Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
EMBO J ; 42(24): e114835, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953666

RESUMO

Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.


Assuntos
Nematoides , Resiliência Psicológica , Animais , Caenorhabditis elegans/metabolismo , Filogenia , Transferência Genética Horizontal , Ramnose/metabolismo , Bactérias/genética
2.
Appl Microbiol Biotechnol ; 108(1): 279, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564031

RESUMO

A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RIM) was extracted and purified. The catalytic function of L-RIM was characterized for D-allulose to D-allose bioconversion. D-Allose is a sweet, rare sugar molecule with anti-tumour, anti-hypertensive, cryoprotective, and antioxidative properties. The characterization experiments showed L-RIM to be a Co++- or Mn++-dependent metalloenzyme. L-RIM was remarkably active (~ 80%) in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges. Optimal L-RIM activity with D-allulose as the substrate occurred at pH 7.0 and 75 °C. The enzyme was found to be excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively. L-RIM catalysis conducted at slightly acidic pH of 6.0 and 70 °C achieved biosynthesis of about 30 g L-1 from 100 g L-1 D-allulose in 3 h. KEY POINTS: • The present study explored an extreme temperature metagenome to identify a novel gene that encodes a thermostable l-rhamnose isomerase (L-RIM) • L-RIM exhibits substantial (80% or more) activity in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges • L-RIM is excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively.


Assuntos
Aldose-Cetose Isomerases , Frutose , Glucose , Anti-Hipertensivos , Escherichia coli/genética
3.
Appl Microbiol Biotechnol ; 108(1): 249, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430263

RESUMO

A recombinant L-rhamnose isomerase (L-RhI) from probiotic Lactobacillus rhamnosus Probio-M9 (L. rhamnosus Probio-M9) was expressed. L. rhamnosus Probio-M9 was isolated from human colostrum and identified as a probiotic lactic acid bacterium, which can grow using L-rhamnose. L-RhI is one of the enzymes involved in L-rhamnose metabolism and catalyzes the reversible isomerization between L-rhamnose and L-rhamnulose. Some L-RhIs were reported to catalyze isomerization not only between L-rhamnose and L-rhamnulose but also between D-allulose and D-allose, which are known as rare sugars. Those L-RhIs are attractive enzymes for rare sugar production and have the potential to be further improved by enzyme engineering; however, the known crystal structures of L-RhIs recognizing rare sugars are limited. In addition, the optimum pH levels of most reported L-RhIs are basic rather than neutral, and such a basic condition causes non-enzymatic aldose-ketose isomerization, resulting in unexpected by-products. Herein, we report the crystal structures of L. rhamnosus Probio-M9 L-RhI (LrL-RhI) in complexes with L-rhamnose, D-allulose, and D-allose, which show enzyme activity toward L-rhamnose, D-allulose, and D-allose in acidic conditions, though the activity toward D-allose was low. In the complex with L-rhamnose, L-rhamnopyranose was found in the catalytic site, showing favorable recognition for catalysis. In the complex with D-allulose, D-allulofuranose and ring-opened D-allulose were observed in the catalytic site. However, bound D-allose in the pyranose form was found in the catalytic site of the complex with D-allose, which was unfavorable for recognition, like an inhibition mode. The structure of the complex may explain the low activity toward D-allose. KEY POINTS: • Crystal structures of LrL-RhI in complexes with substrates were determined. • LrL-RhI exhibits enzyme activity toward L-rhamnose, D-allulose, and D-allose. • The LrL-RhI is active in acidic conditions.


Assuntos
Aldose-Cetose Isomerases , Lacticaseibacillus rhamnosus , Humanos , Raios X , Ramnose , Monossacarídeos
4.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611771

RESUMO

To explore the composition of anthocyanins and expand their biological activities, anthocyanins were systematically isolated and purified from tubers of Solanum tuberosum L., and their tyrosinase inhibitory activity was investigated. In this study, two new anthocyanin degradation compounds, norpetanin (9) and 4-O-(p-coumaryl) rhamnose (10), along with 17 known anthocyanins and their derivatives, were isolated and purified from an acid-ethanolic extract of fresh purple potato tubers. Their structures were elucidated via 1D and 2D NMR and HR-ESI-MS and compared with those reported in the literature. The extracts were evaluated for anthocyanins and their derivatives using a tyrosinase inhibitor screening kit and molecular docking technology, and the results showed that petanin, norpetanin, 4-O-(p-coumaryl) rhamnose, and lyciruthephenylpropanoid D/E possessed tyrosinase inhibitory activity, with 50% inhibiting concentration (IC50) values of 122.37 ± 8.03, 115.53 ± 7.51, 335.03 ± 12.99, and 156.27 ± 11.22 µM (Mean ± SEM, n = 3), respectively. Furthermore, petanin was validated against melanogenesis in zebrafish; it was found that it could significantly inhibit melanin pigmentation (p < 0.001), and the inhibition rate of melanin was 17% compared with the normal group. This finding may provide potential treatments for diseases with abnormal melanin production, and high-quality raw materials for whitening cosmetics.


Assuntos
Antocianinas , Solanum tuberosum , Animais , Antocianinas/farmacologia , Monofenol Mono-Oxigenase , Melaninas , Simulação de Acoplamento Molecular , Ramnose , Peixe-Zebra
5.
J Physiol ; 601(20): 4573-4589, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37695123

RESUMO

The aim of this set of randomised cross-over studies was to determine the impact of progressive heat exposure and carbohydrate or protein feeding during exertional stress on small intestine permeability using a dual sugar test. In our previous work, and typically in the field, recovery of lactulose and l-rhamnose is measured cumulatively in urine. This follow-up study exploits our novel high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) protocol to accurately quantify the sugars in plasma. Endurance-trained participants completed experimental trial A (ET-A; n = 8), consisting of 2 h running at 60% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in temperate, warm and hot ambient conditions, and/or experimental trial B (ET-B; n = 9), consisting of 2 h running at 60% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in the heat while consuming water, carbohydrate or protein. Blood samples were collected and plasma lactulose (L) and l-rhamnose (R) appearance, after dual sugar solution ingestion at 90 min of exercise, was quantified by HPAEC-PAD to measure plasma L/R and reveal new information about intestinal permeability immediately post-exercise and during recovery. In ET-A, plasma L/R increased immediately post-exercise in hot compared with temperate and warm conditions, while, in ET-B, carbohydrate alleviated this, and this information was otherwise missed when measuring urine L/R. Consuming carbohydrate or protein before and during exercise attenuated small intestine permeability throughout recovery from exertional heat stress. We recommend using the dual sugar test with quantification of plasma sugars by HPAEC-PAD at intervals to maximise intestinal permeability data collection in exercise gastroenterology research, as this gives additional information compared to urinary measurements. KEY POINTS: Intestinal permeability is typically assessed using a dual sugar test, by administering a drink containing non-metabolisable sugars (e.g. lactulose (L) and l-rhamnose (R)) that can enter the circulation by paracellular translocation when the epithelium is compromised, and are subsequently measured in urine. We demonstrate that our recently developed ion chromatography protocol can be used to accurately quantify the L/R ratio in plasma, and that measuring L/R in plasma collected at intervals during the post-exercise recovery period reveals novel acute response information compared to measuring 5-h cumulative urine L/R. We confirm that exercising in hot ambient conditions increases intestinal epithelial permeability immediately after exercise, while consuming carbohydrate or protein immediately before and during exercise attenuates this. We recommend using our dual sugar absorption test protocol to maximise intestinal epithelial permeability data collection in exercise gastroenterology research and beyond.


Assuntos
Transtornos de Estresse por Calor , Lactulose , Humanos , Lactulose/urina , Ramnose/urina , Seguimentos , Carboidratos , Permeabilidade , Absorção Intestinal/fisiologia
6.
J Biol Chem ; 298(10): 102488, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113580

RESUMO

Rhamnose-rich cell wall polysaccharides (Rha-CWPSs) have emerged as crucial cell wall components of numerous Gram-positive, ovoid-shaped bacteria-including streptococci, enterococci, and lactococci-of which many are of clinical or biotechnological importance. Rha-CWPS are composed of a conserved polyrhamnose backbone with side-chain substituents of variable size and structure. Because these substituents contain phosphate groups, Rha-CWPS can also be classified as polyanionic glycopolymers, similar to wall teichoic acids, of which they appear to be functional homologs. Recent advances have highlighted the critical role of these side-chain substituents in bacterial cell growth and division, as well as in specific interactions between bacteria and infecting bacteriophages or eukaryotic hosts. Here, we review the current state of knowledge on the structure and biosynthesis of Rha-CWPS in several ovoid-shaped bacterial species. We emphasize the role played by multicomponent transmembrane glycosylation systems in the addition of side-chain substituents of various sizes as extracytoplasmic modifications of the polyrhamnose backbone. We provide an overview of the contribution of Rha-CWPS to cell wall architecture and biogenesis and discuss current hypotheses regarding their importance in the cell division process. Finally, we sum up the critical roles that Rha-CWPS can play as bacteriophage receptors or in escaping host defenses, roles that are mediated mainly through their side-chain substituents. From an applied perspective, increased knowledge of Rha-CWPS can lead to advancements in strategies for preventing phage infection of lactococci and streptococci in food fermentation and for combating pathogenic streptococci and enterococci.


Assuntos
Bacteriófagos , Parede Celular , Bactérias Gram-Positivas , Parede Celular/química , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/citologia , Polissacarídeos/química , Ramnose , Ácidos Teicoicos/química , Divisão Celular/fisiologia
7.
Fish Shellfish Immunol ; 134: 108553, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693487

RESUMO

l-rhamnose-binding lectin (RBL), which is a class of animal lectins independent of Ca2+, can specifically bind l-rhamnose or d-galactose. Although several lectins in zebrafish have been reported, their functional mechanisms have not been fully uncovered. In this study, we discovered a novel l-rhamnose binding lectin (DrRBL) and studied its innate immune function. The DrRBL protein contains only one carbohydrate-recognition domain (CRD), which includes two strictly conserved motifs, "YGR" and "DPC". DrRBL was detected in all tested tissues and was present at high levels in the spleen, hepatopancreas and skin. After Aeromonas hydrophila challenge, the DrRBL mRNA level was significantly upregulated. Additionally, DrRBL was secreted into the extracellular matrix. Recombinant DrRBL (rDrRBL) could significantly inhibit the growth of gram-positive/negative bacteria, bind to several bacteria and cause obvious agglutination. The rDrRBL protein could combine with polysaccharides, such as PGN and LPS, rather than LTA. A more detailed study showed that rDrRBL could combine with monosaccharides, such as mannose, rhamnose and glucose, which are important components of PGN and LPS. However, rDrRBL could not bind to ribitol, which is an important component of LTA. The DrRBL deletion mutants, DrRBLΔ144-150 and DrRBLΔ198-200, were also constructed. DrRBLΔ144-150 ("ANYGRTD" deficient) showed weak bacterial inhibiting ability. However, DrRBLΔ198-200 ("DPC" deficient) showed weak agglutination ability. These results suggest that the "DPC" domain is important for agglutination. The conserved domain "ANYGRTD" is essential for inhibiting bacterial growth.


Assuntos
Infecções Bacterianas , Lectinas , Animais , Lectinas/genética , Peixe-Zebra , Ramnose , Lipopolissacarídeos , Sequência de Aminoácidos , Alinhamento de Sequência , Bactérias Gram-Negativas , Bactérias/genética , Imunidade Inata/genética , Lectinas Tipo C/genética , Filogenia
8.
Biosci Biotechnol Biochem ; 87(8): 850-856, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37156528

RESUMO

d-Aldotetroses are rare sugars that are obtained via chemical synthesis in low yield. In this study, we demonstrated that d-aldotetroses could be produced using 3 isomerases. First, l-erythrulose was epimerized using d-tagatose 3-epimerase from Pseudomonas cichorii ST-24. The specific optical rotation of the reaction solution gradually decreased to zero, indicating that approximately 50% of the l-erythrulose was converted to d-erythrulose. d, l-Erythrulose mixture was isomerized with d-arabinose isomerase from Klebsiella pneumoniae 40bXX to produce d-threose, resulting in a conversion rate of 9.35%. d-Erythrose production using l-rhamnose isomerase from Pseudomonas stutzeri LL172 resulted in a conversion rate of 12.9%. Because of the low purity of the purchased d-erythrose, the product was reduced by the Raney nickel catalyst compared with authentic erythritol. We confirmed the products using HPLC and 13C-NMR spectra. This is the first report of d-aldotetrose production using an enzymatic reaction.


Assuntos
Aldose-Cetose Isomerases , Tetroses , Hexoses , Isomerases , Racemases e Epimerases
9.
Mar Drugs ; 21(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976220

RESUMO

Botryllus schlosseri in a cosmopolitan ascidian, considered a reliable model organism for studies on the evolution of the immune system. B. schlosseri rhamnose-binding lectin (BsRBL) is synthesised by circulating phagocytes and behaves as an opsonin by interacting with foreign cells or particles and acting as a molecular bridge between them and the phagocyte surface. Although described in previous works, many aspects and roles of this lectin in Botryllus biology remain unknown. Here, we studied the subcellular distribution of BsRBL during immune responses using light and electron microscopy. In addition, following the hints from extant data, suggesting a possible role of BsRBL in the process of cyclical generation change or takeover, we investigated the effects of interfering with this protein, by injecting a specific antibody in the colonial circulation, starting one day before the generation change. Results confirm the requirement of the lectin for a correct generation change and open new queries on the roles of this lectin in Botryllus biology.


Assuntos
Lectinas , Urocordados , Animais , Lectinas/farmacologia , Ramnose/farmacologia , Urocordados/metabolismo , Fagocitose , Fagócitos
10.
Mar Drugs ; 22(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38248652

RESUMO

In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as l-rhamnose, d-galactose, lactose, l-arabinose and raffinose. Using the glycan microarray approach, natural carbohydrate ligands were established for GYL-R as l-Rha and glycans containing the α-Gal residue in the terminal position. The GYL-R molecular mass determined by MALDI-TOF mass spectrometry was 30,415 Da. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 75 °C and between pH 4.0 and 12.0. The amino acid sequence of the five GYL-R segments was obtained with nano-ESI MS/MS and contained both YGR and DPC-peptide motifs which are conserved in most of the l-rhamnose-binding lectin carbohydrate recognition domains. Circular dichroism confirmed that GYL is a α/ß-protein with a predominance of the random coil. Furthermore, GYL-R was able to bind and suppress the growth of the Gram-negative bacteria E. coli by recognizing lipopolysaccharides. Together, these results suggest that GYL-R is a new member of the RBL family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity.


Assuntos
Bivalves , Lectinas , Animais , Lectinas/farmacologia , Ramnose , Escherichia coli , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia
11.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175182

RESUMO

The use of radiolabeled glucose for PET imaging resulted in the most commonly used tracer in the clinic, 2-deoxy-2-[18F]fluoroglucose (FDG). More recently, other radiolabeled sugars have been reported for various applications, including imaging tumors and infections. Therefore, in this study, we developed a series of fluorine-18-labeled L-rhamnose derivatives as potential PET tracers of various fungal and bacterial strains. Acetyl-protected triflate precursors of rhamnose were prepared and radiolabeled with fluorine-18 followed by hydrolysis to produce L-deoxy [18F]fluororhamnose. The overall radiochemical yield was 7-27% in a 90 min synthesis time with a radiochemical purity of 95%. In vivo biodistribution of the ligands using PET imaging showed that 2-deoxy-2-[18F]fluoro-L-rhamnose is stable for at least up to 60 min in mice and eliminated via renal clearance. The tracer also exhibited minimal tissue or skeletal uptake in healthy mice resulting in a low background signal.


Assuntos
Radioisótopos de Flúor , Ramnose , Camundongos , Animais , Distribuição Tecidual , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
12.
Molecules ; 28(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838716

RESUMO

Aging is a complex physiological process that can be accelerated by chemical (high blood glucose levels) or physical (solar exposure) factors. It is accompanied by the accumulation of altered molecules in the human body. The accumulation of oxidatively modified and glycated proteins is associated with inflammation and the progression of chronic diseases (aging). The use of antiglycating agents is one of the recent approaches in the preventive strategy of aging and natural compounds seem to be promising candidates. Our study focused on the anti-aging effect of the flavonoid hesperetin, its glycoside hesperidin and its carbohydrate moieties rutinose and rhamnose on young and physiologically aged normal human dermal fibroblasts (NHDFs). The anti-aging activity of the test compounds was evaluated by measuring matrix metalloproteinases (MMPs) and inflammatory interleukins by ELISA. The modulation of elastase, hyaluronidase, and collagenase activity by the tested substances was evaluated spectrophotometrically by tube tests. Rutinose and rhamnose inhibited the activity of pure elastase, hyaluronidase, and collagenase. Hesperidin and hesperetin inhibited elastase and hyaluronidase activity. In skin aging models, MMP-1 and MMP-2 levels were reduced after application of all tested substances. Collagen I production was increased after the application of rhamnose and rutinose.


Assuntos
Hesperidina , Ramnose , Envelhecimento da Pele , Humanos , Colagenases/metabolismo , Hesperidina/farmacologia , Hialuronoglucosaminidase , Elastase Pancreática , Ramnose/farmacologia , Envelhecimento da Pele/efeitos dos fármacos
13.
Environ Monit Assess ; 195(3): 414, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36808010

RESUMO

Different fractions of organic matter in surface sediments from three transects along the eastern margin of the Arabian Sea (AS) were quantified to determine the sources of organic matter, and also to study its impact on microbial community structure. From the extensive analyses of different biochemical parameters, it was evident that the distribution of total carbohydrate (TCHO), total neutral carbohydrate (TNCHO), proteins, lipids, and uronic acids (URA) concentrations and yield (% TCHO-C/TOC) are affected by organic matter (OM) sources and microbial degradation of sedimentary OM. Monosaccharide compositions from surface sediment was quantified to assess the sources and diagenetic fate of carbohydrates, suggesting that the deoxysugars (rhamnose plus fucose) had significant inverse relationship (r = 0.928, n = 13, p < 0.001) with hexoses (mannose plus galactose plus glucose) and positive relationship (r = 0.828, n = 13, p < 0.001) with pentoses (ribose plus arabinose plus xylose). This shows that marine microorganisms are the source of carbohydrates and there is no influence of terrestrial OM along the eastern margin of AS. During the degradation of algal material, the hexoses seem to be preferentially used by heterotrophic organisms in this region. Arabinose plus galactose (glucose free wt %) values between 28 and 64 wt% indicate that OM was derived from phytoplankton, zooplankton, and non-woody tissues. In the principal component analysis, rhamnose, fucose, and ribose form one cluster of positive loadings while glucose, galactose, and mannose form another cluster of negative loadings which suggest that during OM sinking process, hexoses were removed resulting in increase in bacterial biomass and microbial sugars. Results indicate sediment OM to be derived from marine microbial source along the eastern margin of AS.


Assuntos
Galactose , Manose , Arabinose , Ribose , Fucose , Ramnose , Monitoramento Ambiental , Hexoses , Glucose , Ácidos Urônicos , Sedimentos Geológicos/análise
14.
J Biol Chem ; 297(3): 101001, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303708

RESUMO

Gum arabic (GA) is widely used as an emulsion stabilizer and coating in several industrial applications, such as foods and pharmaceuticals. GA contains a complex carbohydrate moiety, and the nonreducing ends of the side chains are often capped with l-rhamnose; thus, enzymes that can remove these caps are promising tools for the structural analysis of the carbohydrates comprising GA. In this study, GA-specific l-rhamnose-α-1,4-d-glucuronate lyase from the fungus Fusarium oxysporum 12S (FoRham1) was cloned and characterized. FoRham1 showed the highest amino acid sequence similarity with enzymes belonging to the glycoside hydrolase family 145; however, the catalytic residue on the posterior pocket of the ß-propeller fold protein was not conserved. The catalytic residues of FoRham1 were instead conserved with ulvan lyases belonging to polysaccharide lyase family 24. Kinetic analysis showed that FoRham1 has the highest catalytic efficiency for the substrate α-l-rhamnose-(1→4)-d-glucuronic acid. The crystal structures of ligand-free and α-l-rhamnose-(1→4)-d-glucuronic acid -bound FoRham1 were determined, and the active site was identified on the anterior side of the ß-propeller. The three-dimensional structure of the active site and mutagenesis analysis revealed the detailed catalytic mechanism of FoRham1. Our findings offer a new enzymatic tool for the further analysis of the GA carbohydrate structure and for elucidating its physiological functions in plants. Based on these results, we renamed glycoside hydrolase family 145 as a new polysaccharide lyase family 42, in which FoRham1 is included.


Assuntos
Ácido Glucurônico/metabolismo , Goma Arábica/metabolismo , Polissacarídeo-Liases/metabolismo , Ramnose/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Fusarium/enzimologia , Filogenia , Polissacarídeo-Liases/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Appl Environ Microbiol ; 88(1): e0172321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669424

RESUMO

Four bacteriophage-insensitive mutants (BIMs) of the dairy starter bacterium Streptococcus thermophilus UCCSt50 were isolated following challenge with Brussowvirus SW13. The BIMs displayed an altered sedimentation phenotype. Whole-genome sequencing and comparative genomic analysis of the BIMs uncovered mutations within a family 2 glycosyltransferase-encoding gene (orf06955UCCSt50) located within the variable region of the cell wall-associated rhamnose-glucose polymer (Rgp) biosynthesis locus (designated the rgp gene cluster here). Complementation of a representative BIM, S. thermophilus B1, with native orf06955UCCSt50 restored phage sensitivity comparable to that of the parent strain. Detailed bioinformatic analysis of the gene product of orf06955UCCSt50 identified it as a functional homolog of the Lactococcus lactis polysaccharide pellicle (PSP) initiator WpsA. Biochemical analysis of cell wall fractions of strains UCCSt50 and B1 determined that mutations within orf06955UCCSt50 result in the loss of the side chain decoration from the Rgp backbone structure. Furthermore, it was demonstrated that the intact Rgp structure incorporating the side chain structure is essential for phage binding through fluorescence labeling studies. Overall, this study confirms that the rgp gene cluster of S. thermophilus encodes the biosynthetic machinery for a cell surface-associated polysaccharide that is essential for binding and subsequent infection by Brussowviruses, thus enhancing our understanding of S. thermophilus phage-host dynamics. IMPORTANCE Streptococcus thermophilus is an important starter culture bacterium in global dairy fermentation processes, where it is used for the production of various cheeses and yogurt. Bacteriophage predation of the species can result in substandard product quality and, in rare cases, complete fermentation collapse. To mitigate these risks, it is necessary to understand the phage-host interaction process, which commences with the recognition of, and adsorption to, specific host-encoded cell surface receptors by bacteriophage(s). As new groups of S. thermophilus phages are being discovered, the importance of underpinning the genomic elements that specify the surface receptor(s) is apparent. Our research identifies a single gene that is critical for the biosynthesis of a saccharidic moiety required for phage adsorption to its S. thermophilus host. The acquired knowledge provides novel insights into phage-host interactions for this economically important starter species.


Assuntos
Bacteriófagos , Siphoviridae , Fagos de Streptococcus , Bacteriófagos/genética , Polissacarídeos , Fagos de Streptococcus/genética , Streptococcus thermophilus/genética
16.
Glycoconj J ; 39(3): 393-411, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166992

RESUMO

The Gram-negative bacterium Pseudomonas aeruginosa simultaneously expresses two O-antigenic glycoforms. While the O-specific antigen (OSA) is variable in composition, the common polysaccharide antigen (CPA) is highly conserved and is composed of a homopolymer of D-rhamnose (D-Rha) in trisaccharide repeating units [D-Rhaα1-2-D-Rhaα1-3-D-Rhaɑ1-3]n. We have previously reported that α3-D-Rha-transferase WbpZ transfers a D-Rha residue from GDP-D-Rha to D-GlcNAcα-O-PO3-PO3-(CH2)11-O-phenyl. Genes encoding two more D-Rha-transferases are found in the O antigen gene cluster (wbpX and wbpY). In this study we showed that WbpX and WbpY recombinantly expressed in E. coli differ in their donor and acceptor specificities and have properties of GT-B folded enzymes of the GT4 glycosyltransferase family. NMR spectroscopic analysis of the WbpY reaction product showed that WbpY transferred one D-Rha residue in α1-3 linkage to synthetic D-Rhaα1-3-D-GlcNAcα-O-PO3-PO3-(CH2)11-O-phenyl acceptor. WbpX synthesized several products that contained D-Rha in both α1-2 and α1-3 linkages. Mass spectrometry indicated that the mixture of WbpX and WbpY efficiently catalyzed the synthesis of D-Rha oligomers in a non-processive mechanism. Since O antigens are virulence factors, these findings open the door to advancing technology for antibacterial drug discovery and vaccine development.


Assuntos
Antígenos O , Pseudomonas aeruginosa , Escherichia coli/genética , Glicosiltransferases/genética , Lipopolissacarídeos/química , Antígenos O/química , Pseudomonas aeruginosa/genética , Ramnose
17.
Pharmacol Res ; 182: 106355, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35842183

RESUMO

Obesity-prone (OP) individuals have a significant predisposition to obesity and diabetes. Previously, we have found that OP individuals, despite being normal in weight and BMI, have already exhibited diabetes-related DNA methylation signatures. However, the underlying mechanisms remain obscure. Here we determined the effects of gut microbiota on DNA methylation and investigated the underlying mechanism from microbial-derived short-chain fatty acids (SCFAs). Diabetes-related DNA methylation loci were screened and validated in a new OP cohort. Moreover, the OP group was revealed to have distinct gut microbiota compositions, and fecal microbiota transplantation (FMT) demonstrated the role of gut microbiota in inducing diabetes-related DNA methylations and glucolipid disorders. UPLC-ESI-MS/MS analysis indicated a significantly lower level of total fecal SCFAs in the OP group. The gut microbiota from OP subjects yielded markedly decreased total SCFAs, while notably enriched propionate. Additionally, propionate was also identified by variable importance in projection (VIP) score as the most symbolic SCFAs of the OP group. Further cellular experiments verified that propionate could induce hypermethylation at locus cg26345888 and subsequently inhibit the expression of the target gene DAB1, which was crucially associated with clinical vitamin D deficiency and thus may affect the development and progression of diabetes. In conclusion, our study revealed that gut microbiota-derived propionate induces specific DNA methylation, thus predisposing OP individuals to diabetes. The findings partially illuminate the mechanisms of diabetes susceptibility in OP populations, implying gut microbiota and SCFAs may serve as promising targets both for clinical treatment and medication development of diabetes.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Metilação de DNA , Ácidos Graxos Voláteis/metabolismo , Humanos , Obesidade/genética , Obesidade/metabolismo , Propionatos/farmacologia , Espectrometria de Massas em Tandem
18.
Biochem J ; 478(4): 685-701, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33599745

RESUMO

Rhamnose is an important 6-deoxy sugar present in many natural products, glycoproteins, and structural polysaccharides. Whilst predominantly found as the l-enantiomer, instances of d-rhamnose are also found in nature, particularly in the Pseudomonads bacteria. Interestingly, rhamnose is notably absent from humans and other animals, which poses unique opportunities for drug discovery targeted towards rhamnose utilizing enzymes from pathogenic bacteria. Whilst the biosynthesis of nucleotide-activated rhamnose (NDP-rhamnose) is well studied, the study of rhamnosyltransferases that synthesize rhamnose-containing glycoconjugates is the current focus amongst the scientific community. In this review, we describe where rhamnose has been found in nature, as well as what is known about TDP-ß-l-rhamnose, UDP-ß-l-rhamnose, and GDP-α-d-rhamnose biosynthesis. We then focus on examples of rhamnosyltransferases that have been characterized using both in vivo and in vitro approaches from plants and bacteria, highlighting enzymes where 3D structures have been obtained. The ongoing study of rhamnose and rhamnosyltransferases, in particular in pathogenic organisms, is important to inform future drug discovery projects and vaccine development.


Assuntos
Glicoconjugados/biossíntese , Hexosiltransferases/fisiologia , Ramnose/biossíntese , Açúcares de Uridina Difosfato/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Capsídeo/metabolismo , Células Eucarióticas/metabolismo , Flavonoides/metabolismo , Glicoconjugados/química , Glicolipídeos/biossíntese , Glicosilação , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Hexosiltransferases/química , Hexosiltransferases/genética , Modelos Moleculares , Antígenos O/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Células Procarióticas/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Virulência
19.
Biochem J ; 478(12): 2385-2397, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34096588

RESUMO

Endolysins are peptidoglycan (PG) hydrolases that function as part of the bacteriophage (phage) lytic system to release progeny phage at the end of a replication cycle. Notably, endolysins alone can produce lysis without phage infection, which offers an attractive alternative to traditional antibiotics. Endolysins from phage that infect Gram-positive bacterial hosts contain at least one enzymatically active domain (EAD) responsible for hydrolysis of PG bonds and a cell wall binding domain (CBD) that binds a cell wall epitope, such as a surface carbohydrate, providing some degree of specificity for the endolysin. Whilst the EADs typically cluster into conserved mechanistic classes with well-defined active sites, relatively little is known about the nature of the CBDs and only a few binding epitopes for CBDs have been elucidated. The major cell wall components of many streptococci are the polysaccharides that contain the polyrhamnose (pRha) backbone modified with species-specific and serotype-specific glycosyl side chains. In this report, using molecular genetics, microscopy, flow cytometry and lytic activity assays, we demonstrate the interaction of PlyCB, the CBD subunit of the streptococcal PlyC endolysin, with the pRha backbone of the cell wall polysaccharides, Group A Carbohydrate (GAC) and serotype c-specific carbohydrate (SCC) expressed by the Group A Streptococcus and Streptococcus mutans, respectively.


Assuntos
Bacteriófagos/fisiologia , Carboidratos/fisiologia , Enzimas/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas Virais/metabolismo , Carboidratos/química , Domínio Catalítico , Parede Celular/química , Parede Celular/metabolismo , Enzimas/genética , Hidrólise , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação Proteica , Streptococcus pyogenes/genética , Streptococcus pyogenes/crescimento & desenvolvimento , Proteínas Virais/genética
20.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498914

RESUMO

Trichomonas vaginalis is the causative agent of one of the most widespread sexually transmitted diseases in the world. The adhesion of the parasite to the vaginal epithelial cells is mediated by specific proteins and by a complex glycan structure, the lipoglycan (TvLG), which covers the pathogen surface. L-rhamnose is an important component of TvLG, comprising up to 40% of the monosaccharides. Thus, the inhibition of its production could lead to a severe alteration in the TvLG structure, making the L-rhamnose biosynthetic pathway an attractive pharmacologic target. We report the identification and characterization of the first committed and limiting step of the L-rhamnose biosynthetic pathway, UDP-D-glucose 4,6-dehydratase (UGD, EC 4.2.1.76). The enzyme shows a strong preference for UDP-D-glucose compared to dTDP-D-glucose; we propose that the mechanism underlying the higher affinity for the UDP-bound substrate is mediated by the differential recognition of ribose versus the deoxyribose of the nucleotide moiety. The identification of the enzymes responsible for the following steps of the L-rhamnose pathway (epimerization and reduction) was more elusive. However, sequence analyses suggest that in T. vaginalis L-rhamnose synthesis proceeds through a mechanism different from the typical eukaryotic pathways, displaying intermediate features between the eukaryotic and prokaryotic pathways and involving separate enzymes for the epimerase and reductase activities, as observed in bacteria. Altogether, these results form the basis for a better understanding of the formation of the complex glycan structures on TvLG and the possible use of L-rhamnose biosynthetic enzymes for the development of selective inhibitors.


Assuntos
Ramnose , Trichomonas vaginalis , Feminino , Humanos , Ramnose/química , Vias Biossintéticas , Glucose , Hidroliases/metabolismo , Difosfato de Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA