Assuntos
Células Artificiais , Divisão Celular , Fusão Celular
20.
Chemistry ; 25(72): 16440-16450, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31437322

RESUMO

Compartmentalisation is recognised to be a primary step for the assembly of non-living matter towards the construction of life-like microensembles. To date, a host of hollow microcompartments with various functionalities have been widely developed. Within this respect, given that dynamic behaviour is one of the fundamental features to distinguish living ensembles from those that are non-living, the design and construction of microcompartments with various dynamic behaviours are attracting considerable interest from a wide range of research communities. Significantly, the created dynamic microcompartments could also be widely used as chassis for further bottom-up design towards building protocell models by integrating and booting up necessary biological information. Herein, strategies to install the various motility behaviours into microcompartments, including haptotaxis, chemotaxis and gravitaxis, are summarized in the anticipation of inspiring more designs towards creating various advanced active microcompartments, and contributing new techniques to the ultimate goal of constructing a basic living unit entirely from non-living components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA