Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2403320, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113348

RESUMO

The diagnosis of diabetes mellitus (DM) affecting 537 million adults worldwide relies on invasive and costly enzymatic methods that have limited stability. Electroactive polypyrrole (PPy)-based molecularly imprinted polymer nanoparticles (eMIPs) have been developed that rival the affinity of enzymes whilst being low-cost, highly robust, and facile to produce. By drop-casting eMIPs onto low-cost disposable screen-printed electrodes (SPEs), sensors have been manufactured that can electrochemically detect glucose in a wide dynamic range (1 µm-10 mm) with a limit of detection (LOD) of 26 nm. The eMIPs sensors exhibit no cross reactivity to similar compounds and negligible glucose binding to non-imprinted polymeric nanoparticles (eNIPs). Measurements of serum samples of diabetic patients demonstrate excellent correlation (>0.93) between these eMIPs sensor and the current gold standard Roche blood analyzer test. Finally, the eMIPs sensors are highly durable and reproducible (storage >12 months), showcasing excellent robustness and thermal and chemical stability. Proof-of-application is provided via measuring glucose using these eMIPs sensor in a two-electrode configuration in spiked artificial interstitial fluid (AISF), highlighting its potential for non-invasive wearable monitoring. Due to the versatility of the eMIPs that can be adapted to virtually any target, this platform technology holds high promise for sustainable healthcare applications via providing rapid detection, low-cost, and inherent robustness.

2.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591020

RESUMO

A low-cost, scalable and reproducible approach for the mass production of screen-printed electrode (SPE) platforms that have varying percentage mass incorporations of 2D hexagonal boron nitride (2D-hBN) (2D-hBN/SPEs) is demonstrated herein. These novel 2D-hBN/SPEs are explored as a potential metal-free electrocatalysts towards oxygen reduction reactions (ORRs) within acidic media where their performance is evaluated. A 5% mass incorporation of 2D-hBN into the SPEs resulted in the most beneficial ORR catalysis, reducing the ORR onset potential by ca. 200 mV in comparison to bare/unmodified SPEs. Furthermore, an increase in the achievable current of 83% is also exhibited upon the utilisation of a 2D-hBN/SPE in comparison to its unmodified equivalent. The screen-printed fabrication approach replaces the less-reproducible and time-consuming drop-casting technique of 2D-hBN and provides an alternative approach for the large-scale manufacture of novel electrode platforms that can be utilised in a variety of applications.


Assuntos
Compostos de Boro , Técnicas Eletroquímicas , Eletrodos , Oxigênio
3.
Trends Analyt Chem ; 143: 116374, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34177011

RESUMO

There is a growing interest in the development of portable, cost-effective, and easy-to-use biosensors for the rapid detection of diseases caused by infectious viruses: COVID-19 pandemic has highlighted the central role of diagnostics in response to global outbreaks. Among all the existing technologies, screen-printed electrodes (SPEs) represent a valuable technology for the detection of various viral pathogens. During the last five years, various nanomaterials have been utilized to modify SPEs to achieve convincing effects on the analytical performances of portable SPE-based diagnostics. Herein we would like to provide the readers a comprehensive investigation about the recent combination of SPEs and various nanomaterials for detecting viral pathogens. Manufacturing methods and features advances are critically discussed in the context of early-stage detection of diseases caused by HIV-1, HBV, HCV, Zika, Dengue, and Sars-CoV-2. A detailed table is reported to easily guide readers toward the "right" choice depending on the virus of interest.

4.
Sensors (Basel) ; 19(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590251

RESUMO

. Protecting Cultural Heritage (CH) from corrosion and other environmental damages, mainly involving metallic or organic layers contained in artwork, represents a major challenge for conservation scientists. Electrochemical techniques provide useful information about the deterioration effects of metallic coatings and organic layers. Recently, Electrochemical Impedance Spectroscopy (EIS) has been successfully applied in the study of metallic corrosion. However, EIS has not succeeded in becoming a routine technique, due to problems regarding both instrumental apparatus (which is not ideal for in situ analysis, especially with previous cell configurations), and the difficulty with data processing. At the same time, new portable electrochemical sensors, immunosensors, and biosensors have successfully made a scientific impact, mainly with in situ diagnosis of organic components contained in CH objects. For this purpose, this review presents two sections: the first describes the analytical optimization of impedance electrochemical cell geometries that are suitable for in situ metal-coating investigation; the second reports on the assembly of small electrochemical sensors, immunosensors, and biosensors, which useful for in situ organic layer characterization. This overview summarizes the state of the art regarding the application of electrochemical techniques and small electrochemical devices as alternative tools for the understanding of CH.

5.
Sensors (Basel) ; 16(10)2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27775661

RESUMO

In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR). For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices.

6.
Biosensors (Basel) ; 14(10)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39451717

RESUMO

Detecting urea is crucial for diagnosing related health conditions and ensuring timely medical intervention. The addition of machine learning (ML) technologies has completely changed the field of biochemical sensing, providing enhanced accuracy and reliability. In the present work, an ML-assisted screen-printed, flexible, electrochemical, non-enzymatic biosensor was proposed to quantify urea concentrations. For the detection of urea, the biosensor was modified with a multi-walled carbon nanotube-zinc oxide (MWCNT-ZnO) nanocomposite functionalized with copper oxide (CuO) micro-flowers (MFs). Further, the CuO-MFs were synthesized using a standard sol-gel approach, and the obtained particles were subjected to various characterization techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Fourier transform infrared (FTIR) spectroscopy. The sensor's performance for urea detection was evaluated by assessing the dependence of peak currents on analyte concentration using cyclic voltammetry (CV) at different scan rates of 50, 75, and 100 mV/s. The designed non-enzymatic biosensor showed an acceptable linear range of operation of 0.5-8 mM, and the limit of detection (LoD) observed was 78.479 nM, which is well aligned with the urea concentration found in human blood and exhibits a good sensitivity of 117.98 mA mM-1 cm-2. Additionally, different regression-based ML models were applied to determine CV parameters to predict urea concentrations experimentally. ML significantly improves the accuracy and reliability of screen-printed biosensors, enabling accurate predictions of urea levels. Finally, the combination of ML and biosensor design emphasizes not only the high sensitivity and accuracy of the sensor but also its potential for complex non-enzymatic urea detection applications. Future advancements in accurate biochemical sensing technologies are made possible by this strong and dependable methodology.


Assuntos
Técnicas Biossensoriais , Cobre , Técnicas Eletroquímicas , Aprendizado de Máquina , Nanotubos de Carbono , Ureia , Nanotubos de Carbono/química , Ureia/análise , Cobre/química , Cobre/análise , Humanos , Óxido de Zinco/química , Limite de Detecção
7.
Biosens Bioelectron ; 239: 115590, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607449

RESUMO

Breast cancer (BC) is a complex disease with high variability and no specific tumor markers available for diagnosis. Exosomes contain rich maternal tumor information and are a novel non-invasive biomarker with the potential for cancer diagnosis and prognosis. However, analysis of exosomal protein markers in blood samples is challenging due to lengthy sample workups and insufficient sensitivity. To address this difficulty, we developed a novel filter-electrochemical microfluidic chip (FEMC) to detect and classify BC directly in whole blood without requiring heavy purification methods. In our system, exosome enrichment was performed using a dual filtration system. The target was directed through a curved channel onto four screen-printed electrodes (SPEs), where it was captured by the previously modified antibodies. Simultaneously, Zr-MOFs encapsulated with a large number of methylene blue molecules (MB@UiO-66) were absorbed on the surface of exosomes due to the high affinity for phosphate groups. This process leads to the amplification of electrical signals. The approach demonstrated that the utilization of BC exosome-associated tumor biomarkers (i.e., PMSA, EGFR, CD81, and CEA), enabled the classification of various BC mouse models samples and clinical BC samples. The entire FEMC assay was completed in 1 h with a limit of detection of 1 × 104 particles/mL. Thus, the FEMC assay can provide real-time detection information, allowing timely and better-informed opportunities for clinical BC diagnosis and typing.


Assuntos
Técnicas Biossensoriais , Exossomos , Neoplasias , Animais , Camundongos , Proteínas de Membrana , Microfluídica , Anticorpos , Biomarcadores Tumorais
8.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421150

RESUMO

A new spectroelectrochemical two-enzyme sensor system has been developed for the detection of acetaldehyde in wine. A combination of spectroscopy and electrochemistry improves the analytical features of the electrochemical sensor because the optical information collected with this system is only associated with acetaldehyde and avoids the interferents also present in wines as polyphenols. Spectroelectrochemical detection is achieved by the analysis of the optical properties of the K3[Fe(CN)6]/K4[Fe(CN)6] redox couple involved in the enzymatic process: aldehyde dehydrogenase catalyzes the aldehyde oxidation using ß-nicotinamide adenine dinucleotide hydrate (NAD+) as a cofactor and, simultaneously, diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of K3[Fe(CN)6]. An analysis of the characteristic UV-vis bands of K3[Fe(CN)6] at 310 and 420 nm allows the detection of acetaldehyde, since absorption bands are only related to the oxidation of this substrate, and avoids the contribution of other interferents.


Assuntos
Acetaldeído , Vinho , Acetaldeído/análise , Vinho/análise , NAD/análise , NAD/química , NAD/metabolismo , Eletroquímica , Oxirredução
9.
Talanta ; 239: 123083, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861485

RESUMO

The number of death due to cancer-related diseases each year is at the alarming level and is constantly growing. Tools that can effectively and conveniently detect cancer cell apoptosis can play a significant role in cancer research, cancer therapy, and other related industries. Herein, we fabricated, for the first time, an ultrasensitive, disposable, self-enhanced off-on electrochemiluminescence (ECL) biosensor based on ternary Ru-PEI@PCN-333(Al) system to determine caspase-3 activity, the biomarker of apoptosis. The biosensor had a low detection limit of 0.017 pg/mL and was able to enhance the ECL emission and stability. A solid-state (SS) ECL strategy was adopted to overcome the relatively weak ECL emission due to the long distance between electrochemiluminophore and electrode surface. The analysis requires only one incubation step, which can significantly reduce the operational complexity and time. The biosensor had higher sensitivity, and the off-on ECL mode was achieved using caspase-3 as a switch. The on-site and rapid detection capability of the biosensor was achieved by the introduction of disposable screen-printed electrodes (SPEs). This study lays a foundation for the development of more advanced, ingenious, portable and reliable ECL devices for biosensing not only caspase-3, but also other bioanalytes.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Caspase 3 , Medições Luminescentes
10.
Talanta ; 206: 120190, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514825

RESUMO

Raman spectroelectrochemistry based on electrochemical surface-enhanced Raman scattering (EC-SERS) effect is an interesting alternative to overcome the lack of sensitivity of normal Raman spectroscopy. Electrochemical activation of metallic screen-printed electrodes (SPEs) leads to the reproducible generation of nanostructures with excellent SERS properties. In that way, gold SPEs circumvent the traditional reproducibility limitation and produce the enhancement of the Raman intensity to favor the detection of low concentrations. Furthermore, fingerprint features of Raman spectroscopy make possible the dynamic spectroelectrochemical analysis of B vitamins. The accuracy assignments of Raman bands associated with B1, B2, B3, B6 and B12 vitamins present in multivitamin complexes provides valuable information, allowing us not only the detection of B vitamin present in mixtures, but also to understand the interaction between vitamins and metallic SERS surfaces.


Assuntos
Niacinamida/análise , Riboflavina/análise , Tiamina/análise , Vitamina B 12/análise , Vitamina B 6/análise , Complexo Vitamínico B/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
11.
Biosensors (Basel) ; 10(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114106

RESUMO

Antibiotic resistance has been cited by the World Health Organisation (WHO) as one of the greatest threats to public health. Mitigating the spread of antibiotic resistance requires a multipronged approach with possible interventions including faster diagnostic testing and enhanced antibiotic stewardship. This study employs a low-cost diagnostic sensor test to rapidly pinpoint the correct antibiotic for treatment of infection. The sensor comprises a screen-printed gold electrode, modified with an antibiotic-seeded hydrogel to monitor bacterial growth. Electrochemical growth profiles of the common microorganism, Escherichia coli (E. coli) (ATCC 25922) were measured in the presence and absence of the antibiotic streptomycin. Results show a clear distinction between the E. coli growth profiles depending on whether streptomycin is present, in a timeframe of ≈2.5 h (p < 0.05), significantly quicker than the current gold standard of culture-based antimicrobial susceptibility testing. These results demonstrate a clear pathway to a low cost, phenotypic and reproducible antibiotic susceptibility testing technology for the rapid detection of E. coli within clinically relevant concentration ranges for conditions such as urinary tract infections.


Assuntos
Técnicas Biossensoriais , Eletrodos , Escherichia coli , Testes de Sensibilidade Microbiana/métodos , Antibacterianos , Resistência Microbiana a Medicamentos , Infecções por Escherichia coli , Humanos
12.
Talanta ; 146: 801-14, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695333

RESUMO

Screen-printed electrodes (SPEs) have gone through significant improvements over the past few decades with respect to both their format and their printing materials. Thus, SPEs have been successfully applied for the in situ detection of a plethora of analytes in a wide range of sample matrixes due to their advantageous material properties, such as disposability, simplicity, and rapid responses. In particular, the development of electrochemical sensors based on SPEs for pharmaceutical analysis has received massive consideration since they enable the rapid screening of the pharmaceutical compounds in complex matrixes, requiring small volumes of samples and no pre-treatment steps. This review summarizes the design and the working principles of electrochemical sensors based on SPEs applied to the quantification of pharmaceutical and biological compounds.


Assuntos
Técnicas Biossensoriais/métodos , Eletroquímica/instrumentação , Preparações Farmacêuticas/análise , Impressão , Eletrodos , Humanos
13.
Biosens Bioelectron ; 59: 94-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24704763

RESUMO

Oxidized Single-Wall Carbon Nanohorns (o-SWCNHs) were used, for the first time, to assemble chemically modified Screen Printed Electrodes (SPEs) selective towards the electrochemical detection of Epinephrine (Ep), in the presence of Serotonine-5-HT (S-5HT), Dopamine (DA), Nor-Epineprhine (Nor-Ep), Ascorbic Acid (AA), Acetaminophen (Ac) and Uric Acid (UA). The Ep neurotransmitter was detected by using Differential Pulse Voltammetry (DPV), in a wide linear range of concentration (2-2500 µM) with high sensitivity (55.77 A M(-1) cm(-2)), very good reproducibility (RSD% ranging from 2 to 10 for different SPEs), short response time for each measurement (only 2s) and low detection of limit (LOD=0.1 µM). o-SWCNHs resulted in higher analytical performances when compared with other nanomaterials used in literature for electrochemical sensors assembly.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Epinefrina/análise , Eletrodos , Limite de Detecção , Nanoestruturas/química , Oxirredução , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA