Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2312680121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194462

RESUMO

Periodic spin-orbit motion is ubiquitous in nature, observed from electrons orbiting nuclei to spinning planets orbiting the Sun. Achieving autonomous periodic orbiting motions, along circular and noncircular paths, in soft mobile robotics is crucial for adaptive and intelligent exploration of unknown environments-a grand challenge yet to be accomplished. Here, we report leveraging a closed-loop twisted ring topology with a defect for an autonomous soft robot capable of achieving periodic spin-orbiting motions with programmed circular and re-programmed irregular-shaped trajectories. Constructed by bonding a twisted liquid crystal elastomer ribbon into a closed-loop ring topology, the robot exhibits three coupled periodic self-motions in response to constant temperature or constant light sources: inside-out flipping, self-spinning around the ring center, and self-orbiting around a point outside the ring. The coupled spinning and orbiting motions share the same direction and period. The spinning or orbiting direction depends on the twisting chirality, while the orbital radius and period are determined by the twisted ring geometry and thermal actuation. The flip-spin and orbiting motions arise from the twisted ring topology and a bonding site defect that breaks the force symmetry, respectively. By utilizing the twisting-encoded autonomous flip-spin-orbit motions, we showcase the robot's potential for intelligently mapping the geometric boundaries of unknown confined spaces, including convex shapes like circles, squares, triangles, and pentagons and concaves shapes with multi-robots, as well as health monitoring of unknown confined spaces with boundary damages.

2.
Proc Natl Acad Sci U S A ; 120(36): e2308972120, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639583

RESUMO

Electronic nematicity has been found in a wide range of strongly correlated electron materials, resulting in the electronic states having-4.5pc]Please note that the spelling of the following author name(s) in the manuscript differs from the spelling provided in the article metadata: Izidor Benedicic. The spelling provided in the manuscript has been retained; please confirm. a symmetry that is lower than that of the crystal that hosts them. One of the most astonishing examples is [Formula: see text], in which a small in-plane component of a magnetic field induces significant resistivity anisotropy. The direction of this anisotropy follows the direction of the in-plane field. The microscopic origin of this field-induced nematicity has been a long-standing puzzle, with recent experiments suggesting a field-induced spin density wave driving the anisotropy. Here, we report spectroscopic imaging of a field-controlled anisotropy of the electronic structure at the surface of [Formula: see text]. We track the electronic structure as a function of the direction of the field, revealing a continuous change with the angle. This continuous evolution suggests a mechanism based on spin-orbit coupling resulting in compass-like control of the electronic bands. The anisotropy of the electronic structure persists to temperatures about an order of magnitude higher compared to the bulk, demonstrating novel routes to stabilize such phases over a wider temperature range.

3.
Nano Lett ; 24(13): 3851-3857, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502010

RESUMO

A two-dimensional (2D) quantum electron system is characterized by quantized energy levels, or subbands, in the out-of-plane direction. Populating higher subbands and controlling the intersubband transitions have wide technological applications such as optical modulators and quantum cascade lasers. In conventional materials, however, the tunability of intersubband spacing is limited. Here we demonstrate electrostatic population and characterization of the second subband in few-layer InSe quantum wells, with giant tunability of its energy, population, and spin-orbit coupling strength, via the control of not only layer thickness but also the out-of-plane displacement field. A modulation of as much as 350% or over 250 meV is achievable, underscoring the promise of InSe for tunable infrared and THz sources, detectors, and modulators.

4.
Rep Prog Phys ; 87(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38241723

RESUMO

We review the recent advances and current challenges in the field of strong spin-orbit coupled Kitaev materials, with a particular emphasis on the physics beyond the exactly-solvable Kitaev spin liquid point. To this end, we present a comprehensive overview of the key exchange interactions in candidate materials with a specific focus on systems featuring effectiveJeff=1/2magnetic moments. This includes, but not limited to,5d5iridates,4d5ruthenates and3d7cobaltates. Our exploration covers the microscopic origins of these interactions, along with a systematic attempt to map out the most intriguing correlated regimes of the multi-dimensional parameter space. Our approach is guided by robust symmetry and duality transformations as well as insights from a wide spectrum of analytical and numerical studies. We also survey higher spin Kitaev models and recent exciting results on quasi-one-dimensional models and discuss their relevance to higher-dimensional models. Finally, we highlight some of the key questions in the field as well as future directions.

5.
J Comput Chem ; 45(16): 1322-1328, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38363067

RESUMO

The modulation of the photophysical properties of di-substituted porphyrin rings upon the oxygen and sulfur-for-nitrogen replacement has been investigated at density functional theory (DFT) and its time-dependent formulation (TDDFT). The considered properties range from structural behaviors and excitation energies to spin-orbit coupling (SOC) and nonradiative intersystem kinetic constants. Results show that the SOC strongly increase upon chalcogen substitution and, accordingly, the computed nonradiative kinetic constant also indicate an efficient singlet-triplet intersystem crossing in the sulfur containing macrocycle. The presented results indicate an alternative way to properly modulate the porphyrin's crucial properties for their use in photodynamic therapy, without resorting to the use of heavy atoms.

6.
J Comput Chem ; 45(15): 1254-1260, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38351736

RESUMO

A DFT and TDDFT study has been carried out on monomeric anthraquinones Emodin and Dermocybin (Em, Derm) recently proposed as natural antibacterial photosensitizers able to act also against gram-negative microbes. The computational study has been performed considering the relative amount of neutral and ionic forms of each compound in water, with the variation of pH. The occurrence of both Type I and Type II photoreactions has been explored computing the absorption properties of each species, the spin-orbit coupling constants (SOC), the vertical ionization potentials and the vertical electron affinities. The most plausible deactivation channels leading to the population of excited triplet states have been proposed. Our data indicate Emodin as more active than Dermocybin in antimicrobial photodynamic therapy throughout the Type II mechanism. Our data support a dual TypeI/II activity of the monomeric anthraquinones Emodin and Dermccybin in water, in all the considered protonation states.


Assuntos
Emodina , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Antraquinonas , Antibacterianos , Água
7.
J Comput Chem ; 45(9): 552-562, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38009451

RESUMO

Recently, surface-hopping ab initio molecular dynamics (SH-AIMD) simulations have come to be used to discuss the mechanisms and dynamics of excited-state chemical reactions, including internal conversion and intersystem crossing. In dynamics simulations involving intersystem crossing, there are two potential energy surfaces (PESs) governing the motion of nuclei: PES in a spin-pure state and PES in a spin-mixed state. The former gives wrong results for molecular systems with large spin-orbit coupling (SOC), while the latter requires a potential gradient that includes a change in SOC at each point, making the computational cost very high. In this study, we systematically investigate the extent to which the magnitude of SOC affects the results of the spin-pure state-based dynamics simulations for the hydride MH2 (M = Si, Ge, Sn, Pb) by performing SH-AIMD simulations based on spin-pure and spin-mixed states. It is clearly shown that spin-mixed state PESs are indispensable for the dynamics simulation of intersystem crossing in systems containing elements Sn and Pb from the fifth period onward. Furthermore, in addition to the widely used Tully's fewest switches (TFS) algorithm, the Zhu-Nakamura (ZN) global switching algorithm, which is computationally less expensive, is applied to SH for comparison. The results from TFS- and ZN-SH-AIMD methods are in qualitative agreement, suggesting that the less expensive ZN-SH-AIMD can be successfully utilized to investigate the dynamics of photochemical reactions based on quantum chemical calculations.

8.
Chemistry ; 30(41): e202401796, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38771676

RESUMO

Converting CO2 into useful chemicals using metal catalysts is a significant challenge in chemistry. Among the various catalysts reported, transition metal lanthanide hybrid {3d-4f} complexes stand out for their superior efficiency and site selectivity. However, unlike transition metal catalysts, understanding the origin of this efficiency in lanthanides poses a challenge due to their orbital degeneracy, rendering the application of DFT methods ineffective. In this study, we employed a combination of density functional theory (DFT) and ab initio CASSCF/RASSI-SO calculations to explore the mechanism of CO2 conversion to cyclic carbonate using a 3d-4f heterometallic catalyst for the first time. This work unveils the importance of 3d and 4f metal cooperativity and the role of individual spin-orbit states in dictating the overall efficiency of the catalyst.

9.
Chemistry ; 30(34): e202401015, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38618887

RESUMO

The molecular IrF5 -, IrF6 - anions and M[IrF6] (M=Na, K, Rb, Cs) ion pairs were prepared by co-deposition of laser-ablated alkali metal fluorides MF with IrF6 and isolated in solid neon or argon matrices under cryogenic conditions. The free anions were obtained as well by co-deposition of IrF6 with laser-ablated metals (Ir or Pt) as electron sources. The products were characterized in a combined analysis of matrix IR spectroscopy and electronic structure calculations using two-component quasi-relativistic DFT methods accounting for spin-orbit coupling (SOC) effects as well as multi-reference configuration-interaction (MRCI) approaches with SOC. Inclusion of SOC is crucial in the prediction of spectra and properties of IrF6 - and its alkali-metal ion pairs. The observed IR bands and the computations show that the IrF6 - anion adopts an Oh structure in a nondegenerate ground state stabilized by SOC effects, and not a distorted D4h structure in a triplet ground state as suggested by scalar-relativistic calculations. The corresponding "closed-shell" M[IrF6] ion pairs with C3v symmetry are stabilized by coordination of an alkali metal ion to three F atoms, and their structural change in the series from M=Na to Cs was proven spectroscopically. There is no evidence for the formation of IrF7, IrF7 - or M[IrF7] (M=Na, K, Rb, Cs) ion pairs in our experiments.

10.
Chemistry ; 30(27): e202400191, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38498874

RESUMO

Controlling the formation of photoexcited triplet states is critical for many (photo)chemical and physical applications. Here, we demonstrate that a permanent out-of-plane distortion of the benzothioxanthene imide (BTI) dye promotes intersystem crossing by increasing spin-orbit coupling. This manipulation was achieved through a subtle chemical modification, specifically the bay-area methylation. Consequently, this simple yet efficient approach expands the catalog of known molecular engineering strategies for synthesizing heavy atom-free, dual redox-active, yet still emissive and synthetically accessible photosensitizers.

11.
Chemistry ; 30(26): e202304083, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647352

RESUMO

Singlet dioxygen has been widely applied in different disciplines such as medicine (photodynamic therapy or blood sterilization), remediation (wastewater treatment) or industrial processes (fine chemicals synthesis). Particularly, it can be conveniently generated by energy transfer between a photosensitizer's triplet state and triplet dioxygen upon irradiation with visible light. Among the best photosensitizers, substituted zinc(II) phthalocyanines are prominent due to their excellent photophysical properties, which can be tuned by structural modifications, such as halogen- and chalcogen-atom substitution. These patterns allow for the enhancement of spin-orbit coupling, commonly attributed to the heavy atom effect, which correlates with the atomic number ( Z ${Z}$ ) and the spin-orbit coupling constant ( ζ ${\zeta }$ ) of the introduced heteroatom. Herein, a fully systematic analysis of the effect exerted by chalcogen atoms on the photophysical characteristics (absorption and fluorescence properties, lifetimes and singlet dioxygen photogeneration), involving 30 custom-made ß-tetrasubstituted chalcogen-bearing zinc(II) phthalocyanines is described and evaluated regarding the heavy atom effect. Besides, the intersystem crossing rate constants are estimated by several independent methods and a quantitative profile of the heavy atom is provided by using linear correlations between relative intersystem crossing rates and relative atomic numbers. Good linear trends for both intersystem crossing rates (S1-T1 and T1-S0) were obtained, with a dependency on the atomic number and the spin-orbit coupling constant scaling as Z 0 . 4 ${{Z}^{0.4}}$ and ζ 0 . 2 ${{\zeta }^{0.2}}$ , respectively The trend shows to be independent of the solvent and temperature.

12.
Chemphyschem ; : e202400457, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828488

RESUMO

Color polymorphism combined with crystal packing-dependent luminescence properties of polymorphs reflects differences in intermolecular interactions in different molecular arrangements. The title compound has two polymorphic crystal structures having strikingly different absorption and luminescence spectra that result from different packing motifs in the crystal lattice. The polymorph with brick wall-like packing of molecules is white and shows very weak violet fluorescence whereas the second polymorph, where molecules are arranged in columnar stacks, is bright yellow and displays intense green fluorescence with maximum at 487 nm (20530 cm-1). In the white polymorph, where the distance between neighboring chromophores is increased, absorption and fluorescence spectra are similar to those of monomer in solution, and intersystem crossing to triplet manifold is the dominant pathway of relaxation. In the yellow polymorph, molecules within the columnar stacks are rotated which mitigates the steric hindrance and leads to closer π-stacking of the pyrene cores. That increases the ππ overlap and strengthens intermolecular interactions decreasing energy of the excited states. This affects emission spectra and photophysical processes-fluorescence yield grows whereas triplet formation yield decreases when S1 is lowered below higher triplet states and conditions for effective vibronic spin-orbit coupling are not favorable. The effect is not observed for other similar pyrene derivatives, testifying the uniqueness of the phenomenon.

13.
Chemphyschem ; : e202400310, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708605

RESUMO

In this work, we study the chemical bond in molecules containing heavy and super-heavy elements according to the current state-of-the-art bonding models. An Energy Decomposition Analysis in combination with Natural Orbital for Chemical Valence (EDA-NOCV) within the relativistic four-component Dirac-Kohn-Sham (DKS) framework is employed, which allows to successfully include the spin-orbit coupling (SOC) effects on the chemical bond description. Simple halogen-bonded adducts ClX⋯L (X=At, Ts; L=NH3, Br-, H2O, CO) of astatine and tennessine have been selected to assess a trend on descending along a group, while modulating the ClX⋯L bond features through the different electronic nature of the ligand L. Interesting effects caused by SOC have been revealed: i) a huge increase of the ClTs dipole moment (which is almost twice as that of ClAt), ii) a lowering of the ClX⋯L bonding energy arising from different contributions to the ClX…L interaction energy strongly depending on the nature of L, iii) a quenching of one of the π back-donation components to the bond. In the ClTs(CO) adduct, the back-donation from ClTs to CO becomes the most important component. The analysis of the electronic structure of the ClX dimers allows for a clear interpretation of the SOC effects in these systems.

14.
Photochem Photobiol Sci ; 23(3): 451-462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324165

RESUMO

Donor-acceptor dyads based on BODIPYs have been recently employed to enhance the formation of triplet excited states with the process of spin-orbit charge transfer intersystem crossing (SOCT-ISC) which does not require introduction of transition metals or other heavy atoms into the molecule. In this work we compare two donor-acceptor dyads based on meso-naphthalenyl BODIPY by combining experimental and computational investigations. The photophysical and electrochemical characterization reveals a significant effect of alkylation of the BODIPY core, disfavoring the SOCT-ISC mechanism for the ethylated BODIPY dyad. This is complemented with a computational investigation carried out to rationalize the influence of ethyl substituents and solvent effects on the electronic structure and efficiency of triplet state population via charge recombination (CR) from the photoinduced electron transfer (PeT) generated charge-transfer (CT) state. Time dependent-density functional theory (TD-DFT) calculations including solvent effects and spin-orbit coupling (SOC) calculations uncover the combined role played by solvent and alkyl substitution on the lateral positions of BODIPY.

15.
Proc Natl Acad Sci U S A ; 118(3)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431686

RESUMO

We show that the Zeeman field can induce a topological transition in two-dimensional spin-orbit-coupled metals and, concomitantly, a first-order phase transition in the superconducting state involving a discontinuous change of Cooper pair momentum. Depending on the spin-orbit coupling strength, we find different phase diagrams of two-dimensional (2D) superconductors under in-plane magnetic field.

16.
Proc Natl Acad Sci U S A ; 118(6)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526684

RESUMO

Spin-momentum locking, a manifestation of topological properties that governs the behavior of surface states, was studied intensively in condensed-matter physics and optics, resulting in the discovery of topological insulators and related effects and their photonic counterparts. In addition to spin, optical waves may have complex structure of vector fields associated with orbital angular momentum or nonuniform intensity variations. Here, we derive a set of spin-momentum equations which describes the relationship between the spin and orbital properties of arbitrary complex electromagnetic guided modes. The predicted photonic spin dynamics is experimentally verified with four kinds of nondiffracting surface structured waves. In contrast to the one-dimensional uniform spin of a guided plane wave, a two-dimensional chiral spin swirl is observed for structured guided modes. The proposed framework opens up opportunities for designing the spin structure and topological properties of electromagnetic waves with practical importance in spin optics, topological photonics, metrology and quantum technologies and may be used to extend the spin-dynamics concepts to fluid, acoustic, and gravitational waves.

17.
Molecules ; 29(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893497

RESUMO

Developing materials with dynamic room-temperature phosphorescence (RTP) properties is crucial for expanding the applications of organic light-emitting materials. In this study, we designed and synthesized two novel RTP molecules by combining functional units, incorporating the folded unit thianthrene into the classic luminescent cores thioxanthone or anthraquinone to construct TASO and TA2O. In this combination, the TA unit contributes to the enhancement of spin-orbit coupling (SOC), while the luminescent core governs the triplet energy level. After the strategic manipulation of SOC using the thianthrene unit, the target molecules exhibited a remarkable enhancement in RTP performance. This strategy led to the successful development of TASO and TA2O molecules with outstanding dynamic RTP properties when exposed to continuous ultraviolet irradiation, a result that can be ascribed to their efficient RTP, improved absorption ability, and oxygen-sensitive RTP properties. Leveraging the oxygen-mediated ultraviolet-radiation-induced RTP enhancement in TASO-doped polymer films, we developed a novel time-resolved detection technique for identifying phase separation in polymers with varying oxygen permeability. This research offers a promising approach for constructing materials with dynamic RTP properties.

18.
Molecules ; 29(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064853

RESUMO

Tetroxane derivatives are interesting drugs for antileishmaniasis and antimalaric treatments. The gas-phase thermal decomposition of 3,6,-dimethyl-1,2,4,5-tetroxane (DMT) and 3,3,6,6,-tetramethyl-1,2,4,5-tetroxane (acetone diperoxide (ACDP)) was studied at 493-543 K by direct gas chromatography by means of a flow reactor. The reaction is produced in the injector chamber at different temperatures. The resulting kinetics Arrhenius equations were calculated for both tetroxanes. Including the parent compound of the series 1,2,4,5-tetroxane (formaldehyde diperoxide (FDP)), the activation energy and frequency factors decrease linearly with the number of methyl groups. The reaction mechanisms of ACDP and 3,6,6-trimethyl-1,2,4,5-tetroxane (TMT) decomposition have been studied by means of the DFT method with the BHANDHLYP functional. Our calculations confirm that the concerted mechanism should be discarded and that only the stepwise mechanism occurs. The critical points of the singlet and triplet state potential energy surfaces (S- and T-PES) of the thermolysis reaction of both compounds have been determined. The calculated activation energies of the different steps vary linearly with the number of methyl groups of the methyl-tetroxanes series. The mechanism for the S-PES leads to a diradical O···O open structure, which leads to a C···O dissociation in the second step and the production of the first acetaldehyde/acetone molecule. This last one yields a second C···O dissociation, producing O2 and another acetone/acetaldehyde molecule. The O2 molecule is in the singlet state. A quasi-parallel mechanism for the T-PES from the open diradical to products is also found. Most of the critical points of both PES are linear with the number of methyl groups. Reaction in the triplet state is much more exothermic than the singlet state mechanism. Transitions from the singlet ground state, S0 and low-lying singlet states S1-3, to the low-lying triplet excited states, T1-4, (chemical excitation) in the family of methyl tetroxanes are also studied at the CASSCF/CASPT2 level. Two possible mechanisms are possible here: (i) from S0 to T3 by strong spin orbit coupling (SOC) and subsequent fast internal conversion to the excited T1 state and (ii) from S0 to S2 from internal conversion and subsequent S2 to T1 by SOC. From these experimental and theoretical results, the additivity effect of the methyl groups in the thermolysis reaction of the methyl tetroxane derivatives is clearly highlighted. This information will have a great impact for controlling these processes in the laboratory and chemical industries.

19.
Entropy (Basel) ; 26(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38392392

RESUMO

This article presents a concise survey of basic discrete and semi-discrete nonlinear models, which produce two- and three-dimensional (2D and 3D) solitons, and a summary of the main theoretical and experimental results obtained for such solitons. The models are based on the discrete nonlinear Schrödinger (DNLS) equations and their generalizations, such as a system of discrete Gross-Pitaevskii (GP) equations with the Lee-Huang-Yang corrections, the 2D Salerno model (SM), DNLS equations with long-range dipole-dipole and quadrupole-quadrupole interactions, a system of coupled discrete equations for the second-harmonic generation with the quadratic (χ(2)) nonlinearity, a 2D DNLS equation with a superlattice modulation opening mini-gaps, a discretized NLS equation with rotation, a DNLS coupler and its PT-symmetric version, a system of DNLS equations for the spin-orbit-coupled (SOC) binary Bose-Einstein condensate, and others. The article presents a review of the basic species of multidimensional discrete modes, including fundamental (zero-vorticity) and vortex solitons, their bound states, gap solitons populating mini-gaps, symmetric and asymmetric solitons in the conservative and PT-symmetric couplers, cuspons in the 2D SM, discrete SOC solitons of the semi-vortex and mixed-mode types, 3D discrete skyrmions, and some others.

20.
Angew Chem Int Ed Engl ; 63(29): e202405418, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686901

RESUMO

Purely organic molecules with room-temperature phosphorescence (RTP) are potential luminescent materials with high exciton utilization for organic light-emitting diodes (OLEDs), but those exhibiting superb electroluminescence (EL) performances are rarely explored, mainly due to their long phosphorescence lifetimes. Herein, a robust purely organic RTP molecule, 3,6-bis(5-phenylindolo[3,2-a]carbazol-12(5H)-yl)-xanthen-9-one (3,2-PIC-XT), is developed. The neat film of 3,2-PIC-XT shows strong green RTP with a very short lifetime (2.9 µs) and a high photoluminescence quantum yield (72 %), and behaviors balanced bipolar charge transport. The RTP nature of 3,2-PIC-XT is validated by steady-state and transient absorption and emission spectroscopies, and the working mechanism is deciphered by theoretical simulation. Non-doped multilayer OLEDs using thin neat films of 3,2-PIC-XT furnish an outstanding external quantum efficiency (EQE) of 24.91 % with an extremely low roll-off (1.6 %) at 1000 cd m-2. High-performance non-doped top-emitting and tandem OLEDs are also achieved, providing remarkable EQEs of 24.53 % and 42.50 %, respectively. Delightfully, non-doped simplified OLEDs employing thick neat films of 3,2-PIC-XT are also realized, furnishing an excellent EQE of 17.79 % and greatly enhanced operational lifetime. The temperature-dependent and transient EL spectroscopies demonstrate the electrophosphorescence attribute of 3,2-PIC-XT. These non-doped OLEDs are the best devices based on purely organic RTP materials reported so far.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA