Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Molecules ; 28(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138576

RESUMO

Canola is the second-largest cultivated oilseed crop in the world and produces meal consisting of about 35-40% proteins. Despite this, less than 1% of the global plant-based protein market is taken up by canola protein. The reason behind such underutilization of canola protein and its rapeseed counterpart could be the harsh conditions of the industrial oil extraction process, the dark colour of the meal, the presence of various antinutrients, the variability in the protein composition based on the source, and the different properties of the two major protein components. Although academic research has shown immense potential for the use of canola protein and its rapeseed counterpart in emulsion development and stabilization, there is still a vast knowledge gap in efficiently utilizing canola proteins as an effective emulsifier in the development of various emulsion-based foods and beverages. In this context, this review paper summarizes the last 15 years of research on canola and rapeseed proteins as food emulsifiers. It discusses the protein extraction methods, modifications made to improve emulsification, emulsion composition, preparation protocols, and emulsion stability results. The need for further improvement in the scope of the research and reducing the knowledge gap is also highlighted, which could be useful for the food industry to rationally select canola proteins and optimize the processing parameters to obtain products with desirable attributes.


Assuntos
Brassica napus , Brassica rapa , Emulsões , Emulsificantes , Alimentos , Proteínas de Plantas
2.
J Sci Food Agric ; 102(5): 2179-2182, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34580868

RESUMO

BACKGROUND: The use of rapeseed protein for human nutrition is primarily limited by its strong bitterness, which is why the key bitter compound, kaempferol 3-O-(2‴-O-sinapoyl-ß-sophoroside), is enzymatically degraded. RESULTS: Mass spectrometry analyses of an extract from an untreated rapeseed protein isolate gave three signals for m/z 815 [M-H]. The predominant compound among the three compounds was confirmed as kaempferol-3-O-(2‴-O-sinapoyl-ß-sophoroside). Enzymatic hydrolysis of this key bitter compound was achieved using a sinapyl ester cleaving side activity of a ferulic acid esterase (FAE) from the basidiomycete Schizophyllum commune (ScoFAE). Recombinant ferulic acid esterases from Streptomyces werraensis (SwFAE) and from Pleurotus eryngii (PeFAE) possessed better cleavage activity towards methyl sinapate but did not hydrolyze the sinapyl ester linkage of the bitter kaempferol sophoroside. CONCLUSION: Kaempferol-3-O-(2‴-O-sinapoyl-ß-sophoroside) was successfully degraded by enzymatic treatment with ScoFAE, which may provide a means to move the status of rapeseed protein from feed additive to food ingredient. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Brassica napus , Brassica rapa , Humanos , Hidrólise , Quempferóis , Paladar
3.
J Sci Food Agric ; 100(11): 4182-4189, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32374035

RESUMO

BACKGROUND: Although rapeseed protein isolate (RPI) possessed some good functional properties, the use of RPI as an ingredient in the food industry is restricted mainly due to its inferior gelation. The purpose of this study was to improve the heat-induced gel properties of RPI using double processes of acylation and additional transglutaminase catalysis. RESULTS: Scanning electron microscopy showed that the gel formed by native RPI exhibited randomly aggregated particulate network structures whereas transglutaminase (TG)-assisted RPI gels significantly improved gelation properties. More importantly, the combined modifications of RPI using TG-assisted acylation can form a gel with unique percolating and small porous structure. Furthermore, TG-catalyzed 5% acylated RPI gel (100 U g-1 , protein basis) exhibited excellent gel properties in terms of gel strength, thermal stability, surface roughness and apparent viscosity compared to non-treated or single modification of RPI gel as determined by texture analyzer, atomic force microscopy and rheometer. Mechanistically, Fourier-transform infrared spectra and gel dissociation test revealed that TG-catalyzed acylation extensively unfolded the hydrophobic and sulfhydryl residues of RPI, in turn, reinforced re-assembly of protein molecules via hydrophobic interactions and disulfide bonds during gel formation. CONCLUSION: Combined processes of acylation and additional TG catalysis improved the thermal gelation properties by altering inter- and intra-protein structures. Such sequential processes will provide a promising approach to improve the protein gelation that could be potentially applied in the food industry. © 2020 Society of Chemical Industry.


Assuntos
Brassica napus/química , Proteínas de Plantas/química , Transglutaminases/química , Acilação , Catálise , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Viscosidade
4.
J Sci Food Agric ; 100(13): 4734-4744, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32458440

RESUMO

BACKGROUND: Presently, identifying natural compounds as emulsifiers is a popular topic in the food industry. Rapeseed protein isolate (RPI) is a natural plant protein with excellent emulsifying properties, but it has not been systematically developed and utilized. RESULTS: This study investigated the surface hydrophobicity, wettability, and protein solubility of RPI to further explain its emulsifying behavior in emulsion systems. Nanoemulsions stabilized by RPI at varying protein concentration, pH, and ionic strength were prepared. The size distribution, zeta potential, flocculation index, creaming index, microstructure, rheology, and protein secondary structure of emulsions were measured. The emulsion stabilized by 20 g L-1 RPI at pH 10.0, 200 mmol L-1 ionic strength revealed an appropriate droplet size of 555 nm and the most internal gel strength without creaming phenomenon. Circular dichroism spectroscopy showed a positive correlation between emulsion stability and α-helix ratio, indicating the environment factors affected emulsion stability by acting on its hydrogen bonds. CONCLUSIONS: This study demonstrates that RPI is a practical emulsifier for stabilizing nanoemulsions. About 20 g L-1 RPI can stabilize 100 mL L-1 oil in water; stable emulsions can be formed at most pH conditions (except 7.0); ion addition will aggravate the emulsion flocculation, but also increase the internal gel strength. © 2020 Society of Chemical Industry.


Assuntos
Brassica napus/química , Emulsificantes/química , Proteínas de Plantas/química , Emulsificantes/isolamento & purificação , Emulsões/química , Géis/química , Concentração de Íons de Hidrogênio , Óleos/química , Concentração Osmolar , Proteínas de Plantas/isolamento & purificação , Conformação Proteica , Reologia , Solubilidade , Água/química
5.
J Sci Food Agric ; 96(4): 1159-66, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25847576

RESUMO

BACKGROUND: The disadvantages which stem from the use of traditional enzymolysis of protein has necessitated the need to employ sweeping frequency and pulsed ultrasound (SFPU) in the pretreatment of rapeseed protein prior to proteolysis in order to bring about improvement in enzymolysis efficiency. Further, in order to determine the mechanism of ultrasound-accelerated enzymolysis of RP, the effects of SFPU on the kinetics, thermodynamics, molecular conformation and microstructure of RP were investigated. RESULTS: Kinetic studies showed that SFPU pretreatment on RP improved enzymolysis by decreasing the apparent constant KM significantly (P < 0.05) by 32.8% and reducing the thermodynamic parameters Ea , ΔH and ΔS by 16.6%, 17.7% and 9.2% respectively. Fluorescence spectra revealed that SFPU pretreatment induced molecular unfolding, causing more hydrophobic groups and regions inside the molecules to be exposed to the outside. Circular dichroism analysis indicated that SFPU pretreatment decreased the α-helix content by 16.1% and increased the random coil content by 3.6%. In addition, scanning electron microscopy showed that SFPU pretreatment increased the specific surface area of RP. CONCLUSION: Ultrasound pretreatment is an efficient method in RP proteolysis to produce peptides through its impact on the molecular conformation and microstructure of proteins.


Assuntos
Brassica rapa/química , Proteínas de Plantas/química , Ondas Ultrassônicas , Humanos , Desdobramento de Proteína , Relação Estrutura-Atividade
6.
J Food Sci Technol ; 53(4): 1784-97, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27413206

RESUMO

Influence of maleylation on the physicochemical and functional properties of rapeseed protein isolate was studied. Acylation increased whiteness value and dissociation of proteins, but reduced free sulfhydryl and disulfide content (p < 0.05). Intrinsic fluorescence emission and FTIR spectra revealed distinct perturbations in maleylated proteins' tertiary and secondary conformations. Increase in surface hydrophobicity, foaming capacity, emulsion stability, protein surface load at oil-water interface and decrease in surface tension at air-water interface, occurred till moderate level of modification. While maleylation impaired foam stability, protein solubility and emulsion capacity were markedly ameliorated (p < 0.05), which are concomitant with decreased droplet size distribution (d 32). In-vitro digestibility and cytotoxicity tests suggested no severe ill-effects of modified proteins, especially up to low degrees of maleylation. The study shows good potential for maleylated rapeseed proteins as functional food ingredient.

7.
Int J Biol Macromol ; 272(Pt 1): 132656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810848

RESUMO

Our previous experiments found that rapeseed protein (RP) has applicability in low-moisture textured proteins. The amount of RP added is limited to <20 %, but the addition of 20 % RP still brings some negative effects. Therefore, in order to improve the quality of 20%RP textured protein, this experiment added different proportions of sodium tripolyphosphate (STPP) to improve the quality of the product, and studied the physical-chemical properties and molecular structure changes of the product to explore the possible modification mechanism. The STPP not only improved the expansion characteristics of extrudates, but also increased the brightness of the extrudates, the rehydration rate. In addition, STPP increased the specific mechanical energy during extrusion, decreased the material mass flow rate. Furthermore, STPP decreased the starch digestibility, increased the content of slow-digesting starch and resistant starch. STPP increased the degree of denaturation of extrudate proteins, the proportion of ß-sheets in the secondary structure of proteins, as well as the intermolecular hydrogen bonding interactions. The gelatinization degradation degree of starch molecules also decreased with the addition of STPP. STPP also increased the protein-starch interactions and enhanced the thermal stability of the extrudate. All these indicate that STPP can improve the physical-chemical properties of extrudate.


Assuntos
Proteínas de Plantas , Polifosfatos , Proteínas de Soja , Proteínas de Soja/química , Proteínas de Plantas/química , Polifosfatos/química , Brassica rapa/química , Fenômenos Químicos , Amido/química , Água/química , Ligação de Hidrogênio
8.
Foods ; 13(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39123614

RESUMO

Membrane filtration technologies have shown great potential as a gentle and effective method for concentrating and fractionating proteins for food applications. However, the application of this technology to plant-derived protein streams is in its infancy. In this study, an aqueous rapeseed protein concentrate was obtained with wet milling, and its performance during ultrafiltration with two distinct molecular weight cut-offs (10 and 100 kDa) was tested. All rapeseed proteins were retained during filtration. The addition of pectinase during extraction prior to filtration caused important structural modifications to the extract, resulting in increased permeate fluxes, increased carbohydrate permeation and a reduction in irreversible fouling. Lager pore sizes led to more pronounced fouling. FTIR analysis of the spent membranes showed that proteins and lipids are causing irreversible fouling.

9.
Food Chem ; 459: 140280, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38991445

RESUMO

This study aims to investigate the influence of alkaline treatment duration (0-5 h) on the physicochemical properties and emulsifying performance of rapeseed protein during pH-shift process. Results showed that a 4-h alkaline treatment significantly reduced the particle size of rapeseed protein and led to a notable decrease in disulfide bond content, as well as alterations in subunit composition. Moreover, solubility of rapeseed protein increased from 18.10 ± 0.13% to 40.44 ± 1.74% post-treatment, accompanied by a âˆ¼ 40% enhancement in emulsifying properties. Morphological analysis revealed superior plasticity and sharper contours in 4-h alkali-treated rapeseed protein emulsions compared to untreated counterparts. Rheological analysis indicated higher viscosity and elasticity in the alkali-treated group. Overall, 4-h alkaline treatment markedly enhanced the multifaceted functional attributes of rapeseed protein during pH-shift process, rendering it a promising emulsifier in the food industry.


Assuntos
Brassica rapa , Emulsificantes , Emulsões , Tamanho da Partícula , Proteínas de Plantas , Reologia , Solubilidade , Concentração de Íons de Hidrogênio , Proteínas de Plantas/química , Emulsões/química , Emulsificantes/química , Brassica rapa/química , Viscosidade , Manipulação de Alimentos , Álcalis/química
10.
Int J Biol Macromol ; 275(Pt 1): 133441, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955302

RESUMO

To improve the techno-functional properties of rapeseed protein (RP), this work tried to regulate the molecular structure of RP via inducing the co-assembly of RP with zein and whey protein (WP). The results showed that WP and zein mainly regulate the folding process of RP through hydrophobic and disulfide bonds, thereby altering the structural conformation and forming stable complex RP (CRP). WP addition not only increased the number of surface charges and hydrophilicity of proteins, but also decreased their sizes, improved the water solubility, as well as the availability of active groups. These changes significantly increased the foaming capacity (from 60 % to 147 %) and in vitro gastric digestion rate (from 10 % to 60 %) of CRP. Besides, WP also contributed to the formation of gels and the regulation of their textural profiles. Comparatively, zein improved the hydrophobicity of CRP and balanced degree of intermolecular forces, which effectively increased the emulsifying activity index of CRP from 22 m2/g to 90 m2/g. Zein decreased the hardness, springiness and water-holding capacity of gel, but increased its gumminess and chewiness. Overall, both WP and zein effectively changed the structural conformation of RP, and improved its techno-functional properties, which provides an effective strategy to modify protein.


Assuntos
Brassica rapa , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Plantas , Solubilidade , Proteínas do Soro do Leite , Zeína , Proteínas de Plantas/química , Zeína/química , Brassica rapa/química , Proteínas do Soro do Leite/química , Água/química
11.
Food Res Int ; 180: 114070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395559

RESUMO

This study aimed to modify the sensory properties of rapeseed protein concentrate using a combination of fermentation and high-moisture extrusion processing for producing meat analogues. The fermentation was carried out with Lactiplantibacillus plantarum and Weissella confusa strains, known for their flavour and structure-enhancing properties. Contrary to expectations, the sensory evaluation revealed that the fermentation induced bitterness and disrupted the fibrous structure formation ability due to the generation of short peptides. On the other hand, fermentation removed the intensive off-odour and flavour notes present in the native raw material. Several control treatments were produced to understand the reasons behind the hindered fibrous structure formation and induced bitterness. The results obtained from peptidomics, free amino ends, and solubility analyses strongly indicated that the proteins were hydrolysed by endoproteases activated during the fermentation process. Furthermore, it was suspected that the proteins and/or peptides formed complexes with other components, such as hydrolysis products of glucosinolates and polysaccharides.


Assuntos
Brassica napus , Brassica rapa , Fermentação , Substitutos da Carne , Polissacarídeos , Concentração de Íons de Hidrogênio
12.
Biosci Rep ; 44(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38391133

RESUMO

Rapeseed cake serves as a by-product in the oil extraction industry, characterized by its elevated protein content. However, the presence of antinutritional factors limits the utilization of rapeseed cake as a viable protein source. In this study, different doses of γ-irradiation were used to irradiate rapeseed cake and rapeseed protein isolate was extracted through a modified alkaline solution and acid precipitation method from rapeseed cake. The chemical composition and in vivo acute toxicity of rapeseed protein isolate were determined. The protein recovery rate of rapeseed protein isolate was 39.08 ± 3.01% after irradiation, while the content of antinutritional factors was significantly reduced. Moreover, γ-irradiation did not have any experimentally related effects on clinical observations or clinicopathology in mice. Overall, the reduced antinutrients and increased functional properties suggest that the irradiation of rapeseed cake (<9 kGy) could be utilized as a pre-treatment in the development of rapeseed cake-based value-added protein products.


Assuntos
Brassica napus , Brassica rapa , Animais , Camundongos , Brassica napus/química , Brassica rapa/química
13.
J Colloid Interface Sci ; 662: 192-207, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341942

RESUMO

HYPOTHESIS: Two major protein families are present in rapeseed, namely cruciferins and napins. The structural differences between the two protein families indicate that they might behave differently when their mixture stabilises oil-water interfaces. Therefore, this work focuses on elucidating the role of both proteins in interface and emulsion stabilisation. EXPERIMENTS: Protein molecular properties were evaluated, using SEC, DSC, CD, and hydrophobicity analysis. The oil-water interface mechanical properties were studied using LAOS and LAOD. General stress decomposition (GSD) was used as a novel method to characterise the nonlinear response. Additionally, to evaluate the emulsifying properties of the rapeseed proteins, emulsions were prepared using pure napins or cruciferin and also their mixtures at 1:3, 1:1 and 3:1 (w:w) ratios. FINDINGS: Cruciferins formed stiff viscoelastic solid-like interfacial layers (Gs' = 0.046 mN/m; Ed' = 30.1 mN/m), while napin formed weaker and more stretchable layers at the oil-water interface (Gs' = 0.010 mN/m; Ed' = 26.4 mN/m). As a result, cruciferin-formed oil droplets with much higher stability against coalescence (coalescence index, CI up to 10%) than napin-stabilised ones (CI up to 146%) during two months of storage. Both proteins have a different role in emulsions produced with napin-cruciferin mixtures, where cruciferin provides high coalescence stability, while napin induces flocculation. Our work showed the role of each rapeseed protein in liquid-liquid multiphase systems.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/química , Emulsões/química , Reologia , Água/química
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122828, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37192577

RESUMO

Compared with the complexity of chemical methods, near-infrared spectroscopy (NIRS) is widely used in the detection of protein content because of its advantages of being fast and non-destructive. Aiming to tackle the problem that the raw near-infrared spectroscopy contains many redundant wavelengths, which affects the accuracy of quantitative prediction and requires expertise to process, we propose an end-to-end network: Band Reweighted Network (BR-Net) that automates wavelength reweighted and quantitative prediction of protein content in rapeseed. Unlike extracting part of wavelengths by the traditional wavelength selection methods, BR-Net retains all spectral wavelengths and assigns different weights to the wavelengths to express the correlation with the corresponding concentration, which enables wavelength selection without ignoring the information contained in the less relevant wavelengths. We compare BR-Net with traditional selection methods such as SPA, LARS, CARS, and UVE to verify its efficiency and robustness, finding that the R2 of the training set and test set are 0.9797 and 0.9215, the RMSEC and RMSEP are 0.4053 and 0.8501, respectively, and the RPD is 3.5686, which prove BR-Net outperforms all the traditional methods. The network described here is universally applicable to a variety of NIR quantitative analyses.


Assuntos
Brassica napus , Análise dos Mínimos Quadrados , Algoritmos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Proteínas
15.
Food Chem ; 422: 136085, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141758

RESUMO

Plant-derived bioactive peptides have drawn much attention because of their physiological functions. This study aimed to evaluate bioactive peptides in rapeseed protein and identify novel angiotensin Ⅰ-converting enzyme (ACE) inhibitory peptides using bioinformatics methods. A total of 24 kinds of bioactive peptides were encrypted in the 12 selected rapeseed proteins by analysis in BIOPEP-UWM, with higher occurrence frequency of dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitory peptides (0.5727-0.7487) and ACE inhibitory peptides (0.3500-0.5364). Novel ACE inhibitory peptides FQW, FRW and CPF were identified by in silico proteolysis, and they had strong inhibitory effects on ACE in vitro, showing IC50 values of 44.84 ± 1.48 µM, 46.30 ± 1.39 µM and 131.35 ± 3.87 µM, respectively. Molecular docking results displayed that these three peptides were able to interact with ACE active site via hydrogen bonds and hydrophobic interactions, and coordinate with Zn2+. It suggested that rapeseed protein could be a good source for the production of ACE inhibitory peptides.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Peptidil Dipeptidase A/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Enzima Conversora de Angiotensina/química , Peptídeos/química , Brassica rapa/metabolismo
16.
Foods ; 12(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372498

RESUMO

The objective of this study was to extract the rapeseed protein from by-products and further examine the effect of lab-made rapeseed protein on the droplet size, microstructure, colour, encapsulation and apparent viscosity of emulsions. Rapeseed protein-stabilised emulsions with an increasing gradient of milk fat or rapeseed oil (10, 20, 30, 40 and 50%, v/v) were fabricated using a high shear rate homogenisation. All emulsions showed 100% oil encapsulation for 30 days of storage, irrespective of lipid type and the concentration used. Rapeseed oil emulsions were stable against coalescence, whereas the milk fat emulsion showed a partial micro-coalescence. The apparent viscosity of emulsions raised with increased lipid concentrations. Each of the emulsions showed a shear thinning behaviour, a typical behaviour of non-Newtonian fluids. The average droplet size was raised in milk fat and rapeseed oil emulsions when the concentration of lipids increased. A simple approach to manufacturing stable emulsions offers a feasible hint to convert protein-rich by-products into a valuable carrier of saturated or unsaturated lipids for the design of foods with a targeted lipid profile.

17.
Ultrason Sonochem ; 94: 106336, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36809744

RESUMO

Electrospinning nanofibers (NFs) made from natural proteins have drawn increasing attention recently. Rapeseed meal is a by-product that rich in protein but not fully utilized due to poor properties. Therefore, modification of rapeseed protein isolates (RPI) is necessary to expand applications. In this study, pH shift alone or ultrasonic-assisted pH shift treatment was adopted, the solubility of RPI, along with the conductivity and viscosity of the electrospinning solution were detected. Moreover, the microstructure and functional characteristics of the electrospinning NFs, as well as the antibacterial activity of clove essential oil loaded-NFs were investigated. The tested parameters were remarkably improved after different treatments compared with the control, and synergistic effects were observed, especially under alkaline conditions. Hence, pH12.5 + US showed the maximum value of solubility, conductivity, and viscosity, which was more than 7-fold, 3-fold, and almost 1-fold higher than the control respectively. Additionally, SEM and AFM images showed a finer and smoother surface of NFs after treatments, and the finest diameter of 216.7 nm was obtained after pH12.5 + US treatment in comparison with 450.0 nm in control. FTIR spectroscopy of NFs demonstrated spatial structure changes of RPI, and improved thermal stability and mechanical strength of NFs were achieved after different treatments. Furthermore, an inhibition zone with a diameter of 22.8 mm was observed from the composite NFs. This study indicated the effectiveness of ultrasonic-assisted pH shift treatment on the physicochemical properties improvement and functional enhancement of NFs made from RPI, as well as the potential antibacterial application of the composite NFs in the future.


Assuntos
Brassica napus , Brassica rapa , Nanofibras , Ultrassom , Nanofibras/química , Óleo de Cravo , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio
18.
Food Chem ; 422: 136187, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137240

RESUMO

An optimized proteolysis process was applied to rapeseed meal proteins (RP) and the hydrolysate was separated by membrane filtration allowing the production of highly metal-chelating peptides in the permeate. In order to identify the chemical structure of the most active obtained metal-chelating peptides, immobilized metal affinity chromatography (IMAC) was applied. The RP-IMAC peptide fraction was mainly composed of small peptides from 2 to 20 amino acids. Using the Ferrozine assay, RP-IMAC peptides showed a significant chelating efficiency higher than sodium citrate and close to that of EDTA. The peptide sequences were identified by UHPLC-MS and several possible iron binding sites were found. ß-carotene oxidation assay and lipid oxidation in bulk oils or emulsion were carried out to evaluate the potential of such peptides as efficient antioxidants to protect lipids from oxidation. While chelating peptides showed a limited efficiency in bulk oil, they performed more efficiently in emulsion.


Assuntos
Brassica napus , Brassica rapa , Hidrolisados de Proteína/química , Emulsões/química , Peptídeos/química , Quelantes/farmacologia , Antioxidantes/química , Óleos
19.
Foods ; 11(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36076804

RESUMO

Preventing oxidation and microbial spoilage are both major concerns in food industries. In this context, this study aimed to valorize the total rapeseed meal proteins with controlled enzymatic proteolysis to generate potent mineral-chelating peptides from cruciferins while keeping intact the antimicrobial napins. Implementation of proteolysis of total rapeseed protein isolate with the Prolyve® enzyme highlighted an interesting selective hydrolysis of the cruciferins. Hence, the mechanism of this particular hydrolysis was investigated through a Design of Experiments method to obtain a model for the prediction of kinetics (cruciferin degradation and napin purity) according to the operating conditions applied. Then, multicriteria optimization was implemented to maximize the napin purity and yield while minimizing both enzymatic cost and reaction time. Antioxidant assays of the peptide fraction obtained under the optimal conditions proved the high metal-chelating activity preservation (EC50 = 247 ± 27 µg) for more than three times faster production. This fraction might counteract lipid oxidation or serve as preventing agents for micronutrient deficiencies, and the resulting purified napins may have applications in food safety against microbial contamination. These results can greatly help the development of rapeseed meal applications in food industries.

20.
Biomaterials ; 281: 121373, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35063742

RESUMO

Polyphenols are potent antioxidants, but their poor oral bioavailability owing to intrinsic insolubility and low permeability significantly hampers their effectiveness for clinical translation. Herein, upper intestinal absorptive polymer-lipid hybrid nanoparticles (PLN) was designed by exploiting the lipidic core for drug encapsulation and the decanoic acid conjugated rapeseed protein as the biopolymeric shell for gastrointestinal stability, retention and permeability. Polyphenol ellagic acid loaded core-shell PLN (EA-PLN(C/S)) was characterized of favorable physicochemical properties in simulated gastric- and intestinal fluids, including high drug loading capacity, slow drug release and prolonged stability. In Caco-2 monolayers, the cellular transport of EA-PLN(C/S) involved dual-paracellular and endocytosis pathways. Compared to drug in suspension or lipidic core nanoparticles, orally administered EA-PLN(C/S) was retained longer and more permeable via the duodenum and jejunum of upper intestine, resulting in up to 5.3-fold and 1.4-fold enhancement in the extent of drug absorption and colonic accumulation, respectively. In an acute colitis murine model, EA-PLN(C/S) at 6 mg/kg low dose markedly reduced colonic lipid peroxidation in contrast to no antioxidant effect in other EA formulations. This work suggests that integration of engineered plant protein biopolymer with lipid nanoparticles created unique oral drug delivery systems enabling intestinal site-specific absorption for effective antioxidant therapeutics.


Assuntos
Nanopartículas , Polifenóis , Administração Oral , Animais , Células CACO-2 , Ácidos Decanoicos , Portadores de Fármacos , Humanos , Absorção Intestinal , Lipossomos , Camundongos , Proteínas de Plantas , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA